Properties

Label 702.2.bb.a.71.2
Level $702$
Weight $2$
Character 702.71
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(71,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 71.2
Character \(\chi\) \(=\) 702.71
Dual form 702.2.bb.a.89.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(-1.62665 + 0.435860i) q^{5} +(0.290365 - 0.0778030i) q^{7} +(0.707107 - 0.707107i) q^{8} +O(q^{10})\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(-1.62665 + 0.435860i) q^{5} +(0.290365 - 0.0778030i) q^{7} +(0.707107 - 0.707107i) q^{8} +(1.45842 + 0.842018i) q^{10} +(1.12392 - 1.12392i) q^{11} +(-3.56563 - 0.535061i) q^{13} +(-0.260334 - 0.150304i) q^{14} -1.00000 q^{16} +(-1.26545 - 2.19182i) q^{17} +(4.16702 + 1.11655i) q^{19} +(-0.435860 - 1.62665i) q^{20} -1.58947 q^{22} +(-0.660949 - 1.14480i) q^{23} +(-1.87410 + 1.08201i) q^{25} +(2.14293 + 2.89963i) q^{26} +(0.0778030 + 0.290365i) q^{28} -7.48368i q^{29} +(-2.78151 - 10.3807i) q^{31} +(0.707107 + 0.707107i) q^{32} +(-0.655045 + 2.44466i) q^{34} +(-0.438411 + 0.253117i) q^{35} +(-2.37887 + 0.637416i) q^{37} +(-2.15701 - 3.73605i) q^{38} +(-0.842018 + 1.45842i) q^{40} +(0.974309 - 3.63617i) q^{41} +(-6.42917 - 3.71188i) q^{43} +(1.12392 + 1.12392i) q^{44} +(-0.342133 + 1.27686i) q^{46} +(-3.46610 - 0.928739i) q^{47} +(-5.98392 + 3.45482i) q^{49} +(2.09029 + 0.560091i) q^{50} +(0.535061 - 3.56563i) q^{52} -3.63112i q^{53} +(-1.33836 + 2.31811i) q^{55} +(0.150304 - 0.260334i) q^{56} +(-5.29176 + 5.29176i) q^{58} +(0.512425 - 0.512425i) q^{59} +(5.62852 - 9.74888i) q^{61} +(-5.37346 + 9.30710i) q^{62} -1.00000i q^{64} +(6.03325 - 0.683757i) q^{65} +(0.943886 + 0.252913i) q^{67} +(2.19182 - 1.26545i) q^{68} +(0.488984 + 0.131023i) q^{70} +(-1.84126 + 6.87167i) q^{71} +(3.38109 + 3.38109i) q^{73} +(2.13284 + 1.23139i) q^{74} +(-1.11655 + 4.16702i) q^{76} +(0.238903 - 0.413792i) q^{77} +(-3.69530 - 6.40045i) q^{79} +(1.62665 - 0.435860i) q^{80} +(-3.26010 + 1.88222i) q^{82} +(-3.18219 + 11.8761i) q^{83} +(3.01378 + 3.01378i) q^{85} +(1.92141 + 7.17081i) q^{86} -1.58947i q^{88} +(-0.512119 - 1.91125i) q^{89} +(-1.07696 + 0.122054i) q^{91} +(1.14480 - 0.660949i) q^{92} +(1.79419 + 3.10762i) q^{94} -7.26495 q^{95} +(1.61645 + 6.03268i) q^{97} +(6.67419 + 1.78835i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 4 q^{7} - 56 q^{16} - 8 q^{19} - 4 q^{28} + 8 q^{31} - 24 q^{35} - 4 q^{37} + 36 q^{38} + 48 q^{41} + 12 q^{43} - 60 q^{47} + 24 q^{50} - 4 q^{52} + 120 q^{65} - 56 q^{67} - 24 q^{71} + 28 q^{73} - 48 q^{74} + 4 q^{76} + 24 q^{77} - 24 q^{79} + 60 q^{83} - 48 q^{86} + 4 q^{91} + 24 q^{92} + 20 q^{97} + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −1.62665 + 0.435860i −0.727461 + 0.194923i −0.603498 0.797364i \(-0.706227\pi\)
−0.123963 + 0.992287i \(0.539560\pi\)
\(6\) 0 0
\(7\) 0.290365 0.0778030i 0.109748 0.0294068i −0.203527 0.979069i \(-0.565241\pi\)
0.313275 + 0.949663i \(0.398574\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) 1.45842 + 0.842018i 0.461192 + 0.266269i
\(11\) 1.12392 1.12392i 0.338876 0.338876i −0.517068 0.855944i \(-0.672977\pi\)
0.855944 + 0.517068i \(0.172977\pi\)
\(12\) 0 0
\(13\) −3.56563 0.535061i −0.988928 0.148399i
\(14\) −0.260334 0.150304i −0.0695771 0.0401704i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −1.26545 2.19182i −0.306917 0.531595i 0.670770 0.741666i \(-0.265964\pi\)
−0.977686 + 0.210071i \(0.932631\pi\)
\(18\) 0 0
\(19\) 4.16702 + 1.11655i 0.955980 + 0.256154i 0.702898 0.711291i \(-0.251889\pi\)
0.253082 + 0.967445i \(0.418556\pi\)
\(20\) −0.435860 1.62665i −0.0974613 0.363731i
\(21\) 0 0
\(22\) −1.58947 −0.338876
\(23\) −0.660949 1.14480i −0.137817 0.238707i 0.788853 0.614582i \(-0.210675\pi\)
−0.926670 + 0.375875i \(0.877342\pi\)
\(24\) 0 0
\(25\) −1.87410 + 1.08201i −0.374820 + 0.216403i
\(26\) 2.14293 + 2.89963i 0.420264 + 0.568663i
\(27\) 0 0
\(28\) 0.0778030 + 0.290365i 0.0147034 + 0.0548738i
\(29\) 7.48368i 1.38969i −0.719162 0.694843i \(-0.755474\pi\)
0.719162 0.694843i \(-0.244526\pi\)
\(30\) 0 0
\(31\) −2.78151 10.3807i −0.499573 1.86443i −0.502740 0.864438i \(-0.667675\pi\)
0.00316697 0.999995i \(-0.498992\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) −0.655045 + 2.44466i −0.112339 + 0.419256i
\(35\) −0.438411 + 0.253117i −0.0741050 + 0.0427846i
\(36\) 0 0
\(37\) −2.37887 + 0.637416i −0.391084 + 0.104791i −0.449002 0.893531i \(-0.648220\pi\)
0.0579183 + 0.998321i \(0.481554\pi\)
\(38\) −2.15701 3.73605i −0.349913 0.606067i
\(39\) 0 0
\(40\) −0.842018 + 1.45842i −0.133135 + 0.230596i
\(41\) 0.974309 3.63617i 0.152161 0.567874i −0.847170 0.531322i \(-0.821696\pi\)
0.999332 0.0365529i \(-0.0116377\pi\)
\(42\) 0 0
\(43\) −6.42917 3.71188i −0.980439 0.566057i −0.0780366 0.996950i \(-0.524865\pi\)
−0.902403 + 0.430894i \(0.858198\pi\)
\(44\) 1.12392 + 1.12392i 0.169438 + 0.169438i
\(45\) 0 0
\(46\) −0.342133 + 1.27686i −0.0504447 + 0.188262i
