Properties

Label 702.2.bb.a.71.14
Level $702$
Weight $2$
Character 702.71
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(71,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 71.14
Character \(\chi\) \(=\) 702.71
Dual form 702.2.bb.a.89.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(3.71422 - 0.995221i) q^{5} +(2.11355 - 0.566325i) q^{7} +(-0.707107 + 0.707107i) q^{8} +O(q^{10})\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(3.71422 - 0.995221i) q^{5} +(2.11355 - 0.566325i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(3.33007 + 1.92262i) q^{10} +(-2.96155 + 2.96155i) q^{11} +(3.17583 - 1.70707i) q^{13} +(1.89496 + 1.09406i) q^{14} -1.00000 q^{16} +(-0.465866 - 0.806903i) q^{17} +(-1.86997 - 0.501056i) q^{19} +(0.995221 + 3.71422i) q^{20} -4.18826 q^{22} +(-3.91493 - 6.78085i) q^{23} +(8.47480 - 4.89293i) q^{25} +(3.45273 + 1.03857i) q^{26} +(0.566325 + 2.11355i) q^{28} +7.40705i q^{29} +(-0.333283 - 1.24383i) q^{31} +(-0.707107 - 0.707107i) q^{32} +(0.241150 - 0.899984i) q^{34} +(7.28657 - 4.20690i) q^{35} +(4.93092 - 1.32124i) q^{37} +(-0.967965 - 1.67657i) q^{38} +(-1.92262 + 3.33007i) q^{40} +(-2.83325 + 10.5738i) q^{41} +(1.70588 + 0.984890i) q^{43} +(-2.96155 - 2.96155i) q^{44} +(2.02652 - 7.56306i) q^{46} +(-9.40830 - 2.52095i) q^{47} +(-1.91580 + 1.10609i) q^{49} +(9.45241 + 2.53277i) q^{50} +(1.70707 + 3.17583i) q^{52} +2.04197i q^{53} +(-8.05243 + 13.9472i) q^{55} +(-1.09406 + 1.89496i) q^{56} +(-5.23757 + 5.23757i) q^{58} +(4.46186 - 4.46186i) q^{59} +(-0.430522 + 0.745686i) q^{61} +(0.643854 - 1.11519i) q^{62} -1.00000i q^{64} +(10.0968 - 9.50108i) q^{65} +(-3.23147 - 0.865869i) q^{67} +(0.806903 - 0.465866i) q^{68} +(8.12711 + 2.17765i) q^{70} +(-2.90450 + 10.8397i) q^{71} +(-2.45316 - 2.45316i) q^{73} +(4.42095 + 2.55243i) q^{74} +(0.501056 - 1.86997i) q^{76} +(-4.58218 + 7.93658i) q^{77} +(6.38240 + 11.0546i) q^{79} +(-3.71422 + 0.995221i) q^{80} +(-9.48023 + 5.47341i) q^{82} +(1.45546 - 5.43185i) q^{83} +(-2.53337 - 2.53337i) q^{85} +(0.509817 + 1.90266i) q^{86} -4.18826i q^{88} +(-0.522663 - 1.95060i) q^{89} +(5.74553 - 5.40653i) q^{91} +(6.78085 - 3.91493i) q^{92} +(-4.87009 - 8.43525i) q^{94} -7.44412 q^{95} +(-4.55884 - 17.0138i) q^{97} +(-2.13680 - 0.572553i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 4 q^{7} - 56 q^{16} - 8 q^{19} - 4 q^{28} + 8 q^{31} - 24 q^{35} - 4 q^{37} + 36 q^{38} + 48 q^{41} + 12 q^{43} - 60 q^{47} + 24 q^{50} - 4 q^{52} + 120 q^{65} - 56 q^{67} - 24 q^{71} + 28 q^{73} - 48 q^{74} + 4 q^{76} + 24 q^{77} - 24 q^{79} + 60 q^{83} - 48 q^{86} + 4 q^{91} + 24 q^{92} + 20 q^{97} + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 3.71422 0.995221i 1.66105 0.445076i 0.698372 0.715735i \(-0.253908\pi\)
0.962675 + 0.270659i \(0.0872414\pi\)
\(6\) 0 0
\(7\) 2.11355 0.566325i 0.798848 0.214051i 0.163770 0.986499i \(-0.447635\pi\)
0.635078 + 0.772448i \(0.280968\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) 3.33007 + 1.92262i 1.05306 + 0.607986i
\(11\) −2.96155 + 2.96155i −0.892940 + 0.892940i −0.994799 0.101859i \(-0.967521\pi\)
