Properties

Label 702.2.bb.a.71.4
Level $702$
Weight $2$
Character 702.71
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(71,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 71.4
Character \(\chi\) \(=\) 702.71
Dual form 702.2.bb.a.89.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(-0.650628 + 0.174335i) q^{5} +(-1.73068 + 0.463733i) q^{7} +(0.707107 - 0.707107i) q^{8} +O(q^{10})\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(-0.650628 + 0.174335i) q^{5} +(-1.73068 + 0.463733i) q^{7} +(0.707107 - 0.707107i) q^{8} +(0.583337 + 0.336790i) q^{10} +(-0.696978 + 0.696978i) q^{11} +(0.391864 - 3.58419i) q^{13} +(1.55168 + 0.895864i) q^{14} -1.00000 q^{16} +(1.20946 + 2.09485i) q^{17} +(6.33213 + 1.69669i) q^{19} +(-0.174335 - 0.650628i) q^{20} +0.985676 q^{22} +(3.16302 + 5.47852i) q^{23} +(-3.93720 + 2.27315i) q^{25} +(-2.81150 + 2.25732i) q^{26} +(-0.463733 - 1.73068i) q^{28} +4.29257i q^{29} +(1.49861 + 5.59289i) q^{31} +(0.707107 + 0.707107i) q^{32} +(0.626062 - 2.33650i) q^{34} +(1.04518 - 0.603436i) q^{35} +(6.83094 - 1.83034i) q^{37} +(-3.27775 - 5.67724i) q^{38} +(-0.336790 + 0.583337i) q^{40} +(-1.28786 + 4.80634i) q^{41} +(-0.772736 - 0.446139i) q^{43} +(-0.696978 - 0.696978i) q^{44} +(1.63730 - 6.11049i) q^{46} +(3.66378 + 0.981707i) q^{47} +(-3.28199 + 1.89486i) q^{49} +(4.39138 + 1.17667i) q^{50} +(3.58419 + 0.391864i) q^{52} +9.00014i q^{53} +(0.331966 - 0.574981i) q^{55} +(-0.895864 + 1.55168i) q^{56} +(3.03531 - 3.03531i) q^{58} +(3.33959 - 3.33959i) q^{59} +(-2.38199 + 4.12572i) q^{61} +(2.89509 - 5.01445i) q^{62} -1.00000i q^{64} +(0.369894 + 2.40029i) q^{65} +(10.6950 + 2.86571i) q^{67} +(-2.09485 + 1.20946i) q^{68} +(-1.16575 - 0.312361i) q^{70} +(1.70900 - 6.37808i) q^{71} +(-8.01788 - 8.01788i) q^{73} +(-6.12445 - 3.53595i) q^{74} +(-1.69669 + 6.33213i) q^{76} +(0.883031 - 1.52946i) q^{77} +(-0.807117 - 1.39797i) q^{79} +(0.650628 - 0.174335i) q^{80} +(4.30925 - 2.48795i) q^{82} +(1.95885 - 7.31055i) q^{83} +(-1.15211 - 1.15211i) q^{85} +(0.230939 + 0.861875i) q^{86} +0.985676i q^{88} +(0.440877 + 1.64537i) q^{89} +(0.983920 + 6.38480i) q^{91} +(-5.47852 + 3.16302i) q^{92} +(-1.89651 - 3.28485i) q^{94} -4.41566 q^{95} +(-0.497183 - 1.85551i) q^{97} +(3.66058 + 0.980849i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 4 q^{7} - 56 q^{16} - 8 q^{19} - 4 q^{28} + 8 q^{31} - 24 q^{35} - 4 q^{37} + 36 q^{38} + 48 q^{41} + 12 q^{43} - 60 q^{47} + 24 q^{50} - 4 q^{52} + 120 q^{65} - 56 q^{67} - 24 q^{71} + 28 q^{73} - 48 q^{74} + 4 q^{76} + 24 q^{77} - 24 q^{79} + 60 q^{83} - 48 q^{86} + 4 q^{91} + 24 q^{92} + 20 q^{97} + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −0.650628 + 0.174335i −0.290970 + 0.0779651i −0.401351 0.915924i \(-0.631459\pi\)
0.110382 + 0.993889i \(0.464793\pi\)
\(6\) 0 0
\(7\) −1.73068 + 0.463733i −0.654134 + 0.175275i −0.570597 0.821230i \(-0.693288\pi\)
−0.0835368 + 0.996505i \(0.526622\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) 0.583337 + 0.336790i 0.184467 + 0.106502i
\(11\) −0.696978 + 0.696978i −0.210147 + 0.210147i −0.804330 0.594183i \(-0.797475\pi\)
0.594183 + 0.804330i \(0.297475\pi\)
\(12\) 0 0
\(13\) 0.391864 3.58419i 0.108684 0.994076i
\(14\) 1.55168 + 0.895864i 0.414704 + 0.239430i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 1.20946 + 2.09485i 0.293337 + 0.508075i 0.974597 0.223967i \(-0.0719009\pi\)
−0.681260 + 0.732042i \(0.738568\pi\)
\(18\) 0 0
\(19\) 6.33213 + 1.69669i 1.45269 + 0.389247i 0.896959 0.442114i \(-0.145771\pi\)
0.555732 + 0.831361i \(0.312438\pi\)
\(20\) −0.174335 0.650628i −0.0389826 0.145485i
\(21\) 0 0
\(22\) 0.985676 0.210147
\(23\) 3.16302 + 5.47852i 0.659536 + 1.14235i 0.980736 + 0.195338i \(0.0625805\pi\)
−0.321200 + 0.947011i \(0.604086\pi\)
\(24\) 0 0
\(25\) −3.93720 + 2.27315i −0.787441 + 0.454629i
\(26\) −2.81150 + 2.25732i −0.551380 + 0.442696i
\(27\) 0 0
\(28\) −0.463733 1.73068i −0.0876374 0.327067i
\(29\) 4.29257i 0.797111i 0.917144 + 0.398555i \(0.130488\pi\)
−0.917144 + 0.398555i \(0.869512\pi\)
\(30\) 0 0
\(31\) 1.49861 + 5.59289i 0.269158 + 1.00451i 0.959656 + 0.281178i \(0.0907250\pi\)
−0.690498 + 0.723335i \(0.742608\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) 0.626062 2.33650i 0.107369 0.400706i
\(35\) 1.04518 0.603436i 0.176668 0.101999i
\(36\) 0 0
\(37\) 6.83094 1.83034i 1.12300 0.300907i 0.350902 0.936412i \(-0.385875\pi\)
0.772096 + 0.635505i \(0.219208\pi\)
\(38\) −3.27775 5.67724i −0.531722 0.920969i
\(39\) 0 0
\(40\) −0.336790 + 0.583337i −0.0532512 + 0.0922337i
\(41\) −1.28786 + 4.80634i −0.201129 + 0.750625i 0.789465 + 0.613795i \(0.210358\pi\)
−0.990595 + 0.136830i \(0.956309\pi\)
\(42\) 0 0
\(43\) −0.772736 0.446139i −0.117841 0.0680356i 0.439921 0.898037i \(-0.355006\pi\)
−0.557762 + 0.830001i \(0.688340\pi\)
\(44\) −0.696978 0.696978i −0.105073 0.105073i
\(45\) 0 0
\(46\) 1.63730 6.11049i 0.241407 0.900943i
