Properties

Label 702.2.bb.a.71.3
Level $702$
Weight $2$
Character 702.71
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(71,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 71.3
Character \(\chi\) \(=\) 702.71
Dual form 702.2.bb.a.89.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(-1.35053 + 0.361873i) q^{5} +(0.977097 - 0.261812i) q^{7} +(0.707107 - 0.707107i) q^{8} +O(q^{10})\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(-1.35053 + 0.361873i) q^{5} +(0.977097 - 0.261812i) q^{7} +(0.707107 - 0.707107i) q^{8} +(1.21085 + 0.699086i) q^{10} +(-4.11206 + 4.11206i) q^{11} +(3.22602 - 1.61022i) q^{13} +(-0.876041 - 0.505782i) q^{14} -1.00000 q^{16} +(-1.67305 - 2.89781i) q^{17} +(-7.07605 - 1.89602i) q^{19} +(-0.361873 - 1.35053i) q^{20} +5.81533 q^{22} +(-0.290218 - 0.502672i) q^{23} +(-2.63715 + 1.52256i) q^{25} +(-3.41974 - 1.14254i) q^{26} +(0.261812 + 0.977097i) q^{28} -1.03028i q^{29} +(2.28484 + 8.52714i) q^{31} +(0.707107 + 0.707107i) q^{32} +(-0.866036 + 3.23209i) q^{34} +(-1.22486 + 0.707171i) q^{35} +(-7.82443 + 2.09655i) q^{37} +(3.66283 + 6.34422i) q^{38} +(-0.699086 + 1.21085i) q^{40} +(0.423606 - 1.58092i) q^{41} +(-7.25776 - 4.19027i) q^{43} +(-4.11206 - 4.11206i) q^{44} +(-0.150228 + 0.560658i) q^{46} +(1.45080 + 0.388741i) q^{47} +(-5.17601 + 2.98837i) q^{49} +(2.94136 + 0.788134i) q^{50} +(1.61022 + 3.22602i) q^{52} -2.77082i q^{53} +(4.06542 - 7.04151i) q^{55} +(0.505782 - 0.876041i) q^{56} +(-0.728518 + 0.728518i) q^{58} +(-8.47432 + 8.47432i) q^{59} +(-1.41408 + 2.44926i) q^{61} +(4.41397 - 7.64523i) q^{62} -1.00000i q^{64} +(-3.77414 + 3.34206i) q^{65} +(1.09561 + 0.293568i) q^{67} +(2.89781 - 1.67305i) q^{68} +(1.36615 + 0.366058i) q^{70} +(-2.71495 + 10.1323i) q^{71} +(0.788181 + 0.788181i) q^{73} +(7.01519 + 4.05022i) q^{74} +(1.89602 - 7.07605i) q^{76} +(-2.94129 + 5.09447i) q^{77} +(-0.827245 - 1.43283i) q^{79} +(1.35053 - 0.361873i) q^{80} +(-1.41741 + 0.818343i) q^{82} +(4.21280 - 15.7224i) q^{83} +(3.30815 + 3.30815i) q^{85} +(2.16904 + 8.09498i) q^{86} +5.81533i q^{88} +(0.783797 + 2.92517i) q^{89} +(2.73056 - 2.41795i) q^{91} +(0.502672 - 0.290218i) q^{92} +(-0.750990 - 1.30075i) q^{94} +10.2425 q^{95} +(3.18620 + 11.8911i) q^{97} +(5.77308 + 1.54689i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 4 q^{7} - 56 q^{16} - 8 q^{19} - 4 q^{28} + 8 q^{31} - 24 q^{35} - 4 q^{37} + 36 q^{38} + 48 q^{41} + 12 q^{43} - 60 q^{47} + 24 q^{50} - 4 q^{52} + 120 q^{65} - 56 q^{67} - 24 q^{71} + 28 q^{73} - 48 q^{74} + 4 q^{76} + 24 q^{77} - 24 q^{79} + 60 q^{83} - 48 q^{86} + 4 q^{91} + 24 q^{92} + 20 q^{97} + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −1.35053 + 0.361873i −0.603975 + 0.161835i −0.547833 0.836588i \(-0.684547\pi\)
−0.0561429 + 0.998423i \(0.517880\pi\)
\(6\) 0 0
\(7\) 0.977097 0.261812i 0.369308 0.0989557i −0.0693918 0.997589i \(-0.522106\pi\)
0.438700 + 0.898634i \(0.355439\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) 1.21085 + 0.699086i 0.382905 + 0.221070i
\(11\) −4.11206 + 4.11206i −1.23983 + 1.23983i −0.279764 + 0.960069i \(0.590256\pi\)
−0.960069 + 0.279764i \(0.909744\pi\)
\(12\) 0 0
\(13\) 3.22602 1.61022i 0.894736 0.446595i
\(14\) −0.876041 0.505782i −0.234132 0.135176i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −1.67305 2.89781i −0.405775 0.702823i 0.588636 0.808398i \(-0.299665\pi\)
−0.994411 + 0.105575i \(0.966332\pi\)
\(18\) 0 0
\(19\) −7.07605 1.89602i −1.62336 0.434977i −0.671372 0.741120i \(-0.734295\pi\)
−0.951986 + 0.306143i \(0.900961\pi\)
\(20\) −0.361873 1.35053i −0.0809174 0.301988i
\(21\) 0 0
\(22\) 5.81533 1.23983
\(23\) −0.290218 0.502672i −0.0605146 0.104814i 0.834181 0.551491i \(-0.185941\pi\)
−0.894696 + 0.446676i \(0.852608\pi\)
\(24\) 0 0
\(25\) −2.63715 + 1.52256i −0.527430 + 0.304512i
\(26\) −3.41974 1.14254i −0.670666 0.224071i
\(27\) 0 0
\(28\) 0.261812 + 0.977097i 0.0494779 + 0.184654i
\(29\) 1.03028i 0.191318i −0.995414 0.0956592i \(-0.969504\pi\)
0.995414 0.0956592i \(-0.0304959\pi\)
\(30\) 0 0
\(31\) 2.28484 + 8.52714i 0.410369 + 1.53152i 0.793933 + 0.608005i \(0.208030\pi\)
−0.383564 + 0.923514i \(0.625303\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) −0.866036 + 3.23209i −0.148524 + 0.554299i
\(35\) −1.22486 + 0.707171i −0.207038 + 0.119534i
\(36\) 0 0
\(37\) −7.82443 + 2.09655i −1.28633 + 0.344671i −0.836265 0.548326i \(-0.815265\pi\)
−0.450064 + 0.892996i \(0.648599\pi\)
\(38\) 3.66283 + 6.34422i 0.594190 + 1.02917i
\(39\) 0 0
\(40\) −0.699086 + 1.21085i −0.110535 + 0.191453i
\(41\) 0.423606 1.58092i 0.0661561 0.246898i −0.924927 0.380146i \(-0.875874\pi\)
0.991083 + 0.133248i \(0.0425406\pi\)
\(42\) 0 0
\(43\) −7.25776 4.19027i −1.10680 0.639010i −0.168800 0.985650i \(-0.553989\pi\)
−0.937998 + 0.346640i \(0.887322\pi\)
\(44\) −4.11206 4.11206i −0.619916 0.619916i
\(45\) 0 0
\(46\) −0.150228 + 0.560658i −0.0221499 + 0.0826645i