\(47\) −3.46610 0.928739i −0.505583 0.135470i −0.00299296 0.999996i \(-0.500953\pi\)
−0.502590 + 0.864525i \(0.667619\pi\)
\(48\) 0 0
\(49\) −5.98392 + 3.45482i −0.854846 + 0.493545i
\(50\) 2.09029 + 0.560091i 0.295611 + 0.0792088i
\(51\) 0 0
\(52\) 0.535061 3.56563i 0.0741997 0.494464i
\(53\) 3.63112i 0.498772i −0.968404 0.249386i \(-0.919771\pi\)
0.968404 0.249386i \(-0.0802288\pi\)
\(54\) 0 0
\(55\) −1.33836 + 2.31811i −0.180464 + 0.312574i
\(56\) 0.150304 0.260334i 0.0200852 0.0347886i
\(57\) 0 0
\(58\) −5.29176 + 5.29176i −0.694843 + 0.694843i
\(59\) 0.512425 0.512425i 0.0667121 0.0667121i −0.672964 0.739676i \(-0.734979\pi\)
0.739676 + 0.672964i \(0.234979\pi\)
\(60\) 0 0
\(61\) 5.62852 9.74888i 0.720658 1.24822i −0.240078 0.970754i \(-0.577173\pi\)
0.960736 0.277463i \(-0.0894935\pi\)
\(62\) −5.37346 + 9.30710i −0.682430 + 1.18200i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 6.03325 0.683757i 0.748333 0.0848096i
\(66\) 0 0
\(67\) 0.943886 + 0.252913i 0.115314 + 0.0308983i 0.316015 0.948754i \(-0.397655\pi\)
−0.200701 + 0.979653i \(0.564322\pi\)
\(68\) 2.19182 1.26545i 0.265798 0.153458i
\(69\) 0 0
\(70\) 0.488984 + 0.131023i 0.0584448 + 0.0156602i
\(71\) −1.84126 + 6.87167i −0.218517 + 0.815518i 0.766381 + 0.642386i \(0.222055\pi\)
−0.984899 + 0.173132i \(0.944611\pi\)
\(72\) 0 0
\(73\) 3.38109 + 3.38109i 0.395727 + 0.395727i 0.876723 0.480996i \(-0.159725\pi\)
−0.480996 + 0.876723i \(0.659725\pi\)
\(74\) 2.13284 + 1.23139i 0.247937 + 0.143147i
\(75\) 0 0
\(76\) −1.11655 + 4.16702i −0.128077 + 0.477990i
\(77\) 0.238903 0.413792i 0.0272255 0.0471560i
\(78\) 0 0
\(79\) −3.69530 6.40045i −0.415754 0.720107i 0.579754 0.814792i \(-0.303149\pi\)
−0.995507 + 0.0946854i \(0.969815\pi\)
\(80\) 1.62665 0.435860i 0.181865 0.0487307i
\(81\) 0 0
\(82\) −3.26010 + 1.88222i −0.360018 + 0.207856i
\(83\) −3.18219 + 11.8761i −0.349291 + 1.30357i 0.538227 + 0.842800i \(0.319094\pi\)
−0.887518 + 0.460773i \(0.847572\pi\)
\(84\) 0 0
\(85\) 3.01378 + 3.01378i 0.326890 + 0.326890i
\(86\) 1.92141 + 7.17081i 0.207191 + 0.773248i
\(87\) 0 0
\(88\) 1.58947i 0.169438i
\(89\) −0.512119 1.91125i −0.0542845 0.202592i 0.933457 0.358688i \(-0.116776\pi\)
−0.987742 + 0.156096i \(0.950109\pi\)
\(90\) 0 0
\(91\) −1.07696 + 0.122054i −0.112896 + 0.0127947i
\(92\) 1.14480 0.660949i 0.119353 0.0689087i
\(93\) 0 0
\(94\) 1.79419 + 3.10762i 0.185056 + 0.320527i
\(95\) −7.26495 −0.745368
\(96\) 0 0
\(97\) 1.61645 + 6.03268i 0.164126 + 0.612526i 0.998150 + 0.0607982i \(0.0193646\pi\)
−0.834024 + 0.551728i \(0.813969\pi\)
\(98\) 6.67419 + 1.78835i 0.674196 + 0.180650i
\(99\) 0 0
\(100\) −1.08201 1.87410i −0.108201 0.187410i
\(101\) −8.59259 −0.854995 −0.427498 0.904017i \(-0.640605\pi\)
−0.427498 + 0.904017i \(0.640605\pi\)
\(102\) 0 0
\(103\) 0.228107 + 0.131698i 0.0224761 + 0.0129766i 0.511196 0.859464i \(-0.329203\pi\)
−0.488720 + 0.872441i \(0.662536\pi\)
\(104\) −2.89963 + 2.14293i −0.284332 + 0.210132i
\(105\) 0 0
\(106\) −2.56759 + 2.56759i −0.249386 + 0.249386i
\(107\) −11.4443 6.60737i −1.10636 0.638759i −0.168478 0.985705i \(-0.553885\pi\)
−0.937885 + 0.346947i \(0.887218\pi\)
\(108\) 0 0
\(109\) 11.1164 11.1164i 1.06475 1.06475i 0.0670011 0.997753i \(-0.478657\pi\)
0.997753 0.0670011i \(-0.0213431\pi\)
\(110\) 2.58551 0.692786i 0.246519 0.0660546i
\(111\) 0 0
\(112\) −0.290365 + 0.0778030i −0.0274369 + 0.00735169i
\(113\) 9.74067i 0.916325i −0.888868 0.458163i \(-0.848508\pi\)
0.888868 0.458163i \(-0.151492\pi\)
\(114\) 0 0
\(115\) 1.57411 + 1.57411i 0.146786 + 0.146786i
\(116\) 7.48368 0.694843
\(117\) 0 0
\(118\) −0.724678 −0.0667121
\(119\) −0.537972 0.537972i −0.0493158 0.0493158i
\(120\) 0 0
\(121\) 8.47359i 0.770326i
\(122\) −10.8735 + 2.91354i −0.984437 + 0.263779i
\(123\) 0 0
\(124\) 10.3807 2.78151i 0.932216 0.249787i
\(125\) 8.53087 8.53087i 0.763024 0.763024i
\(126\) 0 0
\(127\) 15.1666 + 8.75644i 1.34582 + 0.777009i 0.987654 0.156650i \(-0.0500694\pi\)
0.358164 + 0.933659i \(0.383403\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) −4.74964 3.78266i −0.416571 0.331762i
\(131\) −13.4168 7.74619i −1.17223 0.676788i −0.218027 0.975943i \(-0.569962\pi\)
−0.954205 + 0.299155i \(0.903295\pi\)
\(132\) 0 0
\(133\) 1.29683 0.112449
\(134\) −0.488591 0.846265i −0.0422079 0.0731062i
\(135\) 0 0
\(136\) −2.44466 0.655045i −0.209628 0.0561697i
\(137\) 5.53629 + 20.6617i 0.472997 + 1.76525i 0.628910 + 0.777478i \(0.283501\pi\)
−0.155913 + 0.987771i \(0.549832\pi\)
\(138\) 0 0
\(139\) 9.22919 0.782810 0.391405 0.920219i \(-0.371989\pi\)
0.391405 + 0.920219i \(0.371989\pi\)
\(140\) −0.253117 0.438411i −0.0213923 0.0370525i
\(141\) 0 0
\(142\) 6.16098 3.55704i 0.517018 0.298500i
\(143\) −4.60886 + 3.40613i −0.385413 + 0.284835i
\(144\) 0 0
\(145\) 3.26184 + 12.1734i 0.270881 + 1.01094i
\(146\) 4.78159i 0.395727i
\(147\) 0 0
\(148\) −0.637416 2.37887i −0.0523953 0.195542i