\(47\) 3.66378 + 0.981707i 0.534417 + 0.143197i 0.515927 0.856632i \(-0.327447\pi\)
0.0184899 + 0.999829i \(0.494114\pi\)
\(48\) 0 0
\(49\) −3.28199 + 1.89486i −0.468855 + 0.270694i
\(50\) 4.39138 + 1.17667i 0.621035 + 0.166406i
\(51\) 0 0
\(52\) 3.58419 + 0.391864i 0.497038 + 0.0543418i
\(53\) 9.00014i 1.23626i 0.786074 + 0.618132i \(0.212110\pi\)
−0.786074 + 0.618132i \(0.787890\pi\)
\(54\) 0 0
\(55\) 0.331966 0.574981i 0.0447622 0.0775305i
\(56\) −0.895864 + 1.55168i −0.119715 + 0.207352i
\(57\) 0 0
\(58\) 3.03531 3.03531i 0.398555 0.398555i
\(59\) 3.33959 3.33959i 0.434777 0.434777i −0.455473 0.890250i \(-0.650530\pi\)
0.890250 + 0.455473i \(0.150530\pi\)
\(60\) 0 0
\(61\) −2.38199 + 4.12572i −0.304982 + 0.528245i −0.977257 0.212057i \(-0.931984\pi\)
0.672275 + 0.740301i \(0.265317\pi\)
\(62\) 2.89509 5.01445i 0.367677 0.636835i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 0.369894 + 2.40029i 0.0458797 + 0.297720i
\(66\) 0 0
\(67\) 10.6950 + 2.86571i 1.30660 + 0.350102i 0.843942 0.536434i \(-0.180229\pi\)
0.462658 + 0.886537i \(0.346896\pi\)
\(68\) −2.09485 + 1.20946i −0.254037 + 0.146669i
\(69\) 0 0
\(70\) −1.16575 0.312361i −0.139334 0.0373343i
\(71\) 1.70900 6.37808i 0.202821 0.756939i −0.787281 0.616594i \(-0.788512\pi\)
0.990103 0.140345i \(-0.0448212\pi\)
\(72\) 0 0
\(73\) −8.01788 8.01788i −0.938421 0.938421i 0.0597896 0.998211i \(-0.480957\pi\)
−0.998211 + 0.0597896i \(0.980957\pi\)
\(74\) −6.12445 3.53595i −0.711953 0.411046i
\(75\) 0 0
\(76\) −1.69669 + 6.33213i −0.194624 + 0.726346i
\(77\) 0.883031 1.52946i 0.100631 0.174298i
\(78\) 0 0
\(79\) −0.807117 1.39797i −0.0908078 0.157284i 0.817043 0.576576i \(-0.195612\pi\)
−0.907851 + 0.419292i \(0.862278\pi\)
\(80\) 0.650628 0.174335i 0.0727424 0.0194913i
\(81\) 0 0
\(82\) 4.30925 2.48795i 0.475877 0.274748i
\(83\) 1.95885 7.31055i 0.215012 0.802437i −0.771150 0.636653i \(-0.780318\pi\)
0.986162 0.165783i \(-0.0530152\pi\)
\(84\) 0 0
\(85\) −1.15211 1.15211i −0.124964 0.124964i
\(86\) 0.230939 + 0.861875i 0.0249028 + 0.0929384i
\(87\) 0 0
\(88\) 0.985676i 0.105073i
\(89\) 0.440877 + 1.64537i 0.0467329 + 0.174409i 0.985348 0.170557i \(-0.0545568\pi\)
−0.938615 + 0.344967i \(0.887890\pi\)
\(90\) 0 0
\(91\) 0.983920 + 6.38480i 0.103143 + 0.669309i
\(92\) −5.47852 + 3.16302i −0.571175 + 0.329768i
\(93\) 0 0
\(94\) −1.89651 3.28485i −0.195610 0.338807i
\(95\) −4.41566 −0.453037
\(96\) 0 0
\(97\) −0.497183 1.85551i −0.0504812 0.188399i 0.936081 0.351785i \(-0.114425\pi\)
−0.986562 + 0.163386i \(0.947758\pi\)
\(98\) 3.66058 + 0.980849i 0.369774 + 0.0990807i
\(99\) 0 0
\(100\) −2.27315 3.93720i −0.227315 0.393720i
\(101\) 14.8919 1.48180 0.740902 0.671613i \(-0.234398\pi\)
0.740902 + 0.671613i \(0.234398\pi\)
\(102\) 0 0
\(103\) 9.08751 + 5.24668i 0.895419 + 0.516971i 0.875711 0.482835i \(-0.160393\pi\)
0.0197081 + 0.999806i \(0.493726\pi\)
\(104\) −2.25732 2.81150i −0.221348 0.275690i
\(105\) 0 0
\(106\) 6.36406 6.36406i 0.618132 0.618132i
\(107\) 1.87899 + 1.08484i 0.181649 + 0.104875i 0.588067 0.808812i \(-0.299889\pi\)
−0.406418 + 0.913687i \(0.633222\pi\)
\(108\) 0 0
\(109\) −8.28528 + 8.28528i −0.793586 + 0.793586i −0.982075 0.188489i \(-0.939641\pi\)
0.188489 + 0.982075i \(0.439641\pi\)
\(110\) −0.641308 + 0.171838i −0.0611463 + 0.0163841i
\(111\) 0 0
\(112\) 1.73068 0.463733i 0.163534 0.0438187i
\(113\) 11.0857i 1.04285i −0.853296 0.521427i \(-0.825400\pi\)
0.853296 0.521427i \(-0.174600\pi\)
\(114\) 0 0
\(115\) −3.01305 3.01305i −0.280968 0.280968i
\(116\) −4.29257 −0.398555
\(117\) 0 0
\(118\) −4.72289 −0.434777
\(119\) −3.06463 3.06463i −0.280934 0.280934i
\(120\) 0 0
\(121\) 10.0284i 0.911677i
\(122\) 4.60165 1.23301i 0.416614 0.111631i
\(123\) 0 0
\(124\) −5.59289 + 1.49861i −0.502256 + 0.134579i
\(125\) 4.54683 4.54683i 0.406681 0.406681i
\(126\) 0 0
\(127\) 4.33197 + 2.50106i 0.384400 + 0.221933i 0.679731 0.733462i \(-0.262097\pi\)
−0.295331 + 0.955395i \(0.595430\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 1.43571 1.95882i 0.125920 0.171800i
\(131\) −19.0361 10.9905i −1.66319 0.960242i −0.971178 0.238354i \(-0.923392\pi\)
−0.692010 0.721888i \(-0.743275\pi\)
\(132\) 0 0
\(133\) −11.7457 −1.01848
\(134\) −5.53613 9.58886i −0.478249 0.828351i
\(135\) 0 0
\(136\) 2.33650 + 0.626062i 0.200353 + 0.0536844i
\(137\) −3.25829 12.1601i −0.278374 1.03891i −0.953546 0.301246i \(-0.902597\pi\)
0.675172 0.737660i \(-0.264069\pi\)
\(138\) 0 0
\(139\) −19.6965 −1.67063 −0.835316 0.549770i \(-0.814715\pi\)
−0.835316 + 0.549770i \(0.814715\pi\)
\(140\) 0.603436 + 1.04518i 0.0509996 + 0.0883340i
\(141\) 0 0
\(142\) −5.71843 + 3.30154i −0.479880 + 0.277059i
\(143\) 2.22498 + 2.77122i 0.186062 + 0.231741i
\(144\) 0 0
\(145\) −0.748347 2.79287i −0.0621468 0.231935i
\(146\) 11.3390i 0.938421i
\(147\) 0 0
\(148\) 1.83034 + 6.83094i 0.150453 + 0.561499i