\(47\) 1.45080 + 0.388741i 0.211621 + 0.0567037i 0.363072 0.931761i \(-0.381728\pi\)
−0.151451 + 0.988465i \(0.548395\pi\)
\(48\) 0 0
\(49\) −5.17601 + 2.98837i −0.739429 + 0.426910i
\(50\) 2.94136 + 0.788134i 0.415971 + 0.111459i
\(51\) 0 0
\(52\) 1.61022 + 3.22602i 0.223297 + 0.447368i
\(53\) 2.77082i 0.380601i −0.981726 0.190300i \(-0.939054\pi\)
0.981726 0.190300i \(-0.0609462\pi\)
\(54\) 0 0
\(55\) 4.06542 7.04151i 0.548180 0.949476i
\(56\) 0.505782 0.876041i 0.0675880 0.117066i
\(57\) 0 0
\(58\) −0.728518 + 0.728518i −0.0956592 + 0.0956592i
\(59\) −8.47432 + 8.47432i −1.10326 + 1.10326i −0.109248 + 0.994014i \(0.534844\pi\)
−0.994014 + 0.109248i \(0.965156\pi\)
\(60\) 0 0
\(61\) −1.41408 + 2.44926i −0.181054 + 0.313595i −0.942240 0.334939i \(-0.891284\pi\)
0.761186 + 0.648534i \(0.224618\pi\)
\(62\) 4.41397 7.64523i 0.560575 0.970945i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −3.77414 + 3.34206i −0.468124 + 0.414532i
\(66\) 0 0
\(67\) 1.09561 + 0.293568i 0.133850 + 0.0358650i 0.325122 0.945672i \(-0.394595\pi\)
−0.191272 + 0.981537i \(0.561261\pi\)
\(68\) 2.89781 1.67305i 0.351411 0.202887i
\(69\) 0 0
\(70\) 1.36615 + 0.366058i 0.163286 + 0.0437524i
\(71\) −2.71495 + 10.1323i −0.322205 + 1.20249i 0.594886 + 0.803810i \(0.297197\pi\)
−0.917091 + 0.398677i \(0.869470\pi\)
\(72\) 0 0
\(73\) 0.788181 + 0.788181i 0.0922496 + 0.0922496i 0.751726 0.659476i \(-0.229222\pi\)
−0.659476 + 0.751726i \(0.729222\pi\)
\(74\) 7.01519 + 4.05022i 0.815500 + 0.470829i
\(75\) 0 0
\(76\) 1.89602 7.07605i 0.217489 0.811679i
\(77\) −2.94129 + 5.09447i −0.335191 + 0.580568i
\(78\) 0 0
\(79\) −0.827245 1.43283i −0.0930723 0.161206i 0.815730 0.578433i \(-0.196335\pi\)
−0.908802 + 0.417227i \(0.863002\pi\)
\(80\) 1.35053 0.361873i 0.150994 0.0404587i
\(81\) 0 0
\(82\) −1.41741 + 0.818343i −0.156527 + 0.0903709i
\(83\) 4.21280 15.7224i 0.462415 1.72576i −0.202906 0.979198i \(-0.565039\pi\)
0.665321 0.746557i \(-0.268295\pi\)
\(84\) 0 0
\(85\) 3.30815 + 3.30815i 0.358819 + 0.358819i
\(86\) 2.16904 + 8.09498i 0.233894 + 0.872904i
\(87\) 0 0
\(88\) 5.81533i 0.619916i
\(89\) 0.783797 + 2.92517i 0.0830824 + 0.310068i 0.994944 0.100430i \(-0.0320218\pi\)
−0.911862 + 0.410497i \(0.865355\pi\)
\(90\) 0 0
\(91\) 2.73056 2.41795i 0.286240 0.253470i
\(92\) 0.502672 0.290218i 0.0524072 0.0302573i
\(93\) 0 0
\(94\) −0.750990 1.30075i −0.0774587 0.134162i
\(95\) 10.2425 1.05086
\(96\) 0 0
\(97\) 3.18620 + 11.8911i 0.323510 + 1.20736i 0.915801 + 0.401632i \(0.131557\pi\)
−0.592291 + 0.805724i \(0.701777\pi\)
\(98\) 5.77308 + 1.54689i 0.583170 + 0.156260i
\(99\) 0 0
\(100\) −1.52256 2.63715i −0.152256 0.263715i
\(101\) −10.1915 −1.01409 −0.507044 0.861920i \(-0.669262\pi\)
−0.507044 + 0.861920i \(0.669262\pi\)
\(102\) 0 0
\(103\) 8.54265 + 4.93210i 0.841732 + 0.485974i 0.857853 0.513896i \(-0.171798\pi\)
−0.0161205 + 0.999870i \(0.505132\pi\)
\(104\) 1.14254 3.41974i 0.112035 0.335333i
\(105\) 0 0
\(106\) −1.95926 + 1.95926i −0.190300 + 0.190300i
\(107\) 8.58323 + 4.95553i 0.829773 + 0.479069i 0.853775 0.520642i \(-0.174308\pi\)
−0.0240022 + 0.999712i \(0.507641\pi\)
\(108\) 0 0
\(109\) 6.99609 6.99609i 0.670103 0.670103i −0.287636 0.957740i \(-0.592869\pi\)
0.957740 + 0.287636i \(0.0928694\pi\)
\(110\) −7.85378 + 2.10441i −0.748828 + 0.200648i
\(111\) 0 0
\(112\) −0.977097 + 0.261812i −0.0923269 + 0.0247389i
\(113\) 10.1473i 0.954580i −0.878746 0.477290i \(-0.841619\pi\)
0.878746 0.477290i \(-0.158381\pi\)
\(114\) 0 0
\(115\) 0.573852 + 0.573852i 0.0535120 + 0.0535120i
\(116\) 1.03028 0.0956592
\(117\) 0 0
\(118\) 11.9845 1.10326
\(119\) −2.39342 2.39342i −0.219404 0.219404i
\(120\) 0 0
\(121\) 22.8181i 2.07437i
\(122\) 2.73179 0.731981i 0.247325 0.0662704i
\(123\) 0 0
\(124\) −8.52714 + 2.28484i −0.765760 + 0.205185i
\(125\) 7.95386 7.95386i 0.711415 0.711415i
\(126\) 0 0
\(127\) −13.1106 7.56941i −1.16338 0.671677i −0.211267 0.977428i \(-0.567759\pi\)
−0.952111 + 0.305752i \(0.901092\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 5.03191 + 0.305525i 0.441328 + 0.0267963i
\(131\) −3.29059 1.89982i −0.287500 0.165988i 0.349314 0.937006i \(-0.386415\pi\)
−0.636814 + 0.771018i \(0.719748\pi\)
\(132\) 0 0
\(133\) −7.41039 −0.642562
\(134\) −0.567130 0.982297i −0.0489925 0.0848576i
\(135\) 0 0
\(136\) −3.23209 0.866036i −0.277149 0.0742620i
\(137\) 1.50633 + 5.62169i 0.128694 + 0.480293i 0.999944 0.0105460i \(-0.00335697\pi\)
−0.871250 + 0.490839i \(0.836690\pi\)
\(138\) 0 0
\(139\) 2.27675 0.193112 0.0965559 0.995328i \(-0.469217\pi\)
0.0965559 + 0.995328i \(0.469217\pi\)
\(140\) −0.707171 1.22486i −0.0597668 0.103519i
\(141\) 0 0
\(142\) 9.08440 5.24488i 0.762346 0.440141i
\(143\) −6.64426 + 19.8869i −0.555621 + 1.66303i
\(144\) 0 0
\(145\) 0.372831 + 1.39143i 0.0309620 + 0.115552i
\(146\) 1.11466i 0.0922496i
\(147\) 0 0
\(148\) −2.09655 7.82443i −0.172335 0.643164i