0.101859 + 0.994799i \(0.467521\pi\)
\(12\) 0 0
\(13\) 3.17583 1.70707i 0.880818 0.473456i
\(14\) 1.89496 + 1.09406i 0.506449 + 0.292399i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −0.465866 0.806903i −0.112989 0.195703i 0.803985 0.594649i \(-0.202709\pi\)
−0.916974 + 0.398947i \(0.869376\pi\)
\(18\) 0 0
\(19\) −1.86997 0.501056i −0.429000 0.114950i 0.0378569 0.999283i \(-0.487947\pi\)
−0.466857 + 0.884333i \(0.654614\pi\)
\(20\) 0.995221 + 3.71422i 0.222538 + 0.830524i
\(21\) 0 0
\(22\) −4.18826 −0.892940
\(23\) −3.91493 6.78085i −0.816319 1.41391i −0.908377 0.418152i \(-0.862678\pi\)
0.0920584 0.995754i \(-0.470655\pi\)
\(24\) 0 0
\(25\) 8.47480 4.89293i 1.69496 0.978586i
\(26\) 3.45273 + 1.03857i 0.677137 + 0.203681i
\(27\) 0 0
\(28\) 0.566325 + 2.11355i 0.107025 + 0.399424i
\(29\) 7.40705i 1.37545i 0.725969 + 0.687727i \(0.241391\pi\)
−0.725969 + 0.687727i \(0.758609\pi\)
\(30\) 0 0
\(31\) −0.333283 1.24383i −0.0598595 0.223399i 0.929516 0.368782i \(-0.120225\pi\)
−0.989375 + 0.145383i \(0.953558\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 0 0
\(34\) 0.241150 0.899984i 0.0413569 0.154346i
\(35\) 7.28657 4.20690i 1.23165 0.711096i
\(36\) 0 0
\(37\) 4.93092 1.32124i 0.810639 0.217210i 0.170389 0.985377i \(-0.445498\pi\)
0.640250 + 0.768167i \(0.278831\pi\)
\(38\) −0.967965 1.67657i −0.157025 0.271975i
\(39\) 0 0
\(40\) −1.92262 + 3.33007i −0.303993 + 0.526531i
\(41\) −2.83325 + 10.5738i −0.442479 + 1.65135i 0.280029 + 0.959991i \(0.409656\pi\)
−0.722508 + 0.691362i \(0.757011\pi\)
\(42\) 0 0
\(43\) 1.70588 + 0.984890i 0.260144 + 0.150194i 0.624400 0.781104i \(-0.285343\pi\)
−0.364256 + 0.931299i \(0.618677\pi\)
\(44\) −2.96155 2.96155i −0.446470 0.446470i
\(45\) 0 0
\(46\) 2.02652 7.56306i 0.298793 1.11511i
\(47\) −9.40830 2.52095i −1.37234 0.367718i −0.504008 0.863699i \(-0.668142\pi\)
−0.868333 + 0.495981i \(0.834809\pi\)
\(48\) 0 0
\(49\) −1.91580 + 1.10609i −0.273686 + 0.158012i
\(50\) 9.45241 + 2.53277i 1.33677 + 0.358187i
\(51\) 0 0
\(52\) 1.70707 + 3.17583i 0.236728 + 0.440409i
\(53\) 2.04197i 0.280486i 0.990117 + 0.140243i \(0.0447883\pi\)
−0.990117 + 0.140243i \(0.955212\pi\)
\(54\) 0 0
\(55\) −8.05243 + 13.9472i −1.08579 + 1.88064i
\(56\) −1.09406 + 1.89496i −0.146199 + 0.253225i
\(57\) 0 0
\(58\) −5.23757 + 5.23757i −0.687727 + 0.687727i
\(59\) 4.46186 4.46186i 0.580884 0.580884i −0.354262 0.935146i \(-0.615268\pi\)
0.935146 + 0.354262i \(0.115268\pi\)
\(60\) 0 0
\(61\) −0.430522 + 0.745686i −0.0551227 + 0.0954753i −0.892270 0.451502i \(-0.850888\pi\)
0.837147 + 0.546977i \(0.184222\pi\)
\(62\) 0.643854 1.11519i 0.0817696 0.141629i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 10.0968 9.50108i 1.25236 1.17846i
\(66\) 0 0
\(67\) −3.23147 0.865869i −0.394786 0.105783i 0.0559639 0.998433i \(-0.482177\pi\)
−0.450750 + 0.892650i \(0.648843\pi\)
\(68\) 0.806903 0.465866i 0.0978514 0.0564945i
\(69\) 0 0
\(70\) 8.12711 + 2.17765i 0.971376 + 0.260279i
\(71\) −2.90450 + 10.8397i −0.344700 + 1.28644i 0.548262 + 0.836307i \(0.315290\pi\)