\(149\) 15.7059 + 15.7059i 1.28668 + 1.28668i 0.936790 + 0.349891i \(0.113781\pi\)
0.349891 + 0.936790i \(0.386219\pi\)
\(150\) 0 0
\(151\) 4.46564 16.6660i 0.363409 1.35626i −0.506157 0.862441i \(-0.668934\pi\)
0.869565 0.493818i \(-0.164399\pi\)
\(152\) 3.73605 2.15701i 0.303033 0.174956i
\(153\) 0 0
\(154\) −0.461525 + 0.123665i −0.0371908 + 0.00996524i
\(155\) 9.04909 + 15.6735i 0.726840 + 1.25892i
\(156\) 0 0
\(157\) 0.300573 0.520608i 0.0239884 0.0415490i −0.853782 0.520631i \(-0.825697\pi\)
0.877770 + 0.479082i \(0.159030\pi\)
\(158\) −1.91283 + 7.13877i −0.152176 + 0.567930i
\(159\) 0 0
\(160\) −1.45842 0.842018i −0.115298 0.0665673i
\(161\) −0.280985 0.280985i −0.0221447 0.0221447i
\(162\) 0 0
\(163\) 0.929908 3.47046i 0.0728360 0.271828i −0.919898 0.392158i \(-0.871729\pi\)
0.992734 + 0.120330i \(0.0383953\pi\)
\(164\) 3.63617 + 0.974309i 0.283937 + 0.0760807i
\(165\) 0 0
\(166\) 10.6478 6.14753i 0.826432 0.477141i
\(167\) 8.72138 + 2.33689i 0.674881 + 0.180834i 0.579952 0.814650i \(-0.303071\pi\)
0.0949283 + 0.995484i \(0.469738\pi\)
\(168\) 0 0
\(169\) 12.4274 + 3.81566i 0.955955 + 0.293512i
\(170\) 4.26212i 0.326890i
\(171\) 0 0
\(172\) 3.71188 6.42917i 0.283028 0.490220i
\(173\) 7.86600 13.6243i 0.598041 1.03584i −0.395069 0.918651i \(-0.629279\pi\)
0.993110 0.117186i \(-0.0373873\pi\)
\(174\) 0 0
\(175\) −0.459989 + 0.459989i −0.0347719 + 0.0347719i
\(176\) −1.12392 + 1.12392i −0.0847190 + 0.0847190i
\(177\) 0 0
\(178\) −0.989338 + 1.71358i −0.0741540 + 0.128438i
\(179\) −3.29562 + 5.70819i −0.246326 + 0.426650i −0.962504 0.271268i \(-0.912557\pi\)
0.716177 + 0.697918i \(0.245890\pi\)
\(180\) 0 0
\(181\) 11.2750i 0.838063i −0.907972 0.419031i \(-0.862370\pi\)
0.907972 0.419031i \(-0.137630\pi\)
\(182\) 0.847832 + 0.675222i 0.0628455 + 0.0500508i
\(183\) 0 0
\(184\) −1.27686 0.342133i −0.0941311 0.0252223i
\(185\) 3.59177 2.07371i 0.264072 0.152462i
\(186\) 0 0
\(187\) −3.88571 1.04117i −0.284151 0.0761382i
\(188\) 0.928739 3.46610i 0.0677352 0.252791i
\(189\) 0 0
\(190\) 5.13710 + 5.13710i 0.372684 + 0.372684i
\(191\) 9.49618 + 5.48262i 0.687120 + 0.396709i 0.802532 0.596609i \(-0.203486\pi\)
−0.115412 + 0.993318i \(0.536819\pi\)
\(192\) 0 0
\(193\) −3.61591 + 13.4948i −0.260279 + 0.971374i 0.704798 + 0.709408i \(0.251038\pi\)
−0.965077 + 0.261966i \(0.915629\pi\)
\(194\) 3.12275 5.40876i 0.224200 0.388326i
\(195\) 0 0
\(196\) −3.45482 5.98392i −0.246773 0.427423i
\(197\) −4.59113 + 1.23019i −0.327105 + 0.0876474i −0.418634 0.908155i \(-0.637491\pi\)
0.0915295 + 0.995802i \(0.470824\pi\)
\(198\) 0 0
\(199\) −20.1187 + 11.6155i −1.42618 + 0.823403i −0.996816 0.0797315i \(-0.974594\pi\)
−0.429359 + 0.903134i \(0.641260\pi\)
\(200\) −0.560091 + 2.09029i −0.0396044 + 0.147806i
\(201\) 0 0
\(202\) 6.07588 + 6.07588i 0.427498 + 0.427498i
\(203\) −0.582253 2.17300i −0.0408661 0.152514i
\(204\) 0 0
\(205\) 6.33945i 0.442766i
\(206\) −0.0681718 0.254421i −0.00474975 0.0177263i
\(207\) 0 0
\(208\) 3.56563 + 0.535061i 0.247232 + 0.0370998i
\(209\) 5.93833 3.42850i 0.410763 0.237154i
\(210\) 0 0
\(211\) 1.02671 + 1.77832i 0.0706817 + 0.122424i 0.899200 0.437537i \(-0.144149\pi\)
−0.828519 + 0.559962i \(0.810816\pi\)
\(212\) 3.63112 0.249386
\(213\) 0 0
\(214\) 3.42023 + 12.7645i 0.233802 + 0.872560i
\(215\) 12.0759 + 3.23573i 0.823569 + 0.220675i
\(216\) 0 0
\(217\) −1.61530 2.79778i −0.109654 0.189926i
\(218\) −15.7209 −1.06475
\(219\) 0 0
\(220\) −2.31811 1.33836i −0.156287 0.0902322i
\(221\) 3.33936 + 8.49232i 0.224630 + 0.571255i
\(222\) 0 0
\(223\) −0.420741 + 0.420741i −0.0281749 + 0.0281749i −0.721054 0.692879i \(-0.756342\pi\)
0.692879 + 0.721054i \(0.256342\pi\)
\(224\) 0.260334 + 0.150304i 0.0173943 + 0.0100426i
\(225\) 0 0
\(226\) −6.88769 + 6.88769i −0.458163 + 0.458163i
\(227\) −17.6264 + 4.72299i −1.16991 + 0.313476i −0.790916 0.611924i \(-0.790396\pi\)
−0.378992 + 0.925400i \(0.623729\pi\)
\(228\) 0 0
\(229\) 9.93612 2.66237i 0.656597 0.175935i 0.0848872 0.996391i \(-0.472947\pi\)
0.571710 + 0.820456i \(0.306280\pi\)
\(230\) 2.22612i 0.146786i
\(231\) 0 0
\(232\) −5.29176 5.29176i −0.347421 0.347421i
\(233\) 21.7770 1.42666 0.713328 0.700830i \(-0.247187\pi\)
0.713328 + 0.700830i \(0.247187\pi\)
\(234\) 0 0
\(235\) 6.04294 0.394198
\(236\) 0.512425 + 0.512425i 0.0333560 + 0.0333560i
\(237\) 0 0
\(238\) 0.760808i 0.0493158i
\(239\) 18.0937 4.84819i 1.17038 0.313603i 0.379278 0.925283i \(-0.376172\pi\)
0.791106 + 0.611679i \(0.209506\pi\)
\(240\) 0 0
\(241\) 4.27560 1.14564i 0.275416 0.0737974i −0.118467 0.992958i \(-0.537798\pi\)
0.393883 + 0.919160i \(0.371131\pi\)
\(242\) 5.99173 5.99173i 0.385163 0.385163i
\(243\) 0 0
\(244\) 9.74888 + 5.62852i 0.624108 + 0.360329i
\(245\) 8.22794 8.22794i 0.525664 0.525664i
\(246\) 0 0
\(247\) −14.2606 6.21081i −0.907381 0.395184i
\(248\) −9.30710 5.37346i −0.591001 0.341215i
\(249\) 0 0
\(250\) −12.0645 −0.763024