\(149\) −10.1646 10.1646i −0.832715 0.832715i 0.155172 0.987887i \(-0.450407\pi\)
−0.987887 + 0.155172i \(0.950407\pi\)
\(150\) 0 0
\(151\) 0.728858 2.72013i 0.0593136 0.221361i −0.929907 0.367795i \(-0.880113\pi\)
0.989220 + 0.146434i \(0.0467795\pi\)
\(152\) −6.34422 + 3.66283i −0.514584 + 0.297095i
\(153\) 0 0
\(154\) 5.68214 1.52252i 0.457880 0.122689i
\(155\) −6.17149 10.6893i −0.495706 0.858588i
\(156\) 0 0
\(157\) 3.93908 6.82268i 0.314372 0.544509i −0.664931 0.746904i \(-0.731539\pi\)
0.979304 + 0.202395i \(0.0648726\pi\)
\(158\) −0.428214 + 1.59811i −0.0340668 + 0.127139i
\(159\) 0 0
\(160\) −1.21085 0.699086i −0.0957263 0.0552676i
\(161\) −0.415177 0.415177i −0.0327205 0.0327205i
\(162\) 0 0
\(163\) −1.79021 + 6.68116i −0.140220 + 0.523309i 0.859701 + 0.510797i \(0.170650\pi\)
−0.999922 + 0.0125123i \(0.996017\pi\)
\(164\) 1.58092 + 0.423606i 0.123449 + 0.0330780i
\(165\) 0 0
\(166\) −14.0963 + 8.13850i −1.09409 + 0.631670i
\(167\) 15.3104 + 4.10240i 1.18475 + 0.317453i 0.796809 0.604231i \(-0.206519\pi\)
0.387942 + 0.921684i \(0.373186\pi\)
\(168\) 0 0
\(169\) 7.81438 10.3892i 0.601106 0.799169i
\(170\) 4.67843i 0.358819i
\(171\) 0 0
\(172\) 4.19027 7.25776i 0.319505 0.553399i
\(173\) 1.30226 2.25559i 0.0990092 0.171489i −0.812266 0.583288i \(-0.801766\pi\)
0.911275 + 0.411799i \(0.135099\pi\)
\(174\) 0 0
\(175\) −2.17812 + 2.17812i −0.164651 + 0.164651i
\(176\) 4.11206 4.11206i 0.309958 0.309958i
\(177\) 0 0
\(178\) 1.51418 2.62264i 0.113493 0.196575i
\(179\) 1.79612 3.11097i 0.134248 0.232525i −0.791062 0.611736i \(-0.790471\pi\)
0.925310 + 0.379211i \(0.123805\pi\)
\(180\) 0 0
\(181\) 16.3443i 1.21486i −0.794373 0.607430i \(-0.792201\pi\)
0.794373 0.607430i \(-0.207799\pi\)
\(182\) −3.64054 0.221045i −0.269855 0.0163849i
\(183\) 0 0
\(184\) −0.560658 0.150228i −0.0413322 0.0110749i
\(185\) 9.80845 5.66291i 0.721131 0.416345i
\(186\) 0 0
\(187\) 18.7957 + 5.03629i 1.37448 + 0.368290i
\(188\) −0.388741 + 1.45080i −0.0283519 + 0.105811i
\(189\) 0 0
\(190\) −7.24257 7.24257i −0.525431 0.525431i
\(191\) 22.0297 + 12.7189i 1.59401 + 0.920305i 0.992608 + 0.121361i \(0.0387259\pi\)
0.601406 + 0.798944i \(0.294607\pi\)
\(192\) 0 0
\(193\) 3.26525 12.1861i 0.235038 0.877172i −0.743094 0.669187i \(-0.766643\pi\)
0.978132 0.207985i \(-0.0666906\pi\)
\(194\) 6.15527 10.6612i 0.441923 0.765433i
\(195\) 0 0
\(196\) −2.98837 5.17601i −0.213455 0.369715i
\(197\) 0.680083 0.182228i 0.0484539 0.0129832i −0.234511 0.972114i \(-0.575349\pi\)
0.282965 + 0.959130i \(0.408682\pi\)
\(198\) 0 0
\(199\) 8.58639 4.95735i 0.608673 0.351418i −0.163773 0.986498i \(-0.552366\pi\)
0.772446 + 0.635081i \(0.219033\pi\)
\(200\) −0.788134 + 2.94136i −0.0557295 + 0.207985i
\(201\) 0 0
\(202\) 7.20645 + 7.20645i 0.507044 + 0.507044i
\(203\) −0.269740 1.00668i −0.0189320 0.0706553i
\(204\) 0 0
\(205\) 2.28837i 0.159827i
\(206\) −2.55304 9.52809i −0.177879 0.663853i
\(207\) 0 0
\(208\) −3.22602 + 1.61022i −0.223684 + 0.111649i
\(209\) 36.8937 21.3006i 2.55199 1.47339i
\(210\) 0 0
\(211\) 3.01444 + 5.22116i 0.207522 + 0.359439i 0.950933 0.309396i \(-0.100127\pi\)
−0.743411 + 0.668835i \(0.766793\pi\)
\(212\) 2.77082 0.190300
\(213\) 0 0
\(214\) −2.56517 9.57335i −0.175352 0.654421i
\(215\) 11.3182 + 3.03269i 0.771893 + 0.206828i
\(216\) 0 0
\(217\) 4.46502 + 7.73364i 0.303105 + 0.524994i
\(218\) −9.89396 −0.670103
\(219\) 0 0
\(220\) 7.04151 + 4.06542i 0.474738 + 0.274090i
\(221\) −10.0634 6.65441i −0.676939 0.447624i
\(222\) 0 0
\(223\) −20.6159 + 20.6159i −1.38054 + 1.38054i −0.536889 + 0.843653i \(0.680401\pi\)
−0.843653 + 0.536889i \(0.819599\pi\)
\(224\) 0.876041 + 0.505782i 0.0585329 + 0.0337940i
\(225\) 0 0
\(226\) −7.17524 + 7.17524i −0.477290 + 0.477290i
\(227\) −14.0103 + 3.75404i −0.929894 + 0.249164i −0.691809 0.722080i \(-0.743186\pi\)
−0.238084 + 0.971244i \(0.576519\pi\)
\(228\) 0 0
\(229\) 9.53135 2.55392i 0.629849 0.168768i 0.0702479 0.997530i \(-0.477621\pi\)
0.559601 + 0.828762i \(0.310954\pi\)
\(230\) 0.811549i 0.0535120i
\(231\) 0 0
\(232\) −0.728518 0.728518i −0.0478296 0.0478296i
\(233\) −2.06808 −0.135484 −0.0677421 0.997703i \(-0.521580\pi\)
−0.0677421 + 0.997703i \(0.521580\pi\)
\(234\) 0 0
\(235\) −2.10003 −0.136991
\(236\) −8.47432 8.47432i −0.551631 0.551631i
\(237\) 0 0
\(238\) 3.38480i 0.219404i
\(239\) −19.0682 + 5.10931i −1.23342 + 0.330494i −0.815910 0.578179i \(-0.803764\pi\)
−0.417510 + 0.908672i \(0.637097\pi\)
\(240\) 0 0
\(241\) 9.79587 2.62479i 0.631007 0.169078i 0.0708805 0.997485i \(-0.477419\pi\)
0.560127 + 0.828407i \(0.310752\pi\)
\(242\) −16.1348 + 16.1348i −1.03718 + 1.03718i
\(243\) 0 0
\(244\) −2.44926 1.41408i −0.156797 0.0905271i
\(245\) 5.90894 5.90894i 0.377508 0.377508i
\(246\) 0 0
\(247\) −25.8805 + 5.27740i −1.64674 + 0.335793i
\(248\) 7.64523 + 4.41397i 0.485472 + 0.280288i
\(249\) 0 0
\(250\) −11.2485 −0.711415