−0.892962 + 0.450132i \(0.851377\pi\)
\(72\) 0 0
\(73\) −2.45316 2.45316i −0.287121 0.287121i 0.548820 0.835941i \(-0.315077\pi\)
−0.835941 + 0.548820i \(0.815077\pi\)
\(74\) 4.42095 + 2.55243i 0.513925 + 0.296714i
\(75\) 0 0
\(76\) 0.501056 1.86997i 0.0574750 0.214500i
\(77\) −4.58218 + 7.93658i −0.522188 + 0.904457i
\(78\) 0 0
\(79\) 6.38240 + 11.0546i 0.718076 + 1.24374i 0.961761 + 0.273889i \(0.0883102\pi\)
−0.243686 + 0.969854i \(0.578357\pi\)
\(80\) −3.71422 + 0.995221i −0.415262 + 0.111269i
\(81\) 0 0
\(82\) −9.48023 + 5.47341i −1.04692 + 0.604437i
\(83\) 1.45546 5.43185i 0.159757 0.596223i −0.838893 0.544296i \(-0.816797\pi\)
0.998651 0.0519272i \(-0.0165364\pi\)
\(84\) 0 0
\(85\) −2.53337 2.53337i −0.274783 0.274783i
\(86\) 0.509817 + 1.90266i 0.0549749 + 0.205169i
\(87\) 0 0
\(88\) 4.18826i 0.446470i
\(89\) −0.522663 1.95060i −0.0554022 0.206764i 0.932676 0.360714i \(-0.117467\pi\)
−0.988079 + 0.153951i \(0.950800\pi\)
\(90\) 0 0
\(91\) 5.74553 5.40653i 0.602295 0.566759i
\(92\) 6.78085 3.91493i 0.706953 0.408159i
\(93\) 0 0
\(94\) −4.87009 8.43525i −0.502312 0.870030i
\(95\) −7.44412 −0.763750
\(96\) 0 0
\(97\) −4.55884 17.0138i −0.462880 1.72749i −0.663825 0.747888i \(-0.731068\pi\)
0.200945 0.979603i \(-0.435599\pi\)
\(98\) −2.13680 0.572553i −0.215849 0.0578366i
\(99\) 0 0
\(100\) 4.89293 + 8.47480i 0.489293 + 0.847480i
\(101\) −5.95775 −0.592818 −0.296409 0.955061i \(-0.595789\pi\)
−0.296409 + 0.955061i \(0.595789\pi\)
\(102\) 0 0
\(103\) −3.14153 1.81377i −0.309544 0.178716i 0.337178 0.941441i \(-0.390528\pi\)
−0.646723 + 0.762725i \(0.723861\pi\)
\(104\) −1.03857 + 3.45273i −0.101840 + 0.338568i
\(105\) 0 0
\(106\) −1.44389 + 1.44389i −0.140243 + 0.140243i
\(107\) 3.85034 + 2.22300i 0.372227 + 0.214905i 0.674431 0.738338i \(-0.264389\pi\)
−0.302204 + 0.953243i \(0.597722\pi\)
\(108\) 0 0
\(109\) 5.79714 5.79714i 0.555266 0.555266i −0.372690 0.927956i \(-0.621565\pi\)
0.927956 + 0.372690i \(0.121565\pi\)
\(110\) −15.5561 + 4.16824i −1.48322 + 0.397426i
\(111\) 0 0
\(112\) −2.11355 + 0.566325i −0.199712 + 0.0535126i
\(113\) 12.5666i 1.18217i −0.806610 0.591084i \(-0.798700\pi\)
0.806610 0.591084i \(-0.201300\pi\)
\(114\) 0 0
\(115\) −21.2893 21.2893i −1.98524 1.98524i
\(116\) −7.40705 −0.687727
\(117\) 0 0
\(118\) 6.31002 0.580884
\(119\) −1.44160 1.44160i −0.132151 0.132151i
\(120\) 0 0
\(121\) 6.54150i 0.594682i
\(122\) −0.831705 + 0.222855i −0.0752990 + 0.0201763i
\(123\) 0 0
\(124\) 1.24383 0.333283i 0.111699 0.0299297i
\(125\) 13.0127 13.0127i 1.16389 1.16389i
\(126\) 0 0
\(127\) 0.0921603 + 0.0532087i 0.00817790 + 0.00472151i 0.504083 0.863655i \(-0.331830\pi\)
−0.495905 + 0.868377i \(0.665164\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 0 0
\(130\) 13.8578 + 0.421249i 1.21541 + 0.0369460i
\(131\) −10.7216 6.19013i −0.936752 0.540834i −0.0478111 0.998856i \(-0.515225\pi\)
−0.888941 + 0.458023i \(0.848558\pi\)
\(132\) 0 0
\(133\) −4.23603 −0.367310
\(134\) −1.67273 2.89725i −0.144502 0.250284i
\(135\) 0 0
\(136\) 0.899984 + 0.241150i 0.0771729 + 0.0206784i