\(149\) 6.83755 + 6.83755i 0.560154 + 0.560154i 0.929351 0.369197i \(-0.120367\pi\)
−0.369197 + 0.929351i \(0.620367\pi\)
\(150\) 0 0
\(151\) −1.28698 + 4.80308i −0.104733 + 0.390869i −0.998315 0.0580316i \(-0.981518\pi\)
0.893582 + 0.448900i \(0.148184\pi\)
\(152\) 5.67724 3.27775i 0.460485 0.265861i
\(153\) 0 0
\(154\) −1.70589 + 0.457091i −0.137464 + 0.0368334i
\(155\) −1.95008 3.37763i −0.156634 0.271298i
\(156\) 0 0
\(157\) −4.86181 + 8.42090i −0.388015 + 0.672061i −0.992182 0.124796i \(-0.960172\pi\)
0.604168 + 0.796857i \(0.293506\pi\)
\(158\) −0.417795 + 1.55923i −0.0332380 + 0.124046i
\(159\) 0 0
\(160\) −0.583337 0.336790i −0.0461169 0.0266256i
\(161\) −8.01474 8.01474i −0.631650 0.631650i
\(162\) 0 0
\(163\) 1.24717 4.65451i 0.0976861 0.364570i −0.899727 0.436453i \(-0.856234\pi\)
0.997413 + 0.0718838i \(0.0229011\pi\)
\(164\) −4.80634 1.28786i −0.375312 0.100565i
\(165\) 0 0
\(166\) −6.55446 + 3.78422i −0.508724 + 0.293712i
\(167\) −13.6676 3.66224i −1.05763 0.283392i −0.312231 0.950006i \(-0.601076\pi\)
−0.745403 + 0.666614i \(0.767743\pi\)
\(168\) 0 0
\(169\) −12.6929 2.80903i −0.976376 0.216079i
\(170\) 1.62934i 0.124964i
\(171\) 0 0
\(172\) 0.446139 0.772736i 0.0340178 0.0589206i
\(173\) −11.5989 + 20.0900i −0.881852 + 1.52741i −0.0325714 + 0.999469i \(0.510370\pi\)
−0.849280 + 0.527942i \(0.822964\pi\)
\(174\) 0 0
\(175\) 5.75989 5.75989i 0.435407 0.435407i
\(176\) 0.696978 0.696978i 0.0525367 0.0525367i
\(177\) 0 0
\(178\) 0.851709 1.47520i 0.0638383 0.110571i
\(179\) 2.78545 4.82455i 0.208194 0.360603i −0.742951 0.669345i \(-0.766575\pi\)
0.951146 + 0.308742i \(0.0999080\pi\)
\(180\) 0 0
\(181\) 20.8410i 1.54910i −0.632514 0.774549i \(-0.717977\pi\)
0.632514 0.774549i \(-0.282023\pi\)
\(182\) 3.81900 5.21047i 0.283083 0.386226i
\(183\) 0 0
\(184\) 6.11049 + 1.63730i 0.450471 + 0.120703i
\(185\) −4.12531 + 2.38175i −0.303298 + 0.175109i
\(186\) 0 0
\(187\) −2.30303 0.617094i −0.168414 0.0451264i
\(188\) −0.981707 + 3.66378i −0.0715983 + 0.267209i
\(189\) 0 0
\(190\) 3.12234 + 3.12234i 0.226518 + 0.226518i
\(191\) 15.6514 + 9.03635i 1.13250 + 0.653847i 0.944562 0.328334i \(-0.106487\pi\)
0.187935 + 0.982181i \(0.439821\pi\)
\(192\) 0 0
\(193\) 1.90556 7.11166i 0.137165 0.511908i −0.862814 0.505521i \(-0.831300\pi\)
0.999980 0.00638720i \(-0.00203312\pi\)
\(194\) −0.960483 + 1.66361i −0.0689587 + 0.119440i
\(195\) 0 0
\(196\) −1.89486 3.28199i −0.135347 0.234428i
\(197\) −23.6473 + 6.33628i −1.68480 + 0.451441i −0.969040 0.246904i \(-0.920587\pi\)
−0.715761 + 0.698345i \(0.753920\pi\)
\(198\) 0 0
\(199\) −6.97794 + 4.02871i −0.494653 + 0.285588i −0.726503 0.687164i \(-0.758856\pi\)
0.231850 + 0.972752i \(0.425522\pi\)
\(200\) −1.17667 + 4.39138i −0.0832029 + 0.310517i
\(201\) 0 0
\(202\) −10.5302 10.5302i −0.740902 0.740902i
\(203\) −1.99061 7.42905i −0.139713 0.521417i
\(204\) 0 0
\(205\) 3.35166i 0.234090i
\(206\) −2.71588 10.1358i −0.189224 0.706195i
\(207\) 0 0
\(208\) −0.391864 + 3.58419i −0.0271709 + 0.248519i
\(209\) −5.59591 + 3.23080i −0.387077 + 0.223479i
\(210\) 0 0
\(211\) 7.04091 + 12.1952i 0.484716 + 0.839553i 0.999846 0.0175594i \(-0.00558961\pi\)
−0.515130 + 0.857112i \(0.672256\pi\)
\(212\) −9.00014 −0.618132
\(213\) 0 0
\(214\) −0.561553 2.09574i −0.0383870 0.143262i
\(215\) 0.580542 + 0.155556i 0.0395926 + 0.0106088i
\(216\) 0 0
\(217\) −5.18722 8.98452i −0.352131 0.609909i
\(218\) 11.7172 0.793586
\(219\) 0 0
\(220\) 0.574981 + 0.331966i 0.0387652 + 0.0223811i
\(221\) 7.98227 3.51404i 0.536946 0.236380i
\(222\) 0 0
\(223\) 16.7879 16.7879i 1.12420 1.12420i 0.133096 0.991103i \(-0.457508\pi\)
0.991103 0.133096i \(-0.0424918\pi\)
\(224\) −1.55168 0.895864i −0.103676 0.0598574i
\(225\) 0 0
\(226\) −7.83876 + 7.83876i −0.521427 + 0.521427i
\(227\) 23.1257 6.19651i 1.53491 0.411277i 0.610291 0.792178i \(-0.291053\pi\)
0.924616 + 0.380901i \(0.124386\pi\)
\(228\) 0 0
\(229\) −19.8362 + 5.31509i −1.31081 + 0.351231i −0.845529 0.533930i \(-0.820714\pi\)
−0.465284 + 0.885161i \(0.654048\pi\)
\(230\) 4.26110i 0.280968i
\(231\) 0 0
\(232\) 3.03531 + 3.03531i 0.199278 + 0.199278i
\(233\) −2.79071 −0.182825 −0.0914126 0.995813i \(-0.529138\pi\)
−0.0914126 + 0.995813i \(0.529138\pi\)
\(234\) 0 0
\(235\) −2.55490 −0.166664
\(236\) 3.33959 + 3.33959i 0.217389 + 0.217389i
\(237\) 0 0
\(238\) 4.33405i 0.280934i
\(239\) −7.58852 + 2.03334i −0.490861 + 0.131526i −0.495755 0.868462i \(-0.665109\pi\)
0.00489453 + 0.999988i \(0.498442\pi\)
\(240\) 0 0
\(241\) 22.4869 6.02534i 1.44851 0.388126i 0.553002 0.833180i \(-0.313482\pi\)
0.895504 + 0.445054i \(0.146815\pi\)
\(242\) 7.09118 7.09118i 0.455838 0.455838i
\(243\) 0 0
\(244\) −4.12572 2.38199i −0.264122 0.152491i
\(245\) 1.80501 1.80501i 0.115318 0.115318i
\(246\) 0 0
\(247\) 8.56260 22.0307i 0.544825 1.40178i
\(248\) 5.01445 + 2.89509i 0.318418 + 0.183839i
\(249\) 0 0
\(250\) −6.43019 −0.406681