\(251\) −14.8094 25.6507i −0.934763 1.61906i −0.775057 0.631892i \(-0.782279\pi\)
−0.159706 0.987165i \(-0.551055\pi\)
\(252\) 0 0
\(253\) −2.02952 0.543809i −0.127595 0.0341890i
\(254\) −4.53267 16.9162i −0.284405 1.06141i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 8.32426 + 14.4180i 0.519253 + 0.899373i 0.999750 + 0.0223764i \(0.00712323\pi\)
−0.480496 + 0.876997i \(0.659543\pi\)
\(258\) 0 0
\(259\) −0.641147 + 0.370166i −0.0398389 + 0.0230010i
\(260\) 0.683757 + 6.03325i 0.0424048 + 0.374166i
\(261\) 0 0
\(262\) 4.00972 + 14.9645i 0.247722 + 0.924510i
\(263\) 28.0711i 1.73094i 0.500963 + 0.865469i \(0.332979\pi\)
−0.500963 + 0.865469i \(0.667021\pi\)
\(264\) 0 0
\(265\) 1.58266 + 5.90657i 0.0972220 + 0.362838i
\(266\) −0.916994 0.916994i −0.0562245 0.0562245i
\(267\) 0 0
\(268\) −0.252913 + 0.943886i −0.0154491 + 0.0576570i
\(269\) −16.1655 + 9.33318i −0.985631 + 0.569054i −0.903965 0.427606i \(-0.859357\pi\)
−0.0816654 + 0.996660i \(0.526024\pi\)
\(270\) 0 0
\(271\) −24.6548 + 6.60622i −1.49767 + 0.401299i −0.912319 0.409481i \(-0.865710\pi\)
−0.585351 + 0.810780i \(0.699043\pi\)
\(272\) 1.26545 + 2.19182i 0.0767292 + 0.132899i
\(273\) 0 0
\(274\) 10.6953 18.5248i 0.646126 1.11912i
\(275\) −0.890247 + 3.32245i −0.0536839 + 0.200351i
\(276\) 0 0
\(277\) −13.6852 7.90117i −0.822265 0.474735i 0.0289317 0.999581i \(-0.490789\pi\)
−0.851197 + 0.524846i \(0.824123\pi\)
\(278\) −6.52602 6.52602i −0.391405 0.391405i
\(279\) 0 0
\(280\) −0.131023 + 0.488984i −0.00783012 + 0.0292224i
\(281\) −26.0117 6.96981i −1.55173 0.415784i −0.621694 0.783261i \(-0.713555\pi\)
−0.930033 + 0.367477i \(0.880222\pi\)
\(282\) 0 0
\(283\) −20.1578 + 11.6381i −1.19826 + 0.691813i −0.960166 0.279430i \(-0.909854\pi\)
−0.238089 + 0.971243i \(0.576521\pi\)
\(284\) −6.87167 1.84126i −0.407759 0.109259i
\(285\) 0 0
\(286\) 5.66746 + 0.850463i 0.335124 + 0.0502890i
\(287\) 1.13162i 0.0667974i
\(288\) 0 0
\(289\) 5.29727 9.17515i 0.311604 0.539714i
\(290\) 6.30139 10.9143i 0.370031 0.640912i
\(291\) 0 0
\(292\) −3.38109 + 3.38109i −0.197864 + 0.197864i
\(293\) 16.5979 16.5979i 0.969662 0.969662i −0.0298907 0.999553i \(-0.509516\pi\)
0.999553 + 0.0298907i \(0.00951592\pi\)
\(294\) 0 0
\(295\) −0.610192 + 1.05688i −0.0355267 + 0.0615341i
\(296\) −1.23139 + 2.13284i −0.0715733 + 0.123969i
\(297\) 0 0
\(298\) 22.2116i 1.28668i
\(299\) 1.74416 + 4.43557i 0.100868 + 0.256516i
\(300\) 0 0
\(301\) −2.15560 0.577591i −0.124247 0.0332918i
\(302\) −14.9423 + 8.62695i −0.859834 + 0.496425i
\(303\) 0 0
\(304\) −4.16702 1.11655i −0.238995 0.0640385i
\(305\) −4.90650 + 18.3113i −0.280945 + 1.04850i
\(306\) 0 0
\(307\) −15.1916 15.1916i −0.867028 0.867028i 0.125115 0.992142i \(-0.460070\pi\)
−0.992142 + 0.125115i \(0.960070\pi\)
\(308\) 0.413792 + 0.238903i 0.0235780 + 0.0136128i
\(309\) 0 0
\(310\) 4.68415 17.4815i 0.266042 0.992882i
\(311\) −5.02062 + 8.69597i −0.284693 + 0.493103i −0.972535 0.232758i \(-0.925225\pi\)
0.687841 + 0.725861i \(0.258558\pi\)
\(312\) 0 0
\(313\) −3.93637 6.81799i −0.222497 0.385376i 0.733069 0.680154i \(-0.238087\pi\)
−0.955565 + 0.294779i \(0.904754\pi\)
\(314\) −0.580663 + 0.155588i −0.0327687 + 0.00878035i
\(315\) 0 0
\(316\) 6.40045 3.69530i 0.360053 0.207877i
\(317\) 2.84693 10.6249i 0.159900 0.596753i −0.838736 0.544538i \(-0.816705\pi\)
0.998636 0.0522155i \(-0.0166283\pi\)
\(318\) 0 0
\(319\) −8.41109 8.41109i −0.470931 0.470931i
\(320\) 0.435860 + 1.62665i 0.0243653 + 0.0909327i
\(321\) 0 0
\(322\) 0.397373i 0.0221447i
\(323\) −2.82587 10.5463i −0.157236 0.586812i
\(324\) 0 0
\(325\) 7.26129 2.85530i 0.402784 0.158383i
\(326\) −3.11153 + 1.79644i −0.172332 + 0.0994958i
\(327\) 0 0
\(328\) −1.88222 3.26010i −0.103928 0.180009i
\(329\) −1.07869 −0.0594702
\(330\) 0 0
\(331\) 5.82719 + 21.7474i 0.320292 + 1.19534i 0.918961 + 0.394348i \(0.129030\pi\)
−0.598669 + 0.800996i \(0.704304\pi\)
\(332\) −11.8761 3.18219i −0.651786 0.174646i
\(333\) 0 0
\(334\) −4.51452 7.81938i −0.247023 0.427857i
\(335\) −1.64561 −0.0899093
\(336\) 0 0
\(337\) 12.2213 + 7.05595i 0.665734 + 0.384362i 0.794458 0.607318i \(-0.207755\pi\)
−0.128724 + 0.991680i \(0.541088\pi\)
\(338\) −6.08943 11.4856i −0.331221 0.624734i
\(339\) 0 0
\(340\) −3.01378 + 3.01378i −0.163445 + 0.163445i
\(341\) −14.7933 8.54094i −0.801105 0.462518i
\(342\) 0 0
\(343\) −2.95666 + 2.95666i −0.159644 + 0.159644i
\(344\) −7.17081 + 1.92141i −0.386624 + 0.103596i
\(345\) 0 0
\(346\) −15.1959 + 4.07174i −0.816939 + 0.218898i
\(347\) 24.6130i 1.32130i −0.750696 0.660648i \(-0.770282\pi\)
0.750696 0.660648i \(-0.229718\pi\)
\(348\) 0 0
\(349\) 15.8417 + 15.8417i 0.847984 + 0.847984i 0.989881 0.141897i \(-0.0453203\pi\)
−0.141897 + 0.989881i \(0.545320\pi\)
\(350\) 0.650523 0.0347719
\(351\) 0 0
\(352\) 1.58947 0.0847190
\(353\) −12.5669 12.5669i −0.668870 0.668870i 0.288584 0.957455i \(-0.406816\pi\)
−0.957455 + 0.288584i \(0.906816\pi\)