\(137\) −0.681728 2.54424i −0.0582439 0.217369i 0.930670 0.365860i \(-0.119225\pi\)
−0.988914 + 0.148491i \(0.952558\pi\)
\(138\) 0 0
\(139\) −14.6578 −1.24326 −0.621629 0.783312i \(-0.713529\pi\)
−0.621629 + 0.783312i \(0.713529\pi\)
\(140\) 4.20690 + 7.28657i 0.355548 + 0.615827i
\(141\) 0 0
\(142\) −9.71863 + 5.61105i −0.815569 + 0.470869i
\(143\) −4.34981 + 14.4609i −0.363749 + 1.20928i
\(144\) 0 0
\(145\) 7.37165 + 27.5114i 0.612182 + 2.28470i
\(146\) 3.46929i 0.287121i
\(147\) 0 0
\(148\) 1.32124 + 4.93092i 0.108605 + 0.405320i
\(149\) 4.33712 + 4.33712i 0.355311 + 0.355311i 0.862081 0.506770i \(-0.169161\pi\)
−0.506770 + 0.862081i \(0.669161\pi\)
\(150\) 0 0
\(151\) 1.02381 3.82090i 0.0833163 0.310941i −0.911674 0.410915i \(-0.865209\pi\)
0.994990 + 0.0999742i \(0.0318760\pi\)
\(152\) 1.67657 0.967965i 0.135987 0.0785124i
\(153\) 0 0
\(154\) −8.85210 + 2.37191i −0.713323 + 0.191134i
\(155\) −2.47577 4.28816i −0.198859 0.344434i
\(156\) 0 0
\(157\) −4.23403 + 7.33355i −0.337912 + 0.585281i −0.984040 0.177948i \(-0.943054\pi\)
0.646128 + 0.763229i \(0.276387\pi\)
\(158\) −3.30377 + 12.3298i −0.262834 + 0.980910i
\(159\) 0 0
\(160\) −3.33007 1.92262i −0.263265 0.151996i
\(161\) −12.1146 12.1146i −0.954761 0.954761i
\(162\) 0 0
\(163\) −0.512492 + 1.91264i −0.0401414 + 0.149810i −0.983088 0.183135i \(-0.941376\pi\)
0.942946 + 0.332945i \(0.108042\pi\)
\(164\) −10.5738 2.83325i −0.825677 0.221239i
\(165\) 0 0
\(166\) 4.87006 2.81173i 0.377990 0.218233i
\(167\) −21.6497 5.80101i −1.67530 0.448896i −0.708770 0.705440i \(-0.750750\pi\)
−0.966533 + 0.256544i \(0.917416\pi\)
\(168\) 0 0
\(169\) 7.17183 10.8427i 0.551679 0.834056i
\(170\) 3.58273i 0.274783i
\(171\) 0 0
\(172\) −0.984890 + 1.70588i −0.0750971 + 0.130072i
\(173\) 9.52249 16.4934i 0.723981 1.25397i −0.235411 0.971896i \(-0.575644\pi\)
0.959392 0.282076i \(-0.0910232\pi\)
\(174\) 0 0
\(175\) 15.1409 15.1409i 1.14455 1.14455i
\(176\) 2.96155 2.96155i 0.223235 0.223235i
\(177\) 0 0
\(178\) 1.00971 1.74886i 0.0756808 0.131083i
\(179\) 0.255705 0.442894i 0.0191123 0.0331035i −0.856311 0.516460i \(-0.827249\pi\)
0.875423 + 0.483357i \(0.160583\pi\)
\(180\) 0 0
\(181\) 2.38215i 0.177064i −0.996073 0.0885319i \(-0.971782\pi\)
0.996073 0.0885319i \(-0.0282175\pi\)
\(182\) 7.88570 + 0.239709i 0.584527 + 0.0177684i
\(183\) 0 0
\(184\) 7.56306 + 2.02652i 0.557556 + 0.149397i
\(185\) 16.9996 9.81472i 1.24983 0.721592i
\(186\) 0 0
\(187\) 3.76936 + 1.01000i 0.275643 + 0.0738584i
\(188\) 2.52095 9.40830i 0.183859 0.686171i
\(189\) 0 0
\(190\) −5.26379 5.26379i −0.381875 0.381875i
\(191\) 20.4524 + 11.8082i 1.47989 + 0.854412i 0.999741 0.0227772i \(-0.00725084\pi\)
0.480145 + 0.877189i \(0.340584\pi\)
\(192\) 0 0
\(193\) −4.08516 + 15.2460i −0.294056 + 1.09743i 0.647908 + 0.761719i \(0.275644\pi\)
−0.941964 + 0.335714i \(0.891022\pi\)
\(194\) 8.80700 15.2542i 0.632306 1.09519i
\(195\) 0 0
\(196\) −1.10609 1.91580i −0.0790062 0.136843i
\(197\) −18.2302 + 4.88476i −1.29885 + 0.348025i −0.841014 0.541014i \(-0.818041\pi\)
−0.457833 + 0.889038i \(0.651374\pi\)
\(198\) 0 0