\(251\) 13.0241 + 22.5583i 0.822071 + 1.42387i 0.904138 + 0.427241i \(0.140515\pi\)
−0.0820668 + 0.996627i \(0.526152\pi\)
\(252\) 0 0
\(253\) −6.02296 1.61385i −0.378660 0.101462i
\(254\) −1.29465 4.83168i −0.0812333 0.303167i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 3.60078 + 6.23673i 0.224610 + 0.389036i 0.956202 0.292706i \(-0.0945558\pi\)
−0.731592 + 0.681743i \(0.761222\pi\)
\(258\) 0 0
\(259\) −10.9733 + 6.33546i −0.681851 + 0.393667i
\(260\) −2.40029 + 0.369894i −0.148860 + 0.0229398i
\(261\) 0 0
\(262\) 5.68909 + 21.2320i 0.351473 + 1.31172i
\(263\) 11.4549i 0.706342i 0.935559 + 0.353171i \(0.114897\pi\)
−0.935559 + 0.353171i \(0.885103\pi\)
\(264\) 0 0
\(265\) −1.56904 5.85574i −0.0963855 0.359715i
\(266\) 8.30546 + 8.30546i 0.509240 + 0.509240i
\(267\) 0 0
\(268\) −2.86571 + 10.6950i −0.175051 + 0.653300i
\(269\) −21.7795 + 12.5744i −1.32792 + 0.766674i −0.984977 0.172683i \(-0.944756\pi\)
−0.342941 + 0.939357i \(0.611423\pi\)
\(270\) 0 0
\(271\) 6.17248 1.65391i 0.374952 0.100468i −0.0664215 0.997792i \(-0.521158\pi\)
0.441373 + 0.897324i \(0.354492\pi\)
\(272\) −1.20946 2.09485i −0.0733343 0.127019i
\(273\) 0 0
\(274\) −6.29452 + 10.9024i −0.380266 + 0.658640i
\(275\) 1.15981 4.32848i 0.0699393 0.261017i
\(276\) 0 0
\(277\) 16.8380 + 9.72143i 1.01170 + 0.584104i 0.911688 0.410882i \(-0.134779\pi\)
0.100010 + 0.994986i \(0.468113\pi\)
\(278\) 13.9275 + 13.9275i 0.835316 + 0.835316i
\(279\) 0 0
\(280\) 0.312361 1.16575i 0.0186672 0.0696668i
\(281\) −28.7919 7.71478i −1.71758 0.460225i −0.740320 0.672255i \(-0.765326\pi\)
−0.977263 + 0.212030i \(0.931993\pi\)
\(282\) 0 0
\(283\) 19.1183 11.0380i 1.13647 0.656139i 0.190914 0.981607i \(-0.438855\pi\)
0.945553 + 0.325467i \(0.105522\pi\)
\(284\) 6.37808 + 1.70900i 0.378470 + 0.101411i
\(285\) 0 0
\(286\) 0.386251 3.53285i 0.0228395 0.208902i
\(287\) 8.91545i 0.526262i
\(288\) 0 0
\(289\) 5.57442 9.65517i 0.327907 0.567951i
\(290\) −1.44570 + 2.50402i −0.0848941 + 0.147041i
\(291\) 0 0
\(292\) 8.01788 8.01788i 0.469211 0.469211i
\(293\) 6.70889 6.70889i 0.391938 0.391938i −0.483440 0.875378i \(-0.660613\pi\)
0.875378 + 0.483440i \(0.160613\pi\)
\(294\) 0 0
\(295\) −1.59062 + 2.75504i −0.0926096 + 0.160404i
\(296\) 3.53595 6.12445i 0.205523 0.355976i
\(297\) 0 0
\(298\) 9.66976i 0.560154i
\(299\) 20.8755 9.19005i 1.20726 0.531475i
\(300\) 0 0
\(301\) 1.54425 + 0.413779i 0.0890088 + 0.0238498i
\(302\) 4.30632 2.48626i 0.247801 0.143068i
\(303\) 0 0
\(304\) −6.33213 1.69669i −0.363173 0.0973119i
\(305\) 0.830529 3.09958i 0.0475560 0.177481i
\(306\) 0 0
\(307\) 3.35703 + 3.35703i 0.191596 + 0.191596i 0.796385 0.604790i \(-0.206743\pi\)
−0.604790 + 0.796385i \(0.706743\pi\)
\(308\) 1.52946 + 0.883031i 0.0871488 + 0.0503154i
\(309\) 0 0
\(310\) −1.00943 + 3.76726i −0.0573320 + 0.213966i
\(311\) 10.5634 18.2964i 0.598996 1.03749i −0.393973 0.919122i \(-0.628900\pi\)
0.992970 0.118370i \(-0.0377669\pi\)
\(312\) 0 0
\(313\) −5.16590 8.94760i −0.291994 0.505748i 0.682287 0.731084i \(-0.260985\pi\)
−0.974281 + 0.225336i \(0.927652\pi\)
\(314\) 9.39229 2.51666i 0.530038 0.142023i
\(315\) 0 0
\(316\) 1.39797 0.807117i 0.0786419 0.0454039i
\(317\) 4.33708 16.1862i 0.243595 0.909108i −0.730490 0.682924i \(-0.760708\pi\)
0.974084 0.226185i \(-0.0726253\pi\)
\(318\) 0 0
\(319\) −2.99183 2.99183i −0.167510 0.167510i
\(320\) 0.174335 + 0.650628i 0.00974564 + 0.0363712i
\(321\) 0 0
\(322\) 11.3346i 0.631650i
\(323\) 4.10416 + 15.3169i 0.228361 + 0.852256i
\(324\) 0 0
\(325\) 6.60454 + 15.0025i 0.366354 + 0.832187i
\(326\) −4.17312 + 2.40935i −0.231128 + 0.133442i
\(327\) 0 0
\(328\) 2.48795 + 4.30925i 0.137374 + 0.237939i
\(329\) −6.79607 −0.374679
\(330\) 0 0
\(331\) 3.81878 + 14.2519i 0.209899 + 0.783354i 0.987900 + 0.155091i \(0.0495671\pi\)
−0.778001 + 0.628263i \(0.783766\pi\)
\(332\) 7.31055 + 1.95885i 0.401218 + 0.107506i
\(333\) 0 0
\(334\) 7.07490 + 12.2541i 0.387121 + 0.670513i
\(335\) −7.45805 −0.407477
\(336\) 0 0
\(337\) 3.36489 + 1.94272i 0.183297 + 0.105827i 0.588841 0.808249i \(-0.299584\pi\)
−0.405544 + 0.914076i \(0.632918\pi\)
\(338\) 6.98894 + 10.9615i 0.380148 + 0.596228i
\(339\) 0 0
\(340\) 1.15211 1.15211i 0.0624822 0.0624822i
\(341\) −4.94262 2.85362i −0.267658 0.154532i
\(342\) 0 0
\(343\) 13.6699 13.6699i 0.738108 0.738108i
\(344\) −0.861875 + 0.230939i −0.0464692 + 0.0124514i
\(345\) 0 0
\(346\) 22.4074 6.00406i 1.20463 0.322780i
\(347\) 32.3179i 1.73492i −0.497510 0.867459i \(-0.665752\pi\)
0.497510 0.867459i \(-0.334248\pi\)
\(348\) 0 0
\(349\) 13.4101 + 13.4101i 0.717828 + 0.717828i 0.968160 0.250332i \(-0.0805399\pi\)
−0.250332 + 0.968160i \(0.580540\pi\)
\(350\) −8.14572 −0.435407
\(351\) 0 0
\(352\) −0.985676 −0.0525367
\(353\) 13.8574 + 13.8574i 0.737554 + 0.737554i 0.972104 0.234550i \(-0.0753617\pi\)
−0.234550 + 0.972104i \(0.575362\pi\)
\(354\) 0 0
\(355\) 4.44770i 0.236059i