\(251\) 4.78920 + 8.29514i 0.302292 + 0.523585i 0.976655 0.214815i \(-0.0689150\pi\)
−0.674363 + 0.738400i \(0.735582\pi\)
\(252\) 0 0
\(253\) 3.26041 + 0.873624i 0.204980 + 0.0549243i
\(254\) 3.91822 + 14.6230i 0.245851 + 0.917527i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 2.88755 + 5.00138i 0.180120 + 0.311977i 0.941921 0.335834i \(-0.109018\pi\)
−0.761801 + 0.647811i \(0.775685\pi\)
\(258\) 0 0
\(259\) −7.09632 + 4.09706i −0.440944 + 0.254579i
\(260\) −3.34206 3.77414i −0.207266 0.234062i
\(261\) 0 0
\(262\) 0.983420 + 3.67017i 0.0607559 + 0.226744i
\(263\) 4.45725i 0.274846i −0.990512 0.137423i \(-0.956118\pi\)
0.990512 0.137423i \(-0.0438819\pi\)
\(264\) 0 0
\(265\) 1.00269 + 3.74207i 0.0615945 + 0.229874i
\(266\) 5.23994 + 5.23994i 0.321281 + 0.321281i
\(267\) 0 0
\(268\) −0.293568 + 1.09561i −0.0179325 + 0.0669250i
\(269\) 11.4786 6.62715i 0.699860 0.404064i −0.107435 0.994212i \(-0.534264\pi\)
0.807295 + 0.590148i \(0.200931\pi\)
\(270\) 0 0
\(271\) −5.62562 + 1.50738i −0.341732 + 0.0915668i −0.425604 0.904910i \(-0.639938\pi\)
0.0838714 + 0.996477i \(0.473272\pi\)
\(272\) 1.67305 + 2.89781i 0.101444 + 0.175706i
\(273\) 0 0
\(274\) 2.91000 5.04027i 0.175799 0.304494i
\(275\) 4.58326 17.1050i 0.276381 1.03147i
\(276\) 0 0
\(277\) −16.8351 9.71973i −1.01152 0.584002i −0.0998845 0.994999i \(-0.531847\pi\)
−0.911637 + 0.410997i \(0.865181\pi\)
\(278\) −1.60991 1.60991i −0.0965559 0.0965559i
\(279\) 0 0
\(280\) −0.366058 + 1.36615i −0.0218762 + 0.0816430i
\(281\) 1.40349 + 0.376063i 0.0837250 + 0.0224340i 0.300438 0.953801i \(-0.402867\pi\)
−0.216713 + 0.976235i \(0.569534\pi\)
\(282\) 0 0
\(283\) −17.9556 + 10.3666i −1.06735 + 0.616233i −0.927455 0.373934i \(-0.878009\pi\)
−0.139892 + 0.990167i \(0.544675\pi\)
\(284\) −10.1323 2.71495i −0.601243 0.161103i
\(285\) 0 0
\(286\) 18.7604 9.36396i 1.10932 0.553703i
\(287\) 1.65561i 0.0977278i
\(288\) 0 0
\(289\) 2.90179 5.02604i 0.170693 0.295649i
\(290\) 0.720255 1.24752i 0.0422948 0.0732568i
\(291\) 0 0
\(292\) −0.788181 + 0.788181i −0.0461248 + 0.0461248i
\(293\) −16.7878 + 16.7878i −0.980753 + 0.980753i −0.999818 0.0190656i \(-0.993931\pi\)
0.0190656 + 0.999818i \(0.493931\pi\)
\(294\) 0 0
\(295\) 8.37820 14.5115i 0.487797 0.844890i
\(296\) −4.05022 + 7.01519i −0.235414 + 0.407750i
\(297\) 0 0
\(298\) 14.3749i 0.832715i
\(299\) −1.74566 1.15431i −0.100954 0.0667557i
\(300\) 0 0
\(301\) −8.18860 2.19413i −0.471983 0.126467i
\(302\) −2.43881 + 1.40805i −0.140337 + 0.0810239i
\(303\) 0 0
\(304\) 7.07605 + 1.89602i 0.405839 + 0.108744i
\(305\) 1.02343 3.81951i 0.0586017 0.218705i
\(306\) 0 0
\(307\) 14.7696 + 14.7696i 0.842947 + 0.842947i 0.989241 0.146294i \(-0.0467346\pi\)
−0.146294 + 0.989241i \(0.546735\pi\)
\(308\) −5.09447 2.94129i −0.290284 0.167596i
\(309\) 0 0
\(310\) −3.19460 + 11.9224i −0.181441 + 0.677147i
\(311\) −14.0548 + 24.3437i −0.796976 + 1.38040i 0.124602 + 0.992207i \(0.460235\pi\)
−0.921577 + 0.388195i \(0.873099\pi\)
\(312\) 0 0
\(313\) 8.76521 + 15.1818i 0.495439 + 0.858125i 0.999986 0.00525876i \(-0.00167392\pi\)
−0.504547 + 0.863384i \(0.668341\pi\)
\(314\) −7.60971 + 2.03902i −0.429441 + 0.115068i
\(315\) 0 0
\(316\) 1.43283 0.827245i 0.0806030 0.0465362i
\(317\) −5.72585 + 21.3692i −0.321596 + 1.20021i 0.596094 + 0.802915i \(0.296719\pi\)
−0.917690 + 0.397298i \(0.869948\pi\)
\(318\) 0 0
\(319\) 4.23658 + 4.23658i 0.237203 + 0.237203i
\(320\) 0.361873 + 1.35053i 0.0202293 + 0.0754969i
\(321\) 0 0
\(322\) 0.587148i 0.0327205i
\(323\) 6.34429 + 23.6772i 0.353006 + 1.31744i
\(324\) 0 0
\(325\) −6.05583 + 9.15819i −0.335917 + 0.508005i
\(326\) 5.99017 3.45843i 0.331765 0.191544i
\(327\) 0 0
\(328\) −0.818343 1.41741i −0.0451854 0.0782635i
\(329\) 1.51935 0.0837645
\(330\) 0 0
\(331\) 5.85855 + 21.8644i 0.322015 + 1.20178i 0.917279 + 0.398246i \(0.130381\pi\)
−0.595263 + 0.803531i \(0.702952\pi\)
\(332\) 15.7224 + 4.21280i 0.862878 + 0.231207i
\(333\) 0 0
\(334\) −7.92523 13.7269i −0.433649 0.751102i
\(335\) −1.58589 −0.0866464
\(336\) 0 0
\(337\) 26.9968 + 15.5866i 1.47061 + 0.849058i 0.999456 0.0329922i \(-0.0105036\pi\)
0.471156 + 0.882050i \(0.343837\pi\)
\(338\) −12.8719 + 1.82067i −0.700138 + 0.0990314i
\(339\) 0 0
\(340\) −3.30815 + 3.30815i −0.179410 + 0.179410i
\(341\) −44.4595 25.6687i −2.40762 1.39004i
\(342\) 0 0
\(343\) −9.28206 + 9.28206i −0.501184 + 0.501184i
\(344\) −8.09498 + 2.16904i −0.436452 + 0.116947i
\(345\) 0 0
\(346\) −2.51578 + 0.674101i −0.135249 + 0.0362399i
\(347\) 20.3582i 1.09289i 0.837496 + 0.546444i \(0.184019\pi\)
−0.837496 + 0.546444i \(0.815981\pi\)
\(348\) 0 0
\(349\) −20.7926 20.7926i −1.11300 1.11300i −0.992743 0.120259i \(-0.961627\pi\)
−0.120259 0.992743i \(-0.538373\pi\)
\(350\) 3.08033 0.164651
\(351\) 0 0
\(352\) −5.81533 −0.309958
\(353\) −8.11406 8.11406i −0.431868 0.431868i 0.457395 0.889263i \(-0.348782\pi\)
−0.889263 + 0.457395i \(0.848782\pi\)
\(354\) 0 0