\(199\) −4.30172 + 2.48360i −0.304941 + 0.176058i −0.644660 0.764469i \(-0.723001\pi\)
0.339719 + 0.940527i \(0.389668\pi\)
\(200\) −2.53277 + 9.45241i −0.179094 + 0.668387i
\(201\) 0 0
\(202\) −4.21276 4.21276i −0.296409 0.296409i
\(203\) 4.19479 + 15.6552i 0.294417 + 1.09878i
\(204\) 0 0
\(205\) 42.0932i 2.93991i
\(206\) −0.938874 3.50392i −0.0654144 0.244130i
\(207\) 0 0
\(208\) −3.17583 + 1.70707i −0.220204 + 0.118364i
\(209\) 7.02189 4.05409i 0.485714 0.280427i
\(210\) 0 0
\(211\) 6.62163 + 11.4690i 0.455852 + 0.789559i 0.998737 0.0502484i \(-0.0160013\pi\)
−0.542885 + 0.839807i \(0.682668\pi\)
\(212\) −2.04197 −0.140243
\(213\) 0 0
\(214\) 1.15071 + 4.29450i 0.0786607 + 0.293566i
\(215\) 7.31619 + 1.96037i 0.498960 + 0.133696i
\(216\) 0 0
\(217\) −1.40882 2.44015i −0.0956372 0.165648i
\(218\) 8.19840 0.555266
\(219\) 0 0
\(220\) −13.9472 8.05243i −0.940321 0.542894i
\(221\) −2.85695 1.76732i −0.192179 0.118883i
\(222\) 0 0
\(223\) −5.75133 + 5.75133i −0.385137 + 0.385137i −0.872949 0.487812i \(-0.837795\pi\)
0.487812 + 0.872949i \(0.337795\pi\)
\(224\) −1.89496 1.09406i −0.126612 0.0730996i
\(225\) 0 0
\(226\) 8.88595 8.88595i 0.591084 0.591084i
\(227\) 10.1846 2.72896i 0.675977 0.181128i 0.0955315 0.995426i \(-0.469545\pi\)
0.580446 + 0.814299i \(0.302878\pi\)
\(228\) 0 0
\(229\) −14.1016 + 3.77851i −0.931859 + 0.249691i −0.692647 0.721276i \(-0.743556\pi\)
−0.239212 + 0.970967i \(0.576889\pi\)
\(230\) 30.1077i 1.98524i
\(231\) 0 0
\(232\) −5.23757 5.23757i −0.343864 0.343864i
\(233\) 17.7535 1.16307 0.581536 0.813521i \(-0.302452\pi\)
0.581536 + 0.813521i \(0.302452\pi\)
\(234\) 0 0
\(235\) −37.4533 −2.44319
\(236\) 4.46186 + 4.46186i 0.290442 + 0.290442i
\(237\) 0 0
\(238\) 2.03873i 0.132151i
\(239\) 10.7752 2.88720i 0.696988 0.186757i 0.107107 0.994247i \(-0.465841\pi\)
0.589881 + 0.807490i \(0.299175\pi\)
\(240\) 0 0
\(241\) 2.55136 0.683636i 0.164348 0.0440368i −0.175707 0.984443i \(-0.556221\pi\)
0.340055 + 0.940406i \(0.389554\pi\)
\(242\) 4.62554 4.62554i 0.297341 0.297341i
\(243\) 0 0
\(244\) −0.745686 0.430522i −0.0477377 0.0275614i
\(245\) −6.01489 + 6.01489i −0.384277 + 0.384277i
\(246\) 0 0
\(247\) −6.79404 + 1.60089i −0.432294 + 0.101862i
\(248\) 1.11519 + 0.643854i 0.0708145 + 0.0408848i
\(249\) 0 0
\(250\) 18.4028 1.16389
\(251\) −3.16017 5.47357i −0.199468 0.345489i 0.748888 0.662697i \(-0.230588\pi\)
−0.948356 + 0.317208i \(0.897255\pi\)
\(252\) 0 0
\(253\) 31.6760 + 8.48757i 1.99146 + 0.533609i
\(254\) 0.0275429 + 0.102791i 0.00172819 + 0.00644971i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −0.511580 0.886083i −0.0319115 0.0552723i 0.849629 0.527382i \(-0.176826\pi\)
−0.881540 + 0.472109i \(0.843493\pi\)
\(258\) 0 0
\(259\) 9.67352 5.58501i 0.601083 0.347035i
\(260\) 9.50108 + 10.0968i 0.589232 + 0.626178i
\(261\) 0 0
\(262\) −3.20424 11.9584i −0.197959 0.738793i
\(263\) 11.6474i 0.718209i −0.933297 0.359105i \(-0.883082\pi\)
0.933297 0.359105i \(-0.116918\pi\)
\(264\) 0 0
\(265\) 2.03221 + 7.58430i 0.124837 + 0.465900i
\(266\) −2.99533 2.99533i −0.183655 0.183655i