\(356\) −1.64537 + 0.440877i −0.0872047 + 0.0233664i
\(357\) 0 0
\(358\) −5.38108 + 1.44186i −0.284399 + 0.0762045i
\(359\) −19.2085 + 19.2085i −1.01379 + 1.01379i −0.0138835 + 0.999904i \(0.504419\pi\)
−0.999904 + 0.0138835i \(0.995581\pi\)
\(360\) 0 0
\(361\) 20.7627 + 11.9873i 1.09277 + 0.630913i
\(362\) −14.7368 + 14.7368i −0.774549 + 0.774549i
\(363\) 0 0
\(364\) −6.38480 + 0.983920i −0.334654 + 0.0515714i
\(365\) 6.61445 + 3.81886i 0.346216 + 0.199888i
\(366\) 0 0
\(367\) 7.69429 0.401639 0.200819 0.979628i \(-0.435640\pi\)
0.200819 + 0.979628i \(0.435640\pi\)
\(368\) −3.16302 5.47852i −0.164884 0.285587i
\(369\) 0 0
\(370\) 4.60118 + 1.23288i 0.239204 + 0.0640945i
\(371\) −4.17366 15.5763i −0.216686 0.808683i
\(372\) 0 0
\(373\) −16.0980 −0.833521 −0.416760 0.909016i \(-0.636835\pi\)
−0.416760 + 0.909016i \(0.636835\pi\)
\(374\) 1.19213 + 2.06484i 0.0616438 + 0.106770i
\(375\) 0 0
\(376\) 3.28485 1.89651i 0.169403 0.0978051i
\(377\) 15.3854 + 1.68210i 0.792389 + 0.0866328i
\(378\) 0 0
\(379\) 6.71919 + 25.0764i 0.345142 + 1.28809i 0.892446 + 0.451153i \(0.148987\pi\)
−0.547305 + 0.836933i \(0.684346\pi\)
\(380\) 4.41566i 0.226518i
\(381\) 0 0
\(382\) −4.67756 17.4569i −0.239325 0.893172i
\(383\) 22.2443 + 22.2443i 1.13663 + 1.13663i 0.989050 + 0.147581i \(0.0471487\pi\)
0.147581 + 0.989050i \(0.452851\pi\)
\(384\) 0 0
\(385\) −0.307887 + 1.14905i −0.0156914 + 0.0585610i
\(386\) −6.37614 + 3.68127i −0.324537 + 0.187372i
\(387\) 0 0
\(388\) 1.85551 0.497183i 0.0941993 0.0252406i
\(389\) −12.6984 21.9943i −0.643836 1.11516i −0.984569 0.174997i \(-0.944009\pi\)
0.340733 0.940160i \(-0.389325\pi\)
\(390\) 0 0
\(391\) −7.65110 + 13.2521i −0.386933 + 0.670187i
\(392\) −0.980849 + 3.66058i −0.0495404 + 0.184887i
\(393\) 0 0
\(394\) 21.2016 + 12.2407i 1.06812 + 0.616680i
\(395\) 0.768848 + 0.768848i 0.0386850 + 0.0386850i
\(396\) 0 0
\(397\) 0.337126 1.25817i 0.0169199 0.0631458i −0.956950 0.290254i \(-0.906260\pi\)
0.973870 + 0.227108i \(0.0729270\pi\)
\(398\) 7.78288 + 2.08542i 0.390120 + 0.104532i
\(399\) 0 0
\(400\) 3.93720 2.27315i 0.196860 0.113657i
\(401\) −1.38859 0.372073i −0.0693431 0.0185804i 0.223981 0.974594i \(-0.428095\pi\)
−0.293324 + 0.956013i \(0.594761\pi\)
\(402\) 0 0
\(403\) 20.6332 3.17966i 1.02782 0.158390i
\(404\) 14.8919i 0.740902i
\(405\) 0 0
\(406\) −3.84556 + 6.66071i −0.190852 + 0.330565i
\(407\) −3.48530 + 6.03672i −0.172760 + 0.299229i
\(408\) 0 0
\(409\) 16.2435 16.2435i 0.803189 0.803189i −0.180404 0.983593i \(-0.557741\pi\)
0.983593 + 0.180404i \(0.0577405\pi\)
\(410\) −2.36998 + 2.36998i −0.117045 + 0.117045i
\(411\) 0 0
\(412\) −5.24668 + 9.08751i −0.258485 + 0.447710i
\(413\) −4.23107 + 7.32842i −0.208197 + 0.360608i
\(414\) 0 0
\(415\) 5.09794i 0.250248i
\(416\) 2.81150 2.25732i 0.137845 0.110674i
\(417\) 0 0
\(418\) 6.24143 + 1.67239i 0.305278 + 0.0817991i
\(419\) 5.72052 3.30274i 0.279466 0.161350i −0.353716 0.935353i \(-0.615082\pi\)
0.633182 + 0.774003i \(0.281749\pi\)
\(420\) 0 0
\(421\) 9.08681 + 2.43480i 0.442864 + 0.118665i 0.473359 0.880870i \(-0.343042\pi\)
−0.0304944 + 0.999535i \(0.509708\pi\)
\(422\) 3.64464 13.6020i 0.177418 0.662134i
\(423\) 0 0
\(424\) 6.36406 + 6.36406i 0.309066 + 0.309066i
\(425\) −9.52378 5.49855i −0.461971 0.266719i
\(426\) 0 0
\(427\) 2.20921 8.24490i 0.106911 0.398999i
\(428\) −1.08484 + 1.87899i −0.0524376 + 0.0908246i
\(429\) 0 0
\(430\) −0.300510 0.520499i −0.0144919 0.0251007i
\(431\) 1.92865 0.516780i 0.0928998 0.0248924i −0.212070 0.977255i \(-0.568020\pi\)
0.304970 + 0.952362i \(0.401354\pi\)
\(432\) 0 0
\(433\) −27.7623 + 16.0286i −1.33417 + 0.770285i −0.985936 0.167122i \(-0.946553\pi\)
−0.348236 + 0.937407i \(0.613219\pi\)
\(434\) −2.68510 + 10.0209i −0.128889 + 0.481020i
\(435\) 0 0
\(436\) −8.28528 8.28528i −0.396793 0.396793i
\(437\) 10.7333 + 40.0574i 0.513445 + 1.91620i
\(438\) 0 0
\(439\) 26.1293i 1.24708i −0.781790 0.623542i \(-0.785693\pi\)
0.781790 0.623542i \(-0.214307\pi\)
\(440\) −0.171838 0.641308i −0.00819206 0.0305732i
\(441\) 0 0
\(442\) −8.12912 3.15952i −0.386663 0.150283i
\(443\) −9.85727 + 5.69110i −0.468333 + 0.270392i −0.715542 0.698570i \(-0.753820\pi\)
0.247209 + 0.968962i \(0.420487\pi\)
\(444\) 0 0
\(445\) −0.573694 0.993667i −0.0271957 0.0471043i
\(446\) −23.7416 −1.12420
\(447\) 0 0
\(448\) 0.463733 + 1.73068i 0.0219093 + 0.0817668i
\(449\) −13.3760 3.58409i −0.631253 0.169144i −0.0710148 0.997475i \(-0.522624\pi\)
−0.560238 + 0.828331i \(0.689290\pi\)
\(450\) 0 0
\(451\) −2.45231 4.24752i −0.115475 0.200008i
\(452\) 11.0857 0.521427
\(453\) 0 0
\(454\) −20.7339 11.9707i −0.973092 0.561815i
\(455\) −1.75326 3.98260i −0.0821942 0.186707i
\(456\) 0 0
\(457\) 23.8139 23.8139i 1.11397 1.11397i 0.121357 0.992609i \(-0.461276\pi\)
0.992609 0.121357i \(-0.0387244\pi\)
\(458\) 17.7846 + 10.2680i 0.831022 + 0.479791i
\(459\) 0 0