\(354\) 0 0
\(355\) 11.9804i 0.635852i
\(356\) 1.91125 0.512119i 0.101296 0.0271422i
\(357\) 0 0
\(358\) 6.36666 1.70594i 0.336488 0.0901618i
\(359\) −9.00574 + 9.00574i −0.475305 + 0.475305i −0.903626 0.428322i \(-0.859105\pi\)
0.428322 + 0.903626i \(0.359105\pi\)
\(360\) 0 0
\(361\) −0.337122 0.194638i −0.0177433 0.0102441i
\(362\) −7.97262 + 7.97262i −0.419031 + 0.419031i
\(363\) 0 0
\(364\) −0.122054 1.07696i −0.00639735 0.0564481i
\(365\) −6.97355 4.02618i −0.365012 0.210740i
\(366\) 0 0
\(367\) −35.7209 −1.86462 −0.932308 0.361667i \(-0.882208\pi\)
−0.932308 + 0.361667i \(0.882208\pi\)
\(368\) 0.660949 + 1.14480i 0.0344544 + 0.0596767i
\(369\) 0 0
\(370\) −4.00610 1.07343i −0.208267 0.0558050i
\(371\) −0.282512 1.05435i −0.0146673 0.0547390i
\(372\) 0 0
\(373\) −10.8592 −0.562267 −0.281134 0.959669i \(-0.590710\pi\)
−0.281134 + 0.959669i \(0.590710\pi\)
\(374\) 2.01139 + 3.48384i 0.104007 + 0.180145i
\(375\) 0 0
\(376\) −3.10762 + 1.79419i −0.160263 + 0.0925281i
\(377\) −4.00423 + 26.6840i −0.206228 + 1.37430i
\(378\) 0 0
\(379\) 3.41411 + 12.7416i 0.175371 + 0.654494i 0.996488 + 0.0837342i \(0.0266847\pi\)
−0.821117 + 0.570760i \(0.806649\pi\)
\(380\) 7.26495i 0.372684i
\(381\) 0 0
\(382\) −2.83802 10.5916i −0.145206 0.541914i
\(383\) −9.74254 9.74254i −0.497820 0.497820i 0.412938 0.910759i \(-0.364502\pi\)
−0.910759 + 0.412938i \(0.864502\pi\)
\(384\) 0 0
\(385\) −0.208257 + 0.777225i −0.0106138 + 0.0396111i
\(386\) 12.0991 6.98540i 0.615826 0.355548i
\(387\) 0 0
\(388\) −6.03268 + 1.61645i −0.306263 + 0.0820629i
\(389\) −10.3218 17.8779i −0.523336 0.906445i −0.999631 0.0271595i \(-0.991354\pi\)
0.476295 0.879286i \(-0.341980\pi\)
\(390\) 0 0
\(391\) −1.67280 + 2.89737i −0.0845970 + 0.146526i
\(392\) −1.78835 + 6.67419i −0.0903251 + 0.337098i
\(393\) 0 0
\(394\) 4.11630 + 2.37655i 0.207376 + 0.119729i
\(395\) 8.80067 + 8.80067i 0.442810 + 0.442810i
\(396\) 0 0
\(397\) 2.46047 9.18259i 0.123487 0.460861i −0.876294 0.481777i \(-0.839992\pi\)
0.999781 + 0.0209159i \(0.00665821\pi\)
\(398\) 22.4395 + 6.01264i 1.12479 + 0.301386i
\(399\) 0 0
\(400\) 1.87410 1.08201i 0.0937051 0.0541006i
\(401\) 11.4410 + 3.06561i 0.571337 + 0.153089i 0.532910 0.846172i \(-0.321099\pi\)
0.0384272 + 0.999261i \(0.487765\pi\)
\(402\) 0 0
\(403\) 4.36349 + 38.5021i 0.217361 + 1.91792i
\(404\) 8.59259i 0.427498i
\(405\) 0 0
\(406\) −1.12483 + 1.94826i −0.0558242 + 0.0966903i
\(407\) −1.95726 + 3.39008i −0.0970178 + 0.168040i
\(408\) 0 0
\(409\) 27.1747 27.1747i 1.34370 1.34370i 0.451364 0.892340i \(-0.350938\pi\)
0.892340 0.451364i \(-0.149062\pi\)
\(410\) 4.48267 4.48267i 0.221383 0.221383i
\(411\) 0 0
\(412\) −0.131698 + 0.228107i −0.00648828 + 0.0112380i
\(413\) 0.108922 0.188658i 0.00535970 0.00928327i
\(414\) 0 0
\(415\) 20.7053i 1.01638i
\(416\) −2.14293 2.89963i −0.105066 0.142166i
\(417\) 0 0
\(418\) −6.62335 1.77472i −0.323958 0.0868044i
\(419\) 18.2166 10.5173i 0.889937 0.513805i 0.0160151 0.999872i \(-0.494902\pi\)
0.873922 + 0.486066i \(0.161569\pi\)
\(420\) 0 0
\(421\) 25.7609 + 6.90262i 1.25551 + 0.336413i 0.824463 0.565916i \(-0.191477\pi\)
0.431048 + 0.902329i \(0.358144\pi\)
\(422\) 0.531465 1.98345i 0.0258713 0.0965530i
\(423\) 0 0
\(424\) −2.56759 2.56759i −0.124693 0.124693i
\(425\) 4.74316 + 2.73847i 0.230077 + 0.132835i
\(426\) 0 0
\(427\) 0.875831 3.26865i 0.0423844 0.158181i
\(428\) 6.60737 11.4443i 0.319379 0.553181i
\(429\) 0 0
\(430\) −6.25094 10.8269i −0.301447 0.522122i
\(431\) −30.6200 + 8.20459i −1.47491 + 0.395201i −0.904612 0.426236i \(-0.859839\pi\)
−0.570299 + 0.821437i \(0.693173\pi\)
\(432\) 0 0
\(433\) −32.6337 + 18.8411i −1.56827 + 0.905444i −0.571904 + 0.820320i \(0.693795\pi\)
−0.996370 + 0.0851235i \(0.972872\pi\)
\(434\) −0.836142 + 3.12052i −0.0401361 + 0.149790i
\(435\) 0 0
\(436\) 11.1164 + 11.1164i 0.532377 + 0.532377i
\(437\) −1.47596 5.50838i −0.0706050 0.263501i
\(438\) 0 0
\(439\) 2.96173i 0.141356i −0.997499 0.0706779i \(-0.977484\pi\)
0.997499 0.0706779i \(-0.0225162\pi\)
\(440\) 0.692786 + 2.58551i 0.0330273 + 0.123260i
\(441\) 0 0
\(442\) 3.64369 8.36627i 0.173313 0.397943i
\(443\) 23.4384 13.5322i 1.11359 0.642933i 0.173835 0.984775i \(-0.444384\pi\)
0.939757 + 0.341842i \(0.111051\pi\)
\(444\) 0 0
\(445\) 1.66608 + 2.88573i 0.0789797 + 0.136797i
\(446\) 0.595018 0.0281749
\(447\) 0 0
\(448\) −0.0778030 0.290365i −0.00367584 0.0137184i
\(449\) 38.6090 + 10.3453i 1.82207 + 0.488223i 0.997041 0.0768655i \(-0.0244912\pi\)
0.825030 + 0.565088i \(0.191158\pi\)
\(450\) 0 0
\(451\) −2.99173 5.18183i −0.140875 0.244003i
\(452\) 9.74067 0.458163
\(453\) 0 0
\(454\) 15.8034 + 9.12412i 0.741692 + 0.428216i
\(455\) 1.69864 0.667944i 0.0796337 0.0313137i
\(456\) 0 0
\(457\) −22.8591 + 22.8591i −1.06930 + 1.06930i −0.0718891 + 0.997413i \(0.522903\pi\)
−0.997413 + 0.0718891i \(0.977097\pi\)
\(458\) −8.90848 5.14331i −0.416266 0.240331i
\(459\) 0 0