\(267\) 0 0
\(268\) 0.865869 3.23147i 0.0528913 0.197393i
\(269\) −24.3789 + 14.0752i −1.48641 + 0.858178i −0.999880 0.0154875i \(-0.995070\pi\)
−0.486527 + 0.873665i \(0.661737\pi\)
\(270\) 0 0
\(271\) 1.95393 0.523554i 0.118693 0.0318037i −0.198984 0.980003i \(-0.563764\pi\)
0.317677 + 0.948199i \(0.397097\pi\)
\(272\) 0.465866 + 0.806903i 0.0282473 + 0.0489257i
\(273\) 0 0
\(274\) 1.31700 2.28111i 0.0795627 0.137807i
\(275\) −10.6079 + 39.5891i −0.639679 + 2.38732i
\(276\) 0 0
\(277\) −13.6892 7.90346i −0.822504 0.474873i 0.0287755 0.999586i \(-0.490839\pi\)
−0.851279 + 0.524713i \(0.824173\pi\)
\(278\) −10.3646 10.3646i −0.621629 0.621629i
\(279\) 0 0
\(280\) −2.17765 + 8.12711i −0.130140 + 0.485688i
\(281\) 18.9089 + 5.06663i 1.12801 + 0.302250i 0.774122 0.633037i \(-0.218192\pi\)
0.353891 + 0.935287i \(0.384858\pi\)
\(282\) 0 0
\(283\) 28.1378 16.2454i 1.67262 0.965687i 0.706456 0.707757i \(-0.250293\pi\)
0.966164 0.257930i \(-0.0830403\pi\)
\(284\) −10.8397 2.90450i −0.643219 0.172350i
\(285\) 0 0
\(286\) −13.3012 + 7.14965i −0.786517 + 0.422767i
\(287\) 23.9529i 1.41389i
\(288\) 0 0
\(289\) 8.06594 13.9706i 0.474467 0.821801i
\(290\) −14.2409 + 24.6660i −0.836256 + 1.44844i
\(291\) 0 0
\(292\) 2.45316 2.45316i 0.143560 0.143560i
\(293\) 10.2821 10.2821i 0.600684 0.600684i −0.339810 0.940494i \(-0.610363\pi\)
0.940494 + 0.339810i \(0.110363\pi\)
\(294\) 0 0
\(295\) 12.1318 21.0128i 0.706338 1.22341i
\(296\) −2.55243 + 4.42095i −0.148357 + 0.256962i
\(297\) 0 0
\(298\) 6.13362i 0.355311i
\(299\) −24.0085 14.8518i −1.38845 0.858902i
\(300\) 0 0
\(301\) 4.16323 + 1.11553i 0.239965 + 0.0642983i
\(302\) 3.42573 1.97784i 0.197128 0.113812i
\(303\) 0 0
\(304\) 1.86997 + 0.501056i 0.107250 + 0.0287375i
\(305\) −0.856929 + 3.19810i −0.0490676 + 0.183123i
\(306\) 0 0
\(307\) 6.00502 + 6.00502i 0.342724 + 0.342724i 0.857391 0.514666i \(-0.172084\pi\)
−0.514666 + 0.857391i \(0.672084\pi\)
\(308\) −7.93658 4.58218i −0.452228 0.261094i
\(309\) 0 0
\(310\) 1.28155 4.78283i 0.0727874 0.271646i
\(311\) −7.13805 + 12.3635i −0.404762 + 0.701068i −0.994294 0.106677i \(-0.965979\pi\)
0.589532 + 0.807745i \(0.299312\pi\)
\(312\) 0 0
\(313\) −0.0856946 0.148427i −0.00484375 0.00838962i 0.863593 0.504189i \(-0.168208\pi\)
−0.868437 + 0.495799i \(0.834875\pi\)
\(314\) −8.17951 + 2.19169i −0.461597 + 0.123684i
\(315\) 0 0
\(316\) −11.0546 + 6.38240i −0.621872 + 0.359038i
\(317\) −5.12627 + 19.1315i −0.287920 + 1.07453i 0.658759 + 0.752354i \(0.271082\pi\)
−0.946679 + 0.322178i \(0.895585\pi\)
\(318\) 0 0
\(319\) −21.9363 21.9363i −1.22820 1.22820i
\(320\) −0.995221 3.71422i −0.0556345 0.207631i
\(321\) 0 0
\(322\) 17.1326i 0.954761i
\(323\) 0.466849 + 1.74231i 0.0259762 + 0.0969445i
\(324\) 0 0
\(325\) 18.5620 30.0062i 1.02963 1.66444i
\(326\) −1.71483 + 0.990058i −0.0949757 + 0.0548342i
\(327\) 0 0
\(328\) −5.47341 9.48023i −0.302219 0.523458i
\(329\) −21.3126 −1.17500
\(330\) 0 0
\(331\) 6.29719 + 23.5014i 0.346125 + 1.29176i 0.891292 + 0.453429i \(0.149799\pi\)
−0.545167 + 0.838327i \(0.683534\pi\)