\(460\) 3.01305 3.01305i 0.140484 0.140484i
\(461\) −8.68738 + 2.32778i −0.404612 + 0.108415i −0.455385 0.890295i \(-0.650498\pi\)
0.0507728 + 0.998710i \(0.483832\pi\)
\(462\) 0 0
\(463\) −18.3164 + 4.90786i −0.851234 + 0.228087i −0.657956 0.753057i \(-0.728579\pi\)
−0.193278 + 0.981144i \(0.561912\pi\)
\(464\) 4.29257i 0.199278i
\(465\) 0 0
\(466\) 1.97333 + 1.97333i 0.0914126 + 0.0914126i
\(467\) 33.1417 1.53362 0.766808 0.641877i \(-0.221844\pi\)
0.766808 + 0.641877i \(0.221844\pi\)
\(468\) 0 0
\(469\) −19.8385 −0.916056
\(470\) 1.80659 + 1.80659i 0.0833318 + 0.0833318i
\(471\) 0 0
\(472\) 4.72289i 0.217389i
\(473\) 0.849529 0.227631i 0.0390614 0.0104665i
\(474\) 0 0
\(475\) −28.7877 + 7.71365i −1.32087 + 0.353926i
\(476\) 3.06463 3.06463i 0.140467 0.140467i
\(477\) 0 0
\(478\) 6.80368 + 3.92811i 0.311193 + 0.179667i
\(479\) 21.8028 21.8028i 0.996195 0.996195i −0.00379781 0.999993i \(-0.501209\pi\)
0.999993 + 0.00379781i \(0.00120888\pi\)
\(480\) 0 0
\(481\) −3.88351 25.2006i −0.177073 1.14905i
\(482\) −20.1612 11.6401i −0.918316 0.530190i
\(483\) 0 0
\(484\) −10.0284 −0.455838
\(485\) 0.646962 + 1.12057i 0.0293770 + 0.0508825i
\(486\) 0 0
\(487\) −19.5417 5.23619i −0.885520 0.237274i −0.212733 0.977110i \(-0.568236\pi\)
−0.672787 + 0.739836i \(0.734903\pi\)
\(488\) 1.23301 + 4.60165i 0.0558156 + 0.208307i
\(489\) 0 0
\(490\) −2.55267 −0.115318
\(491\) 7.55120 + 13.0791i 0.340781 + 0.590250i 0.984578 0.174946i \(-0.0559752\pi\)
−0.643797 + 0.765196i \(0.722642\pi\)
\(492\) 0 0
\(493\) −8.99228 + 5.19169i −0.404992 + 0.233822i
\(494\) −21.6327 + 9.52340i −0.973303 + 0.428478i
\(495\) 0 0
\(496\) −1.49861 5.59289i −0.0672896 0.251128i
\(497\) 11.8309i 0.530689i
\(498\) 0 0
\(499\) −10.8485 40.4871i −0.485645 1.81245i −0.577140 0.816645i \(-0.695831\pi\)
0.0914956 0.995805i \(-0.470835\pi\)
\(500\) 4.54683 + 4.54683i 0.203340 + 0.203340i
\(501\) 0 0
\(502\) 6.74174 25.1605i 0.300899 1.12297i
\(503\) 10.9025 6.29458i 0.486120 0.280661i −0.236843 0.971548i \(-0.576113\pi\)
0.722963 + 0.690886i \(0.242780\pi\)
\(504\) 0 0
\(505\) −9.68912 + 2.59619i −0.431160 + 0.115529i
\(506\) 3.11771 + 5.40004i 0.138599 + 0.240061i
\(507\) 0 0
\(508\) −2.50106 + 4.33197i −0.110967 + 0.192200i
\(509\) −8.59675 + 32.0835i −0.381044 + 1.42208i 0.463264 + 0.886220i \(0.346678\pi\)
−0.844309 + 0.535857i \(0.819989\pi\)
\(510\) 0 0
\(511\) 17.5945 + 10.1582i 0.778335 + 0.449372i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 1.86390 6.95616i 0.0822130 0.306823i
\(515\) −6.82727 1.82936i −0.300846 0.0806113i
\(516\) 0 0
\(517\) −3.23780 + 1.86935i −0.142398 + 0.0822137i
\(518\) 12.2392 + 3.27948i 0.537759 + 0.144092i
\(519\) 0 0
\(520\) 1.95882 + 1.43571i 0.0858998 + 0.0629600i
\(521\) 17.5549i 0.769094i −0.923105 0.384547i \(-0.874358\pi\)
0.923105 0.384547i \(-0.125642\pi\)
\(522\) 0 0
\(523\) −4.19432 + 7.26477i −0.183405 + 0.317666i −0.943038 0.332686i \(-0.892045\pi\)
0.759633 + 0.650352i \(0.225379\pi\)
\(524\) 10.9905 19.0361i 0.480121 0.831594i
\(525\) 0 0
\(526\) 8.09986 8.09986i 0.353171 0.353171i
\(527\) −9.90373 + 9.90373i −0.431413 + 0.431413i
\(528\) 0 0
\(529\) −8.50943 + 14.7388i −0.369975 + 0.640816i
\(530\) −3.03116 + 5.25012i −0.131665 + 0.228050i
\(531\) 0 0
\(532\) 11.7457i 0.509240i
\(533\) 16.7222 + 6.49936i 0.724319 + 0.281518i
\(534\) 0 0
\(535\) −1.41165 0.378251i −0.0610310 0.0163532i
\(536\) 9.58886 5.53613i 0.414176 0.239124i
\(537\) 0 0
\(538\) 24.2918 + 6.50898i 1.04730 + 0.280622i
\(539\) 0.966799 3.60814i 0.0416430 0.155414i
\(540\) 0 0
\(541\) 1.43745 + 1.43745i 0.0618007 + 0.0618007i 0.737332 0.675531i \(-0.236086\pi\)
−0.675531 + 0.737332i \(0.736086\pi\)
\(542\) −5.53410 3.19511i −0.237710 0.137242i
\(543\) 0 0
\(544\) −0.626062 + 2.33650i −0.0268422 + 0.100176i
\(545\) 3.94622 6.83505i 0.169037 0.292781i
\(546\) 0 0
\(547\) 5.93332 + 10.2768i 0.253691 + 0.439405i 0.964539 0.263940i \(-0.0850222\pi\)
−0.710848 + 0.703345i \(0.751689\pi\)
\(548\) 12.1601 3.25829i 0.519453 0.139187i
\(549\) 0 0
\(550\) −3.88080 + 2.24058i −0.165478 + 0.0955388i
\(551\) −7.28317 + 27.1811i −0.310273 + 1.15796i
\(552\) 0 0
\(553\) 2.04514 + 2.04514i 0.0869683 + 0.0869683i
\(554\) −5.03218 18.7804i −0.213797 0.797901i
\(555\) 0 0
\(556\) 19.6965i 0.835316i
\(557\) −9.18337 34.2728i −0.389112 1.45219i −0.831582 0.555402i \(-0.812564\pi\)
0.442470 0.896783i \(-0.354102\pi\)
\(558\) 0 0
\(559\) −1.90186 + 2.59481i −0.0804400 + 0.109749i
\(560\) −1.04518 + 0.603436i −0.0441670 + 0.0254998i
\(561\) 0 0
\(562\) 14.9038 + 25.8141i 0.628679 + 1.08890i
\(563\) −36.9752 −1.55832 −0.779159 0.626826i \(-0.784353\pi\)
−0.779159 + 0.626826i \(0.784353\pi\)
\(564\) 0 0
\(565\) 1.93263 + 7.21266i 0.0813062 + 0.303439i
\(566\) −21.3237 5.71368i −0.896303 0.240164i
\(567\) 0 0
\(568\) −3.30154 5.71843i −0.138529 0.239940i
\(569\) −24.5310 −1.02840 −0.514198 0.857672i \(-0.671910\pi\)