\(355\) 14.6665i 0.778417i
\(356\) −2.92517 + 0.783797i −0.155034 + 0.0415412i
\(357\) 0 0
\(358\) −3.46984 + 0.929741i −0.183387 + 0.0491383i
\(359\) 25.9734 25.9734i 1.37083 1.37083i 0.511605 0.859221i \(-0.329051\pi\)
0.859221 0.511605i \(-0.170949\pi\)
\(360\) 0 0
\(361\) 30.0211 + 17.3327i 1.58006 + 0.912248i
\(362\) −11.5571 + 11.5571i −0.607430 + 0.607430i
\(363\) 0 0
\(364\) 2.41795 + 2.73056i 0.126735 + 0.143120i
\(365\) −1.34968 0.779240i −0.0706457 0.0407873i
\(366\) 0 0
\(367\) −5.57250 −0.290882 −0.145441 0.989367i \(-0.546460\pi\)
−0.145441 + 0.989367i \(0.546460\pi\)
\(368\) 0.290218 + 0.502672i 0.0151287 + 0.0262036i
\(369\) 0 0
\(370\) −10.9399 2.93134i −0.568738 0.152393i
\(371\) −0.725434 2.70736i −0.0376626 0.140559i
\(372\) 0 0
\(373\) 2.87844 0.149040 0.0745200 0.997220i \(-0.476258\pi\)
0.0745200 + 0.997220i \(0.476258\pi\)
\(374\) −9.72936 16.8517i −0.503093 0.871383i
\(375\) 0 0
\(376\) 1.30075 0.750990i 0.0670812 0.0387294i
\(377\) −1.65898 3.32370i −0.0854418 0.171179i
\(378\) 0 0
\(379\) 5.51954 + 20.5992i 0.283520 + 1.05811i 0.949914 + 0.312511i \(0.101170\pi\)
−0.666394 + 0.745600i \(0.732163\pi\)
\(380\) 10.2425i 0.525431i
\(381\) 0 0
\(382\) −6.58377 24.5710i −0.336855 1.25716i
\(383\) −9.17790 9.17790i −0.468969 0.468969i 0.432612 0.901580i \(-0.357592\pi\)
−0.901580 + 0.432612i \(0.857592\pi\)
\(384\) 0 0
\(385\) 2.12875 7.94461i 0.108491 0.404895i
\(386\) −10.9257 + 6.30797i −0.556105 + 0.321067i
\(387\) 0 0
\(388\) −11.8911 + 3.18620i −0.603678 + 0.161755i
\(389\) 15.6511 + 27.1085i 0.793543 + 1.37446i 0.923760 + 0.382972i \(0.125099\pi\)
−0.130216 + 0.991486i \(0.541567\pi\)
\(390\) 0 0
\(391\) −0.971100 + 1.68199i −0.0491106 + 0.0850621i
\(392\) −1.54689 + 5.77308i −0.0781299 + 0.291585i
\(393\) 0 0
\(394\) −0.609746 0.352037i −0.0307186 0.0177354i
\(395\) 1.63572 + 1.63572i 0.0823021 + 0.0823021i
\(396\) 0 0
\(397\) 0.644906 2.40682i 0.0323669 0.120795i −0.947852 0.318710i \(-0.896750\pi\)
0.980219 + 0.197915i \(0.0634170\pi\)
\(398\) −9.57687 2.56612i −0.480045 0.128628i
\(399\) 0 0
\(400\) 2.63715 1.52256i 0.131857 0.0761279i
\(401\) −19.8142 5.30920i −0.989473 0.265129i −0.272444 0.962172i \(-0.587832\pi\)
−0.717029 + 0.697043i \(0.754499\pi\)
\(402\) 0 0
\(403\) 21.1015 + 23.8296i 1.05114 + 1.18704i
\(404\) 10.1915i 0.507044i
\(405\) 0 0
\(406\) −0.521098 + 0.902568i −0.0258617 + 0.0447937i
\(407\) 23.5534 40.7957i 1.16750 2.02217i
\(408\) 0 0
\(409\) −6.92695 + 6.92695i −0.342516 + 0.342516i −0.857312 0.514797i \(-0.827867\pi\)
0.514797 + 0.857312i \(0.327867\pi\)
\(410\) 1.61812 1.61812i 0.0799133 0.0799133i
\(411\) 0 0
\(412\) −4.93210 + 8.54265i −0.242987 + 0.420866i
\(413\) −6.06155 + 10.4989i −0.298269 + 0.516618i
\(414\) 0 0
\(415\) 22.7581i 1.11715i
\(416\) 3.41974 + 1.14254i 0.167666 + 0.0560177i
\(417\) 0 0
\(418\) −41.1496 11.0260i −2.01269 0.539299i
\(419\) −1.49988 + 0.865956i −0.0732739 + 0.0423047i −0.536189 0.844098i \(-0.680137\pi\)
0.462915 + 0.886402i \(0.346803\pi\)
\(420\) 0 0
\(421\) −3.43418 0.920185i −0.167372 0.0448471i 0.174160 0.984717i \(-0.444279\pi\)
−0.341532 + 0.939870i \(0.610946\pi\)
\(422\) 1.56039 5.82344i 0.0759584 0.283481i
\(423\) 0 0
\(424\) −1.95926 1.95926i −0.0951502 0.0951502i
\(425\) 8.82418 + 5.09464i 0.428035 + 0.247126i
\(426\) 0 0
\(427\) −0.740446 + 2.76338i −0.0358327 + 0.133729i
\(428\) −4.95553 + 8.58323i −0.239535 + 0.414886i
\(429\) 0 0
\(430\) −5.85872 10.1476i −0.282532 0.489360i
\(431\) −14.3219 + 3.83753i −0.689860 + 0.184847i −0.586684 0.809816i \(-0.699567\pi\)
−0.103176 + 0.994663i \(0.532900\pi\)
\(432\) 0 0
\(433\) −9.94854 + 5.74379i −0.478096 + 0.276029i −0.719623 0.694365i \(-0.755685\pi\)
0.241527 + 0.970394i \(0.422352\pi\)
\(434\) 2.31126 8.62576i 0.110944 0.414050i
\(435\) 0 0
\(436\) 6.99609 + 6.99609i 0.335052 + 0.335052i
\(437\) 1.10052 + 4.10719i 0.0526450 + 0.196474i
\(438\) 0 0
\(439\) 40.7022i 1.94261i −0.237834 0.971306i \(-0.576437\pi\)
0.237834 0.971306i \(-0.423563\pi\)
\(440\) −2.10441 7.85378i −0.100324 0.374414i
\(441\) 0 0
\(442\) 2.41053 + 11.8213i 0.114657 + 0.562281i
\(443\) −10.6734 + 6.16232i −0.507111 + 0.292780i −0.731645 0.681686i \(-0.761247\pi\)
0.224535 + 0.974466i \(0.427914\pi\)
\(444\) 0 0
\(445\) −2.11708 3.66690i −0.100359 0.173828i
\(446\) 29.1553 1.38054
\(447\) 0 0
\(448\) −0.261812 0.977097i −0.0123695 0.0461635i
\(449\) −27.3580 7.33055i −1.29110 0.345950i −0.453024 0.891498i \(-0.649655\pi\)
−0.838080 + 0.545548i \(0.816322\pi\)
\(450\) 0 0
\(451\) 4.75894 + 8.24272i 0.224090 + 0.388134i
\(452\) 10.1473 0.477290
\(453\) 0 0
\(454\) 12.5613 + 7.25224i 0.589529 + 0.340365i
\(455\) −2.81271 + 4.25363i −0.131862 + 0.199413i
\(456\) 0 0
\(457\) 21.3025 21.3025i 0.996490 0.996490i −0.00350346 0.999994i \(-0.501115\pi\)
0.999994 + 0.00350346i \(0.00111519\pi\)
\(458\) −8.54557 4.93379i −0.399308 0.230541i
\(459\) 0 0