\(332\) 5.43185 + 1.45546i 0.298111 + 0.0798787i
\(333\) 0 0
\(334\) −11.2067 19.4106i −0.613203 1.06210i
\(335\) −12.8641 −0.702840
\(336\) 0 0
\(337\) −8.81745 5.09076i −0.480317 0.277311i 0.240232 0.970716i \(-0.422777\pi\)
−0.720549 + 0.693404i \(0.756110\pi\)
\(338\) 12.7382 2.59572i 0.692868 0.141189i
\(339\) 0 0
\(340\) 2.53337 2.53337i 0.137391 0.137391i
\(341\) 4.67070 + 2.69663i 0.252932 + 0.146031i
\(342\) 0 0
\(343\) −14.2533 + 14.2533i −0.769607 + 0.769607i
\(344\) −1.90266 + 0.509817i −0.102585 + 0.0274875i
\(345\) 0 0
\(346\) 18.3960 4.92920i 0.988977 0.264996i
\(347\) 16.1265i 0.865715i −0.901462 0.432857i \(-0.857505\pi\)
0.901462 0.432857i \(-0.142495\pi\)
\(348\) 0 0
\(349\) 20.7759 + 20.7759i 1.11211 + 1.11211i 0.992865 + 0.119243i \(0.0380466\pi\)
0.119243 + 0.992865i \(0.461953\pi\)
\(350\) 21.4125 1.14455
\(351\) 0 0
\(352\) 4.18826 0.223235
\(353\) 15.0529 + 15.0529i 0.801184 + 0.801184i 0.983281 0.182096i \(-0.0582883\pi\)
−0.182096 + 0.983281i \(0.558288\pi\)
\(354\) 0 0
\(355\) 43.1517i 2.29025i
\(356\) 1.95060 0.522663i 0.103382 0.0277011i
\(357\) 0 0
\(358\) 0.493984 0.132363i 0.0261079 0.00699558i
\(359\) 11.8574 11.8574i 0.625809 0.625809i −0.321202 0.947011i \(-0.604087\pi\)
0.947011 + 0.321202i \(0.104087\pi\)
\(360\) 0 0
\(361\) −13.2088 7.62609i −0.695198 0.401373i
\(362\) 1.68443 1.68443i 0.0885319 0.0885319i
\(363\) 0 0
\(364\) 5.40653 + 5.74553i 0.283379 + 0.301148i
\(365\) −11.5530 6.67013i −0.604712 0.349131i
\(366\) 0 0
\(367\) 9.73112 0.507960 0.253980 0.967209i \(-0.418260\pi\)
0.253980 + 0.967209i \(0.418260\pi\)
\(368\) 3.91493 + 6.78085i 0.204080 + 0.353476i
\(369\) 0 0
\(370\) 18.9606 + 5.08047i 0.985714 + 0.264121i
\(371\) 1.15642 + 4.31580i 0.0600381 + 0.224065i
\(372\) 0 0
\(373\) 23.7302 1.22870 0.614351 0.789032i \(-0.289418\pi\)
0.614351 + 0.789032i \(0.289418\pi\)
\(374\) 1.95117 + 3.37952i 0.100892 + 0.174751i
\(375\) 0 0
\(376\) 8.43525 4.87009i 0.435015 0.251156i
\(377\) 12.6443 + 23.5235i 0.651217 + 1.21152i
\(378\) 0 0
\(379\) −0.0380534 0.142017i −0.00195467 0.00729493i 0.964942 0.262465i \(-0.0845353\pi\)
−0.966896 + 0.255170i \(0.917869\pi\)
\(380\) 7.44412i 0.381875i
\(381\) 0 0
\(382\) 6.11238 + 22.8117i 0.312737 + 1.16715i
\(383\) 16.2995 + 16.2995i 0.832867 + 0.832867i 0.987908 0.155041i \(-0.0495509\pi\)
−0.155041 + 0.987908i \(0.549551\pi\)
\(384\) 0 0
\(385\) −9.12057 + 34.0384i −0.464827 + 1.73476i
\(386\) −13.6692 + 7.89192i −0.695744 + 0.401688i
\(387\) 0 0
\(388\) 17.0138 4.55884i 0.863745 0.231440i
\(389\) −16.4933 28.5672i −0.836243 1.44841i −0.893015 0.450028i \(-0.851414\pi\)
0.0567717 0.998387i \(-0.481919\pi\)
\(390\) 0 0
\(391\) −3.64766 + 6.31793i −0.184470 + 0.319512i
\(392\) 0.572553 2.13680i 0.0289183 0.107925i
\(393\) 0 0
\(394\) −16.3447 9.43664i −0.823436 0.475411i
\(395\) 34.7074 + 34.7074i 1.74632 + 1.74632i
\(396\) 0 0
\(397\) 5.53019 20.6390i 0.277552 1.03584i −0.676559 0.736388i \(-0.736530\pi\)
0.954112 0.299451i \(-0.0968037\pi\)
\(398\) −4.79795 1.28561i −0.240499 0.0644416i
\(399\) 0 0
\(400\) −8.47480 + 4.89293i −0.423740 + 0.244646i