−0.514198 + 0.857672i \(0.671910\pi\)
\(570\) 0 0
\(571\) −7.42838 4.28878i −0.310868 0.179480i 0.336447 0.941702i \(-0.390775\pi\)
−0.647315 + 0.762223i \(0.724108\pi\)
\(572\) −2.77122 + 2.22498i −0.115871 + 0.0930312i
\(573\) 0 0
\(574\) −6.30417 + 6.30417i −0.263131 + 0.263131i
\(575\) −24.9069 14.3800i −1.03869 0.599688i
\(576\) 0 0
\(577\) −0.991168 + 0.991168i −0.0412629 + 0.0412629i −0.727437 0.686174i \(-0.759289\pi\)
0.686174 + 0.727437i \(0.259289\pi\)
\(578\) −10.7689 + 2.88553i −0.447929 + 0.120022i
\(579\) 0 0
\(580\) 2.79287 0.748347i 0.115968 0.0310734i
\(581\) 13.5606i 0.562587i
\(582\) 0 0
\(583\) −6.27290 6.27290i −0.259797 0.259797i
\(584\) −11.3390 −0.469211
\(585\) 0 0
\(586\) −9.48781 −0.391938
\(587\) 26.9762 + 26.9762i 1.11343 + 1.11343i 0.992684 + 0.120743i \(0.0385277\pi\)
0.120743 + 0.992684i \(0.461472\pi\)
\(588\) 0 0
\(589\) 37.9576i 1.56402i
\(590\) 3.07284 0.823366i 0.126507 0.0338975i
\(591\) 0 0
\(592\) −6.83094 + 1.83034i −0.280750 + 0.0752267i
\(593\) 22.4411 22.4411i 0.921547 0.921547i −0.0755923 0.997139i \(-0.524085\pi\)
0.997139 + 0.0755923i \(0.0240847\pi\)
\(594\) 0 0
\(595\) 2.52821 + 1.45966i 0.103647 + 0.0598403i
\(596\) −6.83755 + 6.83755i −0.280077 + 0.280077i
\(597\) 0 0
\(598\) −21.2596 8.26289i −0.869369 0.337895i
\(599\) −12.9383 7.46992i −0.528644 0.305213i 0.211820 0.977309i \(-0.432061\pi\)
−0.740464 + 0.672096i \(0.765394\pi\)
\(600\) 0 0
\(601\) −9.43517 −0.384869 −0.192434 0.981310i \(-0.561638\pi\)
−0.192434 + 0.981310i \(0.561638\pi\)
\(602\) −0.799360 1.38453i −0.0325795 0.0564293i
\(603\) 0 0
\(604\) −4.80308 1.28698i −0.195434 0.0523665i
\(605\) −1.74831 6.52479i −0.0710790 0.265270i
\(606\) 0 0
\(607\) 8.22930 0.334017 0.167008 0.985955i \(-0.446589\pi\)
0.167008 + 0.985955i \(0.446589\pi\)
\(608\) 3.27775 + 5.67724i 0.132930 + 0.230242i
\(609\) 0 0
\(610\) −2.77901 + 1.60446i −0.112519 + 0.0649627i
\(611\) 4.95433 12.7470i 0.200431 0.515688i
\(612\) 0 0
\(613\) −5.26589 19.6526i −0.212687 0.793760i −0.986968 0.160918i \(-0.948555\pi\)
0.774280 0.632843i \(-0.218112\pi\)
\(614\) 4.74755i 0.191596i
\(615\) 0 0
\(616\) −0.457091 1.70589i −0.0184167 0.0687321i
\(617\) −23.1593 23.1593i −0.932360 0.932360i 0.0654935 0.997853i \(-0.479138\pi\)
−0.997853 + 0.0654935i \(0.979138\pi\)
\(618\) 0 0
\(619\) 2.50985 9.36687i 0.100879 0.376486i −0.896966 0.442100i \(-0.854234\pi\)
0.997845 + 0.0656133i \(0.0209004\pi\)
\(620\) 3.37763 1.95008i 0.135649 0.0783169i
\(621\) 0 0
\(622\) −20.4069 + 5.46802i −0.818244 + 0.219248i
\(623\) −1.52603 2.64316i −0.0611391 0.105896i
\(624\) 0 0
\(625\) 9.20010 15.9350i 0.368004 0.637402i
\(626\) −2.67407 + 9.97975i −0.106877 + 0.398871i
\(627\) 0 0
\(628\) −8.42090 4.86181i −0.336030 0.194007i
\(629\) 12.0960 + 12.0960i 0.482300 + 0.482300i
\(630\) 0 0
\(631\) −5.85572 + 21.8539i −0.233113 + 0.869988i 0.745878 + 0.666083i \(0.232030\pi\)
−0.978991 + 0.203906i \(0.934636\pi\)
\(632\) −1.55923 0.417795i −0.0620229 0.0166190i
\(633\) 0 0
\(634\) −14.5122 + 8.37860i −0.576352 + 0.332757i
\(635\) −3.25452 0.872047i −0.129152 0.0346061i
\(636\) 0 0
\(637\) 5.50544 + 12.5058i 0.218133 + 0.495498i
\(638\) 4.23108i 0.167510i
\(639\) 0 0
\(640\) 0.336790 0.583337i 0.0133128 0.0230584i
\(641\) −5.39399 + 9.34267i −0.213050 + 0.369013i −0.952668 0.304014i \(-0.901673\pi\)
0.739618 + 0.673027i \(0.235006\pi\)
\(642\) 0 0
\(643\) 7.58253 7.58253i 0.299026 0.299026i −0.541606 0.840632i \(-0.682184\pi\)
0.840632 + 0.541606i \(0.182184\pi\)
\(644\) 8.01474 8.01474i 0.315825 0.315825i
\(645\) 0 0
\(646\) 7.92862 13.7328i 0.311947 0.540309i
\(647\) −2.44136 + 4.22856i −0.0959799 + 0.166242i −0.910017 0.414571i \(-0.863932\pi\)
0.814037 + 0.580813i \(0.197265\pi\)
\(648\) 0 0
\(649\) 4.65524i 0.182734i
\(650\) 5.93822 15.2785i 0.232916 0.599270i
\(651\) 0 0
\(652\) 4.65451 + 1.24717i 0.182285 + 0.0488431i
\(653\) 19.0037 10.9718i 0.743673 0.429360i −0.0797303 0.996816i \(-0.525406\pi\)
0.823403 + 0.567457i \(0.192073\pi\)
\(654\) 0 0
\(655\) 14.3014 + 3.83206i 0.558803 + 0.149731i
\(656\) 1.28786 4.80634i 0.0502823 0.187656i
\(657\) 0 0
\(658\) 4.80554 + 4.80554i 0.187340 + 0.187340i
\(659\) −36.6396 21.1539i −1.42728 0.824038i −0.430371 0.902652i \(-0.641617\pi\)
−0.996905 + 0.0786138i \(0.974951\pi\)
\(660\) 0 0
\(661\) −8.10585 + 30.2514i −0.315281 + 1.17664i 0.608447 + 0.793595i \(0.291793\pi\)
−0.923728 + 0.383050i \(0.874874\pi\)
\(662\) 7.37732 12.7779i 0.286728 0.496627i
\(663\) 0 0
\(664\) −3.78422 6.55446i −0.146856 0.254362i
\(665\) 7.64207 2.04769i 0.296347 0.0794059i
\(666\) 0 0
\(667\) −23.5169 + 13.5775i −0.910579 + 0.525723i
\(668\) 3.66224 13.6676i 0.141696 0.528817i
\(669\) 0 0
\(670\) 5.27364 + 5.27364i 0.203738 + 0.203738i
\(671\) −1.21535 4.53573i −0.0469179 0.175100i
\(672\) 0 0
\(673\) 38.0352i 1.46615i −0.680148 0.733075i \(-0.738085\pi\)