\(460\) −0.573852 + 0.573852i −0.0267560 + 0.0267560i
\(461\) −27.5031 + 7.36943i −1.28095 + 0.343228i −0.834215 0.551440i \(-0.814079\pi\)
−0.446731 + 0.894668i \(0.647412\pi\)
\(462\) 0 0
\(463\) −3.49672 + 0.936943i −0.162506 + 0.0435434i −0.339155 0.940731i \(-0.610141\pi\)
0.176649 + 0.984274i \(0.443474\pi\)
\(464\) 1.03028i 0.0478296i
\(465\) 0 0
\(466\) 1.46235 + 1.46235i 0.0677421 + 0.0677421i
\(467\) 36.6235 1.69473 0.847366 0.531010i \(-0.178187\pi\)
0.847366 + 0.531010i \(0.178187\pi\)
\(468\) 0 0
\(469\) 1.14738 0.0529809
\(470\) 1.48494 + 1.48494i 0.0684953 + 0.0684953i
\(471\) 0 0
\(472\) 11.9845i 0.551631i
\(473\) 47.0750 12.6137i 2.16451 0.579979i
\(474\) 0 0
\(475\) 21.5474 5.77361i 0.988662 0.264911i
\(476\) 2.39342 2.39342i 0.109702 0.109702i
\(477\) 0 0
\(478\) 17.0961 + 9.87043i 0.781957 + 0.451463i
\(479\) 3.57024 3.57024i 0.163128 0.163128i −0.620823 0.783951i \(-0.713201\pi\)
0.783951 + 0.620823i \(0.213201\pi\)
\(480\) 0 0
\(481\) −21.8658 + 19.3626i −0.996997 + 0.882857i
\(482\) −8.78273 5.07071i −0.400043 0.230965i
\(483\) 0 0
\(484\) 22.8181 1.03718
\(485\) −8.60613 14.9063i −0.390784 0.676858i
\(486\) 0 0
\(487\) −28.6137 7.66702i −1.29661 0.347426i −0.456443 0.889753i \(-0.650877\pi\)
−0.840167 + 0.542327i \(0.817543\pi\)
\(488\) 0.731981 + 2.73179i 0.0331352 + 0.123662i
\(489\) 0 0
\(490\) −8.35650 −0.377508
\(491\) 0.987608 + 1.71059i 0.0445701 + 0.0771978i 0.887450 0.460904i \(-0.152475\pi\)
−0.842880 + 0.538102i \(0.819142\pi\)
\(492\) 0 0
\(493\) −2.98556 + 1.72371i −0.134463 + 0.0776322i
\(494\) 22.0320 + 14.5686i 0.991264 + 0.655471i
\(495\) 0 0
\(496\) −2.28484 8.52714i −0.102592 0.382880i
\(497\) 10.6111i 0.475972i
\(498\) 0 0
\(499\) 1.03754 + 3.87214i 0.0464465 + 0.173341i 0.985253 0.171105i \(-0.0547336\pi\)
−0.938806 + 0.344445i \(0.888067\pi\)
\(500\) 7.95386 + 7.95386i 0.355707 + 0.355707i
\(501\) 0 0
\(502\) 2.47907 9.25203i 0.110646 0.412938i
\(503\) −6.37037 + 3.67794i −0.284041 + 0.163991i −0.635251 0.772305i \(-0.719103\pi\)
0.351211 + 0.936297i \(0.385770\pi\)
\(504\) 0 0
\(505\) 13.7639 3.68802i 0.612485 0.164115i
\(506\) −1.68771 2.92320i −0.0750280 0.129952i
\(507\) 0 0
\(508\) 7.56941 13.1106i 0.335838 0.581689i
\(509\) 3.68759 13.7623i 0.163449 0.610002i −0.834783 0.550579i \(-0.814407\pi\)
0.998233 0.0594233i \(-0.0189262\pi\)
\(510\) 0 0
\(511\) 0.976484 + 0.563773i 0.0431971 + 0.0249399i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 1.49470 5.57831i 0.0659286 0.246049i
\(515\) −13.3219 3.56959i −0.587033 0.157295i
\(516\) 0 0
\(517\) −7.56431 + 4.36726i −0.332678 + 0.192072i
\(518\) 7.91492 + 2.12080i 0.347762 + 0.0931824i
\(519\) 0 0
\(520\) −0.305525 + 5.03191i −0.0133982 + 0.220664i
\(521\) 28.5428i 1.25048i 0.780431 + 0.625242i \(0.215000\pi\)
−0.780431 + 0.625242i \(0.785000\pi\)
\(522\) 0 0
\(523\) 7.95336 13.7756i 0.347776 0.602366i −0.638078 0.769972i \(-0.720270\pi\)
0.985854 + 0.167606i \(0.0536037\pi\)
\(524\) 1.89982 3.29059i 0.0829941 0.143750i
\(525\) 0 0
\(526\) −3.15175 + 3.15175i −0.137423 + 0.137423i
\(527\) 20.8874 20.8874i 0.909869 0.909869i
\(528\) 0 0
\(529\) 11.3315 19.6268i 0.492676 0.853340i
\(530\) 1.93704 3.35505i 0.0841396 0.145734i
\(531\) 0 0
\(532\) 7.41039i 0.321281i
\(533\) −1.17907 5.78217i −0.0510710 0.250453i
\(534\) 0 0
\(535\) −13.3852 3.58655i −0.578692 0.155060i
\(536\) 0.982297 0.567130i 0.0424288 0.0244963i
\(537\) 0 0
\(538\) −12.8027 3.43046i −0.551962 0.147898i
\(539\) 8.99570 33.5724i 0.387472 1.44607i
\(540\) 0 0
\(541\) 20.5826 + 20.5826i 0.884913 + 0.884913i 0.994029 0.109116i \(-0.0348019\pi\)
−0.109116 + 0.994029i \(0.534802\pi\)
\(542\) 5.04379 + 2.91204i 0.216649 + 0.125083i
\(543\) 0 0
\(544\) 0.866036 3.23209i 0.0371310 0.138575i
\(545\) −6.91673 + 11.9801i −0.296280 + 0.513172i
\(546\) 0 0
\(547\) −11.8581 20.5389i −0.507017 0.878180i −0.999967 0.00812189i \(-0.997415\pi\)
0.492950 0.870058i \(-0.335919\pi\)
\(548\) −5.62169 + 1.50633i −0.240147 + 0.0643471i
\(549\) 0 0
\(550\) −15.3359 + 8.85418i −0.653924 + 0.377543i
\(551\) −1.95344 + 7.29032i −0.0832191 + 0.310578i
\(552\) 0 0
\(553\) −1.18343 1.18343i −0.0503246 0.0503246i
\(554\) 5.03130 + 18.7771i 0.213760 + 0.797762i
\(555\) 0 0
\(556\) 2.27675i 0.0965559i
\(557\) −1.55296 5.79572i −0.0658010 0.245573i 0.925189 0.379506i \(-0.123906\pi\)
−0.990990 + 0.133933i \(0.957239\pi\)
\(558\) 0 0
\(559\) −30.1609 1.83129i −1.27567 0.0774555i
\(560\) 1.22486 0.707171i 0.0517596 0.0298834i
\(561\) 0 0
\(562\) −0.726498 1.25833i −0.0306455 0.0530795i
\(563\) −34.2938 −1.44531 −0.722656 0.691208i \(-0.757079\pi\)
−0.722656 + 0.691208i \(0.757079\pi\)
\(564\) 0 0
\(565\) 3.67205 + 13.7043i 0.154484 + 0.576543i
\(566\) 20.0268 + 5.36617i 0.841790 + 0.225557i
\(567\) 0 0
\(568\) 5.24488 + 9.08440i 0.220070 + 0.381173i
\(569\) −35.6813 −1.49584 −0.747919 0.663790i \(-0.768947\pi\)
−0.747919 + 0.663790i \(0.768947\pi\)