\(460\) −1.57411 + 1.57411i −0.0733931 + 0.0733931i
\(461\) −10.0612 + 2.69590i −0.468598 + 0.125560i −0.485389 0.874299i \(-0.661322\pi\)
0.0167904 + 0.999859i \(0.494655\pi\)
\(462\) 0 0
\(463\) 12.6632 3.39310i 0.588509 0.157691i 0.0477376 0.998860i \(-0.484799\pi\)
0.540772 + 0.841169i \(0.318132\pi\)
\(464\) 7.48368i 0.347421i
\(465\) 0 0
\(466\) −15.3986 15.3986i −0.713328 0.713328i
\(467\) −1.37176 −0.0634775 −0.0317388 0.999496i \(-0.510104\pi\)
−0.0317388 + 0.999496i \(0.510104\pi\)
\(468\) 0 0
\(469\) 0.293749 0.0135640
\(470\) −4.27301 4.27301i −0.197099 0.197099i
\(471\) 0 0
\(472\) 0.724678i 0.0333560i
\(473\) −11.3978 + 3.05402i −0.524070 + 0.140424i
\(474\) 0 0
\(475\) −9.01754 + 2.41624i −0.413753 + 0.110865i
\(476\) 0.537972 0.537972i 0.0246579 0.0246579i
\(477\) 0 0
\(478\) −16.2224 9.36599i −0.741994 0.428390i
\(479\) 6.56789 6.56789i 0.300094 0.300094i −0.540956 0.841051i \(-0.681938\pi\)
0.841051 + 0.540956i \(0.181938\pi\)
\(480\) 0 0
\(481\) 8.82322 0.999948i 0.402304 0.0455937i
\(482\) −3.83340 2.21322i −0.174607 0.100809i
\(483\) 0 0
\(484\) −8.47359 −0.385163
\(485\) −5.25881 9.10853i −0.238790 0.413597i
\(486\) 0 0
\(487\) −11.7546 3.14965i −0.532654 0.142724i −0.0175402 0.999846i \(-0.505584\pi\)
−0.515113 + 0.857122i \(0.672250\pi\)
\(488\) −2.91354 10.8735i −0.131890 0.492219i
\(489\) 0 0
\(490\) −11.6361 −0.525664
\(491\) 3.72316 + 6.44870i 0.168024 + 0.291026i 0.937725 0.347378i \(-0.112928\pi\)
−0.769701 + 0.638404i \(0.779595\pi\)
\(492\) 0 0
\(493\) −16.4029 + 9.47023i −0.738750 + 0.426518i
\(494\) 5.69207 + 14.4755i 0.256098 + 0.651283i
\(495\) 0 0
\(496\) 2.78151 + 10.3807i 0.124893 + 0.466108i
\(497\) 2.13855i 0.0959269i
\(498\) 0 0
\(499\) −1.27227 4.74819i −0.0569548 0.212558i 0.931584 0.363527i \(-0.118427\pi\)
−0.988539 + 0.150968i \(0.951761\pi\)
\(500\) 8.53087 + 8.53087i 0.381512 + 0.381512i
\(501\) 0 0
\(502\) −7.66592 + 28.6096i −0.342147 + 1.27691i
\(503\) 24.0111 13.8628i 1.07060 0.618112i 0.142255 0.989830i \(-0.454565\pi\)
0.928346 + 0.371718i \(0.121231\pi\)
\(504\) 0 0
\(505\) 13.9772 3.74517i 0.621976 0.166658i
\(506\) 1.05056 + 1.81962i 0.0467030 + 0.0808920i
\(507\) 0 0
\(508\) −8.75644 + 15.1666i −0.388504 + 0.672909i
\(509\) 2.37610 8.86772i 0.105319 0.393055i −0.893062 0.449933i \(-0.851448\pi\)
0.998381 + 0.0568780i \(0.0181146\pi\)
\(510\) 0 0
\(511\) 1.24481 + 0.718691i 0.0550671 + 0.0317930i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 4.30896 16.0812i 0.190060 0.709313i
\(515\) −0.428453 0.114804i −0.0188799 0.00505885i
\(516\) 0 0
\(517\) −4.93947 + 2.85180i −0.217237 + 0.125422i
\(518\) 0.715106 + 0.191612i 0.0314200 + 0.00841895i
\(519\) 0 0
\(520\) 3.78266 4.74964i 0.165881 0.208286i
\(521\) 29.1318i 1.27629i −0.769918 0.638143i \(-0.779703\pi\)
0.769918 0.638143i \(-0.220297\pi\)
\(522\) 0 0
\(523\) 1.29854 2.24913i 0.0567811 0.0983478i −0.836238 0.548367i \(-0.815250\pi\)
0.893019 + 0.450019i \(0.148583\pi\)
\(524\) 7.74619 13.4168i 0.338394 0.586116i
\(525\) 0 0
\(526\) 19.8493 19.8493i 0.865469 0.865469i
\(527\) −19.2329 + 19.2329i −0.837796 + 0.837796i
\(528\) 0 0
\(529\) 10.6263 18.4053i 0.462013 0.800229i
\(530\) 3.05746 5.29568i 0.132808 0.230030i
\(531\) 0 0
\(532\) 1.29683i 0.0562245i
\(533\) −5.41960 + 12.4439i −0.234749 + 0.539006i
\(534\) 0 0
\(535\) 21.4958 + 5.75978i 0.929344 + 0.249017i
\(536\) 0.846265 0.488591i 0.0365531 0.0211039i
\(537\) 0 0
\(538\) 18.0303 + 4.83121i 0.777343 + 0.208288i
\(539\) −2.84252 + 10.6084i −0.122436 + 0.456937i
\(540\) 0 0
\(541\) −4.52095 4.52095i −0.194371 0.194371i 0.603211 0.797582i \(-0.293888\pi\)
−0.797582 + 0.603211i \(0.793888\pi\)
\(542\) 22.1049 + 12.7622i 0.949485 + 0.548185i
\(543\) 0 0
\(544\) 0.655045 2.44466i 0.0280848 0.104814i
\(545\) −13.2373 + 22.9276i −0.567023 + 0.982112i
\(546\) 0 0
\(547\) −7.08272 12.2676i −0.302835 0.524526i 0.673942 0.738784i \(-0.264600\pi\)
−0.976777 + 0.214259i \(0.931267\pi\)
\(548\) −20.6617 + 5.53629i −0.882624 + 0.236498i
\(549\) 0 0
\(550\) 2.97883 1.71983i 0.127018 0.0733336i
\(551\) 8.35590 31.1846i 0.355973 1.32851i
\(552\) 0 0
\(553\) −1.57096 1.57096i −0.0668039 0.0668039i
\(554\) 4.08995 + 15.2639i 0.173765 + 0.648500i
\(555\) 0 0
\(556\) 9.22919i 0.391405i
\(557\) 2.54976 + 9.51584i 0.108037 + 0.403199i 0.998672 0.0515195i \(-0.0164064\pi\)
−0.890635 + 0.454719i \(0.849740\pi\)
\(558\) 0 0
\(559\) 20.9380 + 16.6752i 0.885581 + 0.705286i
\(560\) 0.438411 0.253117i 0.0185263 0.0106961i
\(561\) 0 0
\(562\) 13.4646 + 23.3214i 0.567971 + 0.983755i
\(563\) −33.4682 −1.41051 −0.705257 0.708951i \(-0.749169\pi\)
−0.705257 + 0.708951i \(0.749169\pi\)
\(564\) 0 0
\(565\) 4.24557 + 15.8447i 0.178613 + 0.666591i
\(566\) 22.4831 + 6.02432i 0.945034 + 0.253221i
\(567\) 0 0
\(568\) 3.55704 + 6.16098i 0.149250 + 0.258509i
\(569\) 10.6707 0.447337 0.223669 0.974665i \(-0.428197\pi\)
0.223669 + 0.974665i \(0.428197\pi\)