0.680148 0.733075i \(-0.261915\pi\)
\(674\) −1.00563 3.75304i −0.0387352 0.144562i
\(675\) 0 0
\(676\) 2.80903 12.6929i 0.108040 0.488188i
\(677\) 4.73877 2.73593i 0.182126 0.105150i −0.406165 0.913800i \(-0.633134\pi\)
0.588291 + 0.808649i \(0.299801\pi\)
\(678\) 0 0
\(679\) 1.72092 + 2.98073i 0.0660430 + 0.114390i
\(680\) −1.62934 −0.0624822
\(681\) 0 0
\(682\) 1.47714 + 5.51277i 0.0565627 + 0.211095i
\(683\) 24.9699 + 6.69067i 0.955447 + 0.256011i 0.702672 0.711514i \(-0.251990\pi\)
0.252775 + 0.967525i \(0.418657\pi\)
\(684\) 0 0
\(685\) 4.23986 + 7.34366i 0.161997 + 0.280587i
\(686\) −19.3322 −0.738108
\(687\) 0 0
\(688\) 0.772736 + 0.446139i 0.0294603 + 0.0170089i
\(689\) 32.2582 + 3.52683i 1.22894 + 0.134362i
\(690\) 0 0
\(691\) −23.9424 + 23.9424i −0.910811 + 0.910811i −0.996336 0.0855252i \(-0.972743\pi\)
0.0855252 + 0.996336i \(0.472743\pi\)
\(692\) −20.0900 11.5989i −0.763706 0.440926i
\(693\) 0 0
\(694\) −22.8522 + 22.8522i −0.867459 + 0.867459i
\(695\) 12.8151 3.43379i 0.486103 0.130251i
\(696\) 0 0
\(697\) −11.6262 + 3.11522i −0.440372 + 0.117997i
\(698\) 18.9648i 0.717828i
\(699\) 0 0
\(700\) 5.75989 + 5.75989i 0.217703 + 0.217703i
\(701\) 29.4689 1.11303 0.556513 0.830839i \(-0.312139\pi\)
0.556513 + 0.830839i \(0.312139\pi\)
\(702\) 0 0
\(703\) 46.3599 1.74850
\(704\) 0.696978 + 0.696978i 0.0262683 + 0.0262683i
\(705\) 0 0
\(706\) 19.5973i 0.737554i
\(707\) −25.7731 + 6.90589i −0.969298 + 0.259723i
\(708\) 0 0
\(709\) −12.5359 + 3.35900i −0.470797 + 0.126150i −0.486414 0.873728i \(-0.661695\pi\)
0.0156169 + 0.999878i \(0.495029\pi\)
\(710\) 3.14500 3.14500i 0.118030 0.118030i
\(711\) 0 0
\(712\) 1.47520 + 0.851709i 0.0552856 + 0.0319191i
\(713\) −25.9006 + 25.9006i −0.969985 + 0.969985i
\(714\) 0 0
\(715\) −1.93076 1.41514i −0.0722063 0.0529234i
\(716\) 4.82455 + 2.78545i 0.180302 + 0.104097i
\(717\) 0 0
\(718\) 27.1650 1.01379
\(719\) −1.46802 2.54269i −0.0547480 0.0948263i 0.837353 0.546663i \(-0.184102\pi\)
−0.892101 + 0.451837i \(0.850769\pi\)
\(720\) 0 0
\(721\) −18.1606 4.86612i −0.676336 0.181224i
\(722\) −6.20510 23.1578i −0.230930 0.861843i
\(723\) 0 0
\(724\) 20.8410 0.774549
\(725\) −9.75764 16.9007i −0.362390 0.627677i
\(726\) 0 0
\(727\) −34.7895 + 20.0857i −1.29027 + 0.744938i −0.978702 0.205285i \(-0.934188\pi\)
−0.311569 + 0.950224i \(0.600854\pi\)
\(728\) 5.21047 + 3.81900i 0.193113 + 0.141541i
\(729\) 0 0
\(730\) −1.97679 7.37746i −0.0731641 0.273052i
\(731\) 2.15835i 0.0798294i
\(732\) 0 0
\(733\) −3.39197 12.6590i −0.125285 0.467571i 0.874564 0.484909i \(-0.161147\pi\)
−0.999850 + 0.0173384i \(0.994481\pi\)
\(734\) −5.44068 5.44068i −0.200819 0.200819i
\(735\) 0 0
\(736\) −1.63730 + 6.11049i −0.0603517 + 0.225236i
\(737\) −9.45150 + 5.45683i −0.348151 + 0.201005i
\(738\) 0 0
\(739\) −20.2177 + 5.41732i −0.743721 + 0.199279i −0.610731 0.791838i \(-0.709124\pi\)
−0.132990 + 0.991117i \(0.542458\pi\)
\(740\) −2.38175 4.12531i −0.0875547 0.151649i
\(741\) 0 0
\(742\) −8.06290 + 13.9654i −0.295998 + 0.512684i
\(743\) 4.33508 16.1787i 0.159039 0.593540i −0.839687 0.543071i \(-0.817262\pi\)
0.998726 0.0504696i \(-0.0160718\pi\)
\(744\) 0 0
\(745\) −5.64073 3.25668i −0.206660 0.119315i
\(746\) 11.3830 + 11.3830i 0.416760 + 0.416760i
\(747\) 0 0
\(748\) 0.617094 2.30303i 0.0225632 0.0842070i
\(749\) −3.75500 1.00615i −0.137205 0.0367639i
\(750\) 0 0
\(751\) −8.11367 + 4.68443i −0.296072 + 0.170937i −0.640677 0.767810i \(-0.721346\pi\)
0.344605 + 0.938748i \(0.388013\pi\)
\(752\) −3.66378 0.981707i −0.133604 0.0357992i
\(753\) 0 0
\(754\) −9.68970 12.0686i −0.352878 0.439511i
\(755\) 3.34938i 0.121897i
\(756\) 0 0
\(757\) 1.46922 2.54477i 0.0533999 0.0924913i −0.838090 0.545532i \(-0.816328\pi\)
0.891490 + 0.453041i \(0.149661\pi\)
\(758\) 12.9805 22.4829i 0.471472 0.816614i
\(759\) 0 0
\(760\) −3.12234 + 3.12234i −0.113259 + 0.113259i
\(761\) 7.31204 7.31204i 0.265061 0.265061i −0.562045 0.827106i \(-0.689985\pi\)
0.827106 + 0.562045i \(0.189985\pi\)
\(762\) 0 0
\(763\) 10.4970 18.1813i 0.380016 0.658207i
\(764\) −9.03635 + 15.6514i −0.326924 + 0.566248i
\(765\) 0 0
\(766\) 31.4582i 1.13663i
\(767\) −10.6611 13.2784i −0.384949 0.479455i
\(768\) 0 0
\(769\) −0.0675077 0.0180886i −0.00243439 0.000652292i 0.257602 0.966251i \(-0.417068\pi\)
−0.260036 + 0.965599i \(0.583734\pi\)
\(770\) 1.03021 0.594792i 0.0371262 0.0214348i
\(771\) 0 0
\(772\) 7.11166 + 1.90556i 0.255954 + 0.0685827i
\(773\) 6.52883 24.3659i 0.234826 0.876382i −0.743402 0.668845i \(-0.766789\pi\)
0.978227 0.207536i \(-0.0665445\pi\)
\(774\) 0 0
\(775\) −18.6138 18.6138i −0.668627 0.668627i
\(776\) −1.66361 0.960483i −0.0597199 0.0344793i
\(777\) 0 0
\(778\) −6.57319 + 24.5315i −0.235660 + 0.879496i
\(779\) −16.3098 + 28.2493i −0.584358 + 1.01214i
\(780\) 0 0
\(781\) 3.25425 + 5.63652i 0.116446 + 0.201691i
\(782\) 14.7808 3.96050i 0.528560 0.141627i
\(783\) 0 0
\(784\) 3.28199