\(570\) 0 0
\(571\) −25.3581 14.6405i −1.06121 0.612687i −0.135440 0.990786i \(-0.543245\pi\)
−0.925765 + 0.378099i \(0.876578\pi\)
\(572\) −19.8869 6.64426i −0.831513 0.277810i
\(573\) 0 0
\(574\) −1.17070 + 1.17070i −0.0488639 + 0.0488639i
\(575\) 1.53069 + 0.883747i 0.0638344 + 0.0368548i
\(576\) 0 0
\(577\) −19.2968 + 19.2968i −0.803337 + 0.803337i −0.983616 0.180278i \(-0.942300\pi\)
0.180278 + 0.983616i \(0.442300\pi\)
\(578\) −5.60582 + 1.50208i −0.233171 + 0.0624781i
\(579\) 0 0
\(580\) −1.39143 + 0.372831i −0.0577758 + 0.0154810i
\(581\) 16.4652i 0.683094i
\(582\) 0 0
\(583\) 11.3938 + 11.3938i 0.471881 + 0.471881i
\(584\) 1.11466 0.0461248
\(585\) 0 0
\(586\) 23.7415 0.980753
\(587\) −14.0938 14.0938i −0.581712 0.581712i 0.353662 0.935373i \(-0.384936\pi\)
−0.935373 + 0.353662i \(0.884936\pi\)
\(588\) 0 0
\(589\) 64.6706i 2.66471i
\(590\) −16.1854 + 4.33687i −0.666344 + 0.178546i
\(591\) 0 0
\(592\) 7.82443 2.09655i 0.321582 0.0861677i
\(593\) 3.24522 3.24522i 0.133265 0.133265i −0.637328 0.770593i \(-0.719960\pi\)
0.770593 + 0.637328i \(0.219960\pi\)
\(594\) 0 0
\(595\) 4.09850 + 2.36627i 0.168022 + 0.0970075i
\(596\) 10.1646 10.1646i 0.416358 0.416358i
\(597\) 0 0
\(598\) 0.418145 + 2.05059i 0.0170992 + 0.0838550i
\(599\) 36.4947 + 21.0702i 1.49113 + 0.860906i 0.999949 0.0101486i \(-0.00323046\pi\)
0.491185 + 0.871055i \(0.336564\pi\)
\(600\) 0 0
\(601\) 4.63910 0.189233 0.0946164 0.995514i \(-0.469838\pi\)
0.0946164 + 0.995514i \(0.469838\pi\)
\(602\) 4.23873 + 7.34169i 0.172758 + 0.299225i
\(603\) 0 0
\(604\) 2.72013 + 0.728858i 0.110681 + 0.0296568i
\(605\) 8.25725 + 30.8165i 0.335705 + 1.25287i
\(606\) 0 0
\(607\) 11.5014 0.466829 0.233414 0.972377i \(-0.425010\pi\)
0.233414 + 0.972377i \(0.425010\pi\)
\(608\) −3.66283 6.34422i −0.148548 0.257292i
\(609\) 0 0
\(610\) −3.42448 + 1.97712i −0.138653 + 0.0800514i
\(611\) 5.30627 1.08202i 0.214669 0.0437740i
\(612\) 0 0
\(613\) −3.05394 11.3975i −0.123347 0.460339i 0.876428 0.481533i \(-0.159920\pi\)
−0.999775 + 0.0211942i \(0.993253\pi\)
\(614\) 20.8874i 0.842947i
\(615\) 0 0
\(616\) 1.52252 + 5.68214i 0.0613443 + 0.228940i
\(617\) 22.5562 + 22.5562i 0.908079 + 0.908079i 0.996117 0.0880383i \(-0.0280598\pi\)
−0.0880383 + 0.996117i \(0.528060\pi\)
\(618\) 0 0
\(619\) 5.99924 22.3895i 0.241130 0.899909i −0.734160 0.678977i \(-0.762424\pi\)
0.975289 0.220932i \(-0.0709097\pi\)
\(620\) 10.6893 6.17149i 0.429294 0.247853i
\(621\) 0 0
\(622\) 27.1518 7.27531i 1.08869 0.291713i
\(623\) 1.53169 + 2.65297i 0.0613659 + 0.106289i
\(624\) 0 0
\(625\) −0.250846 + 0.434477i −0.0100338 + 0.0173791i
\(626\) 4.53721 16.9331i 0.181343 0.676782i
\(627\) 0 0
\(628\) 6.82268 + 3.93908i 0.272255 + 0.157186i
\(629\) 19.1661 + 19.1661i 0.764202 + 0.764202i
\(630\) 0 0
\(631\) 6.12810 22.8704i 0.243956 0.910456i −0.729949 0.683501i \(-0.760456\pi\)
0.973905 0.226955i \(-0.0728770\pi\)
\(632\) −1.59811 0.428214i −0.0635696 0.0170334i
\(633\) 0 0
\(634\) 19.1591 11.0615i 0.760904 0.439308i
\(635\) 20.4454 + 5.47834i 0.811353 + 0.217401i
\(636\) 0 0
\(637\) −11.8860 + 17.9750i −0.470939 + 0.712197i
\(638\) 5.99142i 0.237203i
\(639\) 0 0
\(640\) 0.699086 1.21085i 0.0276338 0.0478631i
\(641\) 14.3524 24.8590i 0.566884 0.981872i −0.429988 0.902835i \(-0.641482\pi\)
0.996872 0.0790369i \(-0.0251845\pi\)
\(642\) 0 0
\(643\) 16.1427 16.1427i 0.636607 0.636607i −0.313110 0.949717i \(-0.601371\pi\)
0.949717 + 0.313110i \(0.101371\pi\)
\(644\) 0.415177 0.415177i 0.0163603 0.0163603i
\(645\) 0 0
\(646\) 12.2562 21.2284i 0.482215 0.835221i
\(647\) −18.5692 + 32.1627i −0.730029 + 1.26445i 0.226841 + 0.973932i \(0.427160\pi\)
−0.956870 + 0.290516i \(0.906173\pi\)
\(648\) 0 0
\(649\) 69.6938i 2.73572i
\(650\) 10.7579 2.19370i 0.421961 0.0860439i
\(651\) 0 0
\(652\) −6.68116 1.79021i −0.261655 0.0701101i
\(653\) 38.5101 22.2338i 1.50702 0.870076i 0.507050 0.861917i \(-0.330736\pi\)
0.999967 0.00815952i \(-0.00259728\pi\)
\(654\) 0 0
\(655\) 5.13153 + 1.37499i 0.200506 + 0.0537253i
\(656\) −0.423606 + 1.58092i −0.0165390 + 0.0617245i
\(657\) 0 0
\(658\) −1.07434 1.07434i −0.0418822 0.0418822i
\(659\) −0.358832 0.207172i −0.0139781 0.00807026i 0.492995 0.870032i \(-0.335902\pi\)
−0.506973 + 0.861962i \(0.669236\pi\)
\(660\) 0 0
\(661\) −7.37782 + 27.5344i −0.286964 + 1.07096i 0.660428 + 0.750889i \(0.270375\pi\)
−0.947392 + 0.320075i \(0.896292\pi\)
\(662\) 11.3179 19.6031i 0.439881 0.761896i
\(663\) 0 0
\(664\) −8.13850 14.0963i −0.315835 0.547043i
\(665\) 10.0080 2.68162i 0.388092 0.103989i
\(666\) 0 0
\(667\) −0.517893 + 0.299006i −0.0200529 + 0.0115776i
\(668\) −4.10240 + 15.3104i −0.158727 + 0.592376i
\(669\) 0 0
\(670\) 1.12139 + 1.12139i 0.0433232 + 0.0433232i
\(671\) −4.25671 15.8863i −0.164328 0.613282i
\(672\) 0 0
\(673\) 4.15724i 0.160250i 0.996785 + 0.0801248i \(0.0255319\pi\)
−0.996785 + 0.0801248i \(0.974468\pi\)