\(570\) 0 0
\(571\) 31.5424 + 18.2110i 1.32001 + 0.762107i 0.983730 0.179656i \(-0.0574983\pi\)
0.336279 + 0.941763i \(0.390832\pi\)
\(572\) −3.40613 4.60886i −0.142417 0.192706i
\(573\) 0 0
\(574\) −0.800176 + 0.800176i −0.0333987 + 0.0333987i
\(575\) 2.47737 + 1.43031i 0.103314 + 0.0596481i
\(576\) 0 0
\(577\) −17.7894 + 17.7894i −0.740581 + 0.740581i −0.972690 0.232109i \(-0.925437\pi\)
0.232109 + 0.972690i \(0.425437\pi\)
\(578\) −10.2335 + 2.74207i −0.425659 + 0.114055i
\(579\) 0 0
\(580\) −12.1734 + 3.26184i −0.505471 + 0.135441i
\(581\) 3.69599i 0.153335i
\(582\) 0 0
\(583\) −4.08110 4.08110i −0.169022 0.169022i
\(584\) 4.78159 0.197864
\(585\) 0 0
\(586\) −23.4730 −0.969662
\(587\) 14.6657 + 14.6657i 0.605317 + 0.605317i 0.941719 0.336401i \(-0.109210\pi\)
−0.336401 + 0.941719i \(0.609210\pi\)
\(588\) 0 0
\(589\) 46.3623i 1.91033i
\(590\) 1.17880 0.315859i 0.0485304 0.0130037i
\(591\) 0 0
\(592\) 2.37887 0.637416i 0.0977709 0.0261976i
\(593\) 25.1984 25.1984i 1.03477 1.03477i 0.0353990 0.999373i \(-0.488730\pi\)
0.999373 0.0353990i \(-0.0112702\pi\)
\(594\) 0 0
\(595\) 1.10958 + 0.640613i 0.0454881 + 0.0262626i
\(596\) −15.7059 + 15.7059i −0.643341 + 0.643341i
\(597\) 0 0
\(598\) 1.90311 4.36973i 0.0778241 0.178692i
\(599\) 27.2170 + 15.7138i 1.11206 + 0.642047i 0.939362 0.342928i \(-0.111419\pi\)
0.172697 + 0.984975i \(0.444752\pi\)
\(600\) 0 0
\(601\) 25.4826 1.03946 0.519728 0.854332i \(-0.326033\pi\)
0.519728 + 0.854332i \(0.326033\pi\)
\(602\) 1.11582 + 1.93266i 0.0454774 + 0.0787692i
\(603\) 0 0
\(604\) 16.6660 + 4.46564i 0.678130 + 0.181704i
\(605\) −3.69330 13.7836i −0.150154 0.560383i
\(606\) 0 0
\(607\) 14.5125 0.589045 0.294522 0.955645i \(-0.404839\pi\)
0.294522 + 0.955645i \(0.404839\pi\)
\(608\) 2.15701 + 3.73605i 0.0874782 + 0.151517i
\(609\) 0 0
\(610\) 16.4175 9.47862i 0.664723 0.383778i
\(611\) 11.8619 + 5.16611i 0.479881 + 0.208999i
\(612\) 0 0
\(613\) 1.08903 + 4.06431i 0.0439855 + 0.164156i 0.984425 0.175805i \(-0.0562528\pi\)
−0.940440 + 0.339961i \(0.889586\pi\)
\(614\) 21.4841i 0.867028i
\(615\) 0 0
\(616\) −0.123665 0.461525i −0.00498262 0.0185954i
\(617\) −1.56048 1.56048i −0.0628225 0.0628225i 0.674997 0.737820i \(-0.264145\pi\)
−0.737820 + 0.674997i \(0.764145\pi\)
\(618\) 0 0
\(619\) 6.37151 23.7788i 0.256092 0.955750i −0.711387 0.702800i \(-0.751933\pi\)
0.967479 0.252950i \(-0.0814007\pi\)
\(620\) −15.6735 + 9.04909i −0.629462 + 0.363420i
\(621\) 0 0
\(622\) 9.69909 2.59886i 0.388898 0.104205i
\(623\) −0.297402 0.515116i −0.0119152 0.0206377i
\(624\) 0 0
\(625\) −4.74843 + 8.22452i −0.189937 + 0.328981i
\(626\) −2.03761 + 7.60448i −0.0814394 + 0.303936i
\(627\) 0 0
\(628\) 0.520608 + 0.300573i 0.0207745 + 0.0119942i
\(629\) 4.40744 + 4.40744i 0.175736 + 0.175736i
\(630\) 0 0
\(631\) 9.44199 35.2380i 0.375880 1.40280i −0.476176 0.879350i \(-0.657977\pi\)
0.852055 0.523452i \(-0.175356\pi\)
\(632\) −7.13877 1.91283i −0.283965 0.0760882i
\(633\) 0 0
\(634\) −9.52602 + 5.49985i −0.378326 + 0.218427i
\(635\) −28.4874 7.63317i −1.13049 0.302913i
\(636\) 0 0
\(637\) 23.1850 9.11683i 0.918622 0.361222i
\(638\) 11.8951i 0.470931i
\(639\) 0 0
\(640\) 0.842018 1.45842i 0.0332837 0.0576490i
\(641\) −10.4318 + 18.0685i −0.412033 + 0.713663i −0.995112 0.0987531i \(-0.968515\pi\)
0.583079 + 0.812416i \(0.301848\pi\)
\(642\) 0 0
\(643\) 0.982746 0.982746i 0.0387557 0.0387557i −0.687463 0.726219i \(-0.741276\pi\)
0.726219 + 0.687463i \(0.241276\pi\)
\(644\) 0.280985 0.280985i 0.0110724 0.0110724i
\(645\) 0 0
\(646\) −5.45917 + 9.45556i −0.214788 + 0.372024i
\(647\) 5.20265 9.01126i 0.204537 0.354269i −0.745448 0.666564i \(-0.767764\pi\)
0.949985 + 0.312295i \(0.101098\pi\)
\(648\) 0 0
\(649\) 1.15185i 0.0452142i
\(650\) −7.15351 3.11551i −0.280584 0.122200i
\(651\) 0 0
\(652\) 3.47046 + 0.929908i 0.135914 + 0.0364180i
\(653\) −23.5364 + 13.5887i −0.921050 + 0.531769i −0.883970 0.467544i \(-0.845139\pi\)
−0.0370803 + 0.999312i \(0.511806\pi\)
\(654\) 0 0
\(655\) 25.2007 + 6.75252i 0.984674 + 0.263843i
\(656\) −0.974309 + 3.63617i −0.0380404 + 0.141969i
\(657\) 0 0
\(658\) 0.762750 + 0.762750i 0.0297351 + 0.0297351i
\(659\) 20.1845 + 11.6535i 0.786277 + 0.453957i 0.838650 0.544670i \(-0.183345\pi\)
−0.0523733 + 0.998628i \(0.516679\pi\)
\(660\) 0 0
\(661\) 0.131680 0.491436i 0.00512175 0.0191146i −0.963318 0.268364i \(-0.913517\pi\)
0.968439 + 0.249249i \(0.0801838\pi\)
\(662\) 11.2573 19.4982i 0.437526 0.757818i
\(663\) 0 0
\(664\) 6.14753 + 10.6478i 0.238570 + 0.413216i
\(665\) −2.10949 + 0.565235i −0.0818023 + 0.0219189i
\(666\) 0 0
\(667\) −8.56730 + 4.94634i −0.331727 + 0.191523i
\(668\) −2.33689 + 8.72138i −0.0904169 + 0.337440i
\(669\) 0 0
\(670\) 1.16362 + 1.16362i 0.0449546 + 0.0449546i
\(671\) −4.63097 17.2830i −0.178777 0.667204i
\(672\) 0 0
\(673\) 8.41494i 0.324372i −0.986760 0.162186i \(-0.948146\pi\)
0.986760 0.162186i \(-0.0518545\pi\)