\(674\) −8.06823 30.1111i −0.310777 1.15983i
\(675\) 0 0
\(676\) 10.3892 + 7.81438i 0.399585 + 0.300553i
\(677\) −17.6062 + 10.1649i −0.676659 + 0.390669i −0.798595 0.601869i \(-0.794423\pi\)
0.121936 + 0.992538i \(0.461090\pi\)
\(678\) 0 0
\(679\) 6.22646 + 10.7845i 0.238949 + 0.413873i
\(680\) 4.67843 0.179410
\(681\) 0 0
\(682\) 13.2871 + 49.5881i 0.508789 + 1.89883i
\(683\) −9.85750 2.64131i −0.377187 0.101067i 0.0652445 0.997869i \(-0.479217\pi\)
−0.442431 + 0.896802i \(0.645884\pi\)
\(684\) 0 0
\(685\) −4.06868 7.04716i −0.155456 0.269258i
\(686\) 13.1268 0.501184
\(687\) 0 0
\(688\) 7.25776 + 4.19027i 0.276699 + 0.159753i
\(689\) −4.46162 8.93870i −0.169974 0.340537i
\(690\) 0 0
\(691\) −29.9191 + 29.9191i −1.13818 + 1.13818i −0.149400 + 0.988777i \(0.547734\pi\)
−0.988777 + 0.149400i \(0.952266\pi\)
\(692\) 2.25559 + 1.30226i 0.0857445 + 0.0495046i
\(693\) 0 0
\(694\) 14.3954 14.3954i 0.546444 0.546444i
\(695\) −3.07483 + 0.823897i −0.116635 + 0.0312522i
\(696\) 0 0
\(697\) −5.28992 + 1.41743i −0.200370 + 0.0536890i
\(698\) 29.4052i 1.11300i
\(699\) 0 0
\(700\) −2.17812 2.17812i −0.0823253 0.0823253i
\(701\) −16.7670 −0.633280 −0.316640 0.948546i \(-0.602555\pi\)
−0.316640 + 0.948546i \(0.602555\pi\)
\(702\) 0 0
\(703\) 59.3412 2.23810
\(704\) 4.11206 + 4.11206i 0.154979 + 0.154979i
\(705\) 0 0
\(706\) 11.4750i 0.431868i
\(707\) −9.95805 + 2.66825i −0.374511 + 0.100350i
\(708\) 0 0
\(709\) −12.3741 + 3.31563i −0.464719 + 0.124521i −0.483579 0.875301i \(-0.660663\pi\)
0.0188591 + 0.999822i \(0.493997\pi\)
\(710\) −10.3708 + 10.3708i −0.389208 + 0.389208i
\(711\) 0 0
\(712\) 2.62264 + 1.51418i 0.0982875 + 0.0567463i
\(713\) 3.62325 3.62325i 0.135692 0.135692i
\(714\) 0 0
\(715\) 1.77673 29.2622i 0.0664459 1.09435i
\(716\) 3.11097 + 1.79612i 0.116262 + 0.0671242i
\(717\) 0 0
\(718\) −36.7320 −1.37083
\(719\) −8.63433 14.9551i −0.322006 0.557731i 0.658896 0.752234i \(-0.271024\pi\)
−0.980902 + 0.194503i \(0.937690\pi\)
\(720\) 0 0
\(721\) 9.63828 + 2.58257i 0.358948 + 0.0961799i
\(722\) −8.97207 33.4842i −0.333906 1.24615i
\(723\) 0 0
\(724\) 16.3443 0.607430
\(725\) 1.56866 + 2.71700i 0.0582586 + 0.100907i
\(726\) 0 0
\(727\) −12.1283 + 7.00226i −0.449813 + 0.259700i −0.707751 0.706462i \(-0.750290\pi\)
0.257938 + 0.966161i \(0.416957\pi\)
\(728\) 0.221045 3.64054i 0.00819245 0.134928i
\(729\) 0 0
\(730\) 0.403364 + 1.50538i 0.0149292 + 0.0557165i
\(731\) 28.0422i 1.03718i
\(732\) 0 0
\(733\) −1.76174 6.57489i −0.0650712 0.242849i 0.925728 0.378190i \(-0.123454\pi\)
−0.990799 + 0.135341i \(0.956787\pi\)
\(734\) 3.94035 + 3.94035i 0.145441 + 0.145441i
\(735\) 0 0
\(736\) 0.150228 0.560658i 0.00553747 0.0206661i
\(737\) −5.71238 + 3.29805i −0.210418 + 0.121485i
\(738\) 0 0
\(739\) −17.1161 + 4.58625i −0.629626 + 0.168708i −0.559500 0.828830i \(-0.689007\pi\)
−0.0701262 + 0.997538i \(0.522340\pi\)
\(740\) 5.66291 + 9.80845i 0.208173 + 0.360566i
\(741\) 0 0
\(742\) −1.40143 + 2.42735i −0.0514481 + 0.0891108i
\(743\) 8.04786 30.0350i 0.295247 1.10188i −0.645773 0.763529i \(-0.723465\pi\)
0.941021 0.338349i \(-0.109868\pi\)
\(744\) 0 0
\(745\) 17.4059 + 10.0493i 0.637702 + 0.368177i
\(746\) −2.03537 2.03537i −0.0745200 0.0745200i
\(747\) 0 0
\(748\) −5.03629 + 18.7957i −0.184145 + 0.687238i
\(749\) 9.68407 + 2.59484i 0.353848 + 0.0948133i
\(750\) 0 0
\(751\) −4.97436 + 2.87195i −0.181517 + 0.104799i −0.588005 0.808857i \(-0.700087\pi\)
0.406488 + 0.913656i \(0.366753\pi\)
\(752\) −1.45080 0.388741i −0.0529053 0.0141759i
\(753\) 0 0
\(754\) −1.17714 + 3.52329i −0.0428689 + 0.128311i
\(755\) 3.93738i 0.143296i
\(756\) 0 0
\(757\) −13.1210 + 22.7262i −0.476891 + 0.825999i −0.999649 0.0264817i \(-0.991570\pi\)
0.522759 + 0.852481i \(0.324903\pi\)
\(758\) 10.6629 18.4687i 0.387295 0.670815i
\(759\) 0 0
\(760\) 7.24257 7.24257i 0.262716 0.262716i
\(761\) −2.64360 + 2.64360i −0.0958306 + 0.0958306i −0.753397 0.657566i \(-0.771586\pi\)
0.657566 + 0.753397i \(0.271586\pi\)
\(762\) 0 0
\(763\) 5.00419 8.66751i 0.181164 0.313785i
\(764\) −12.7189 + 22.0297i −0.460152 + 0.797007i
\(765\) 0 0
\(766\) 12.9795i 0.468969i
\(767\) −13.6928 + 40.9838i −0.494418 + 1.47984i
\(768\) 0 0
\(769\) −47.3247 12.6806i −1.70657 0.457274i −0.731991 0.681314i \(-0.761409\pi\)
−0.974580 + 0.224040i \(0.928075\pi\)
\(770\) −7.12294 + 4.11243i −0.256693 + 0.148202i
\(771\) 0 0
\(772\) 12.1861 + 3.26525i 0.438586 + 0.117519i
\(773\) 1.60335 5.98377i 0.0576683 0.215221i −0.931079 0.364818i \(-0.881131\pi\)
0.988747 + 0.149597i \(0.0477977\pi\)
\(774\) 0 0
\(775\) −19.0085 19.0085i −0.682806 0.682806i
\(776\) 10.6612 + 6.15527i 0.382716 + 0.220961i
\(777\) 0 0
\(778\) 8.10162 30.2356i 0.290457 1.08400i
\(779\) −5.99491 + 10.3835i −0.214790 + 0.372027i
\(780\) 0 0
\(781\) −30.5007 52.8288i −1.09140 1.89036i
\(782\) 1.87602 0.502678i 0.0670864 0.0179757i
\(783\) 0 0
\(784\) 5.17601 2.98837i 0.184857