\(674\) −3.65243 13.6310i −0.140686 0.525048i
\(675\) 0 0
\(676\) −3.81566 + 12.4274i −0.146756 + 0.477978i
\(677\) 17.7008 10.2196i 0.680297 0.392770i −0.119670 0.992814i \(-0.538184\pi\)
0.799967 + 0.600044i \(0.204850\pi\)
\(678\) 0 0
\(679\) 0.938721 + 1.62591i 0.0360248 + 0.0623968i
\(680\) 4.26212 0.163445
\(681\) 0 0
\(682\) 4.42112 + 16.4998i 0.169293 + 0.631811i
\(683\) −16.8568 4.51677i −0.645008 0.172829i −0.0785371 0.996911i \(-0.525025\pi\)
−0.566471 + 0.824082i \(0.691692\pi\)
\(684\) 0 0
\(685\) −18.0112 31.1964i −0.688174 1.19195i
\(686\) 4.18134 0.159644
\(687\) 0 0
\(688\) 6.42917 + 3.71188i 0.245110 + 0.141514i
\(689\) −1.94287 + 12.9472i −0.0740175 + 0.493250i
\(690\) 0 0
\(691\) 5.28654 5.28654i 0.201110 0.201110i −0.599366 0.800475i \(-0.704580\pi\)
0.800475 + 0.599366i \(0.204580\pi\)
\(692\) 13.6243 + 7.86600i 0.517919 + 0.299020i
\(693\) 0 0
\(694\) −17.4040 + 17.4040i −0.660648 + 0.660648i
\(695\) −15.0127 + 4.02264i −0.569464 + 0.152587i
\(696\) 0 0
\(697\) −9.20278 + 2.46588i −0.348580 + 0.0934018i
\(698\) 22.4035i 0.847984i
\(699\) 0 0
\(700\) −0.459989 0.459989i −0.0173859 0.0173859i
\(701\) 31.1840 1.17780 0.588901 0.808205i \(-0.299561\pi\)
0.588901 + 0.808205i \(0.299561\pi\)
\(702\) 0 0
\(703\) −10.6245 −0.400711
\(704\) −1.12392 1.12392i −0.0423595 0.0423595i
\(705\) 0 0
\(706\) 17.7723i 0.668870i
\(707\) −2.49499 + 0.668529i −0.0938336 + 0.0251426i
\(708\) 0 0
\(709\) −8.04984 + 2.15695i −0.302318 + 0.0810059i −0.406789 0.913522i \(-0.633352\pi\)
0.104471 + 0.994528i \(0.466685\pi\)
\(710\) −8.47140 + 8.47140i −0.317926 + 0.317926i
\(711\) 0 0
\(712\) −1.71358 0.989338i −0.0642192 0.0370770i
\(713\) −10.0454 + 10.0454i −0.376203 + 0.376203i
\(714\) 0 0
\(715\) 6.01243 7.54941i 0.224852 0.282332i
\(716\) −5.70819 3.29562i −0.213325 0.123163i
\(717\) 0 0
\(718\) 12.7360 0.475305
\(719\) 5.63051 + 9.75233i 0.209983 + 0.363701i 0.951709 0.307002i \(-0.0993259\pi\)
−0.741726 + 0.670703i \(0.765993\pi\)
\(720\) 0 0
\(721\) 0.0764807 + 0.0204930i 0.00284829 + 0.000763197i
\(722\) 0.100752 + 0.376011i 0.00374959 + 0.0139937i
\(723\) 0 0
\(724\) 11.2750 0.419031
\(725\) 8.09744 + 14.0252i 0.300731 + 0.520882i
\(726\) 0 0
\(727\) 5.52426 3.18943i 0.204883 0.118290i −0.394048 0.919090i \(-0.628926\pi\)
0.598931 + 0.800800i \(0.295592\pi\)
\(728\) −0.675222 + 0.847832i −0.0250254 + 0.0314227i
\(729\) 0 0
\(730\) 2.08410 + 7.77798i 0.0771362 + 0.287876i
\(731\) 18.7888i 0.694929i
\(732\) 0 0
\(733\) 6.48221 + 24.1919i 0.239426 + 0.893550i 0.976104 + 0.217306i \(0.0697268\pi\)
−0.736678 + 0.676244i \(0.763606\pi\)
\(734\) 25.2585 + 25.2585i 0.932308 + 0.932308i
\(735\) 0 0
\(736\) 0.342133 1.27686i 0.0126112 0.0470655i
\(737\) 1.34511 0.776601i 0.0495478 0.0286065i
\(738\) 0 0
\(739\) 42.5336 11.3968i 1.56462 0.419240i 0.630500 0.776189i \(-0.282850\pi\)
0.934124 + 0.356950i \(0.116183\pi\)
\(740\) 2.07371 + 3.59177i 0.0762311 + 0.132036i
\(741\) 0 0
\(742\) −0.545771 + 0.945302i −0.0200359 + 0.0347031i
\(743\) 1.38387 5.16468i 0.0507693 0.189474i −0.935884 0.352308i \(-0.885397\pi\)
0.986653 + 0.162834i \(0.0520636\pi\)
\(744\) 0 0
\(745\) −32.3937 18.7025i −1.18681 0.685208i
\(746\) 7.67860 + 7.67860i 0.281134 + 0.281134i
\(747\) 0 0
\(748\) 1.04117 3.88571i 0.0380691 0.142076i
\(749\) −3.83709 1.02815i −0.140204 0.0375676i
\(750\) 0 0
\(751\) −16.4494 + 9.49704i −0.600246 + 0.346552i −0.769138 0.639082i \(-0.779314\pi\)
0.168892 + 0.985634i \(0.445981\pi\)
\(752\) 3.46610 + 0.928739i 0.126396 + 0.0338676i
\(753\) 0 0
\(754\) 21.6999 16.0370i 0.790263 0.584035i
\(755\) 29.0562i 1.05746i
\(756\) 0 0
\(757\) 16.5655 28.6922i 0.602082 1.04284i −0.390423 0.920636i \(-0.627671\pi\)
0.992505 0.122202i \(-0.0389954\pi\)
\(758\) 6.59556 11.4238i 0.239562 0.414933i
\(759\) 0 0
\(760\) −5.13710 + 5.13710i −0.186342 + 0.186342i
\(761\) −31.7060 + 31.7060i −1.14934 + 1.14934i −0.162658 + 0.986683i \(0.552007\pi\)
−0.986683 + 0.162658i \(0.947993\pi\)
\(762\) 0 0
\(763\) 2.36291 4.09268i 0.0855431 0.148165i
\(764\) −5.48262 + 9.49618i −0.198354 + 0.343560i
\(765\) 0 0
\(766\) 13.7780i 0.497820i
\(767\) −2.10130 + 1.55294i −0.0758734 + 0.0560734i
\(768\) 0 0
\(769\) −7.46852 2.00118i −0.269322 0.0721645i 0.121631 0.992575i \(-0.461188\pi\)
−0.390952 + 0.920411i \(0.627854\pi\)
\(770\) 0.696841 0.402321i 0.0251124 0.0144987i
\(771\) 0 0
\(772\) −13.4948 3.61591i −0.485687 0.130139i
\(773\) 8.41217 31.3946i 0.302565 1.12919i −0.632457 0.774596i \(-0.717953\pi\)
0.935021 0.354591i \(-0.115380\pi\)
\(774\) 0 0
\(775\) 16.4449 + 16.4449i 0.590718 + 0.590718i
\(776\) 5.40876 + 3.12275i 0.194163 + 0.112100i
\(777\) 0 0
\(778\) −5.34296 + 19.9402i −0.191554 + 0.714891i
\(779\) 8.11993 14.0641i 0.290927 0.503900i
\(780\) 0 0
\(781\) 5.65380 + 9.79268i 0.202309 + 0.350410i
\(782\) 3.23159 0.865903i 0.115562 0.0309646i
\(783\) 0 0
\(784\) 5.98392 3.45482i