\(401\) 26.3984 + 7.07343i 1.31827 + 0.353230i 0.848331 0.529467i \(-0.177608\pi\)
0.469943 + 0.882697i \(0.344275\pi\)
\(402\) 0 0
\(403\) −3.18176 3.38126i −0.158495 0.168433i
\(404\) 5.95775i 0.296409i
\(405\) 0 0
\(406\) −8.10372 + 14.0361i −0.402181 + 0.696598i
\(407\) −10.6903 + 18.5161i −0.529896 + 0.917807i
\(408\) 0 0
\(409\) −12.3294 + 12.3294i −0.609648 + 0.609648i −0.942854 0.333206i \(-0.891869\pi\)
0.333206 + 0.942854i \(0.391869\pi\)
\(410\) −29.7644 + 29.7644i −1.46996 + 1.46996i
\(411\) 0 0
\(412\) 1.81377 3.14153i 0.0893578 0.154772i
\(413\) 6.90351 11.9572i 0.339699 0.588377i
\(414\) 0 0
\(415\) 21.6236i 1.06146i
\(416\) −3.45273 1.03857i −0.169284 0.0509202i
\(417\) 0 0
\(418\) 7.83190 + 2.09855i 0.383071 + 0.102643i
\(419\) −17.0583 + 9.84862i −0.833353 + 0.481137i −0.854999 0.518629i \(-0.826443\pi\)
0.0216462 + 0.999766i \(0.493109\pi\)
\(420\) 0 0
\(421\) −4.34449 1.16410i −0.211737 0.0567348i 0.151391 0.988474i \(-0.451625\pi\)
−0.363128 + 0.931739i \(0.618291\pi\)
\(422\) −3.42761 + 12.7920i −0.166853 + 0.622705i
\(423\) 0 0
\(424\) −1.44389 1.44389i −0.0701214 0.0701214i
\(425\) −7.89624 4.55890i −0.383024 0.221139i
\(426\) 0 0
\(427\) −0.487630 + 1.81986i −0.0235981 + 0.0880693i
\(428\) −2.22300 + 3.85034i −0.107453 + 0.186113i
\(429\) 0 0
\(430\) 3.78714 + 6.55951i 0.182632 + 0.316328i
\(431\) 0.579994 0.155409i 0.0279373 0.00748579i −0.244823 0.969568i \(-0.578730\pi\)
0.272761 + 0.962082i \(0.412063\pi\)
\(432\) 0 0
\(433\) −7.94515 + 4.58713i −0.381819 + 0.220444i −0.678610 0.734499i \(-0.737417\pi\)
0.296790 + 0.954943i \(0.404084\pi\)
\(434\) 0.729261 2.72164i 0.0350056 0.130643i
\(435\) 0 0
\(436\) 5.79714 + 5.79714i 0.277633 + 0.277633i
\(437\) 3.92319 + 14.6416i 0.187672 + 0.700401i
\(438\) 0 0
\(439\) 15.4681i 0.738252i 0.929379 + 0.369126i \(0.120343\pi\)
−0.929379 + 0.369126i \(0.879657\pi\)
\(440\) −4.16824 15.5561i −0.198713 0.741608i
\(441\) 0 0
\(442\) −0.770483 3.26986i −0.0366481 0.155531i
\(443\) 15.2867 8.82576i 0.726292 0.419325i −0.0907723 0.995872i \(-0.528934\pi\)
0.817064 + 0.576547i \(0.195600\pi\)
\(444\) 0 0
\(445\) −3.88257 6.72480i −0.184051 0.318786i
\(446\) −8.13360 −0.385137
\(447\) 0 0
\(448\) −0.566325 2.11355i −0.0267563 0.0998559i
\(449\) 17.1746 + 4.60193i 0.810521 + 0.217178i 0.640198 0.768210i \(-0.278852\pi\)
0.170323 + 0.985388i \(0.445519\pi\)
\(450\) 0 0
\(451\) −22.9241 39.7056i −1.07945 1.86967i
\(452\) 12.5666 0.591084
\(453\) 0 0
\(454\) 9.13129 + 5.27195i 0.428552 + 0.247425i
\(455\) 15.9594 25.7991i 0.748191 1.20948i
\(456\) 0 0
\(457\) −18.5795 + 18.5795i −0.869111 + 0.869111i −0.992374 0.123263i \(-0.960664\pi\)
0.123263 + 0.992374i \(0.460664\pi\)
\(458\) −12.6431 7.29952i −0.590775 0.341084i
\(459\) 0 0
\(460\) 21.2893 21.2893i 0.992620 0.992620i
\(461\) 35.3774 9.47934i 1.64769 0.441497i 0.688725 0.725023i \(-0.258171\pi\)
0.958965 + 0.283526i \(0.0915041\pi\)
\(462\) 0 0
\(463\) 27.7142 7.42600i 1.28799 0.345115i 0.451092 0.892477i \(-0.351035\pi\)
0.836896 + 0.547362i \(0.184368\pi\)
\(464\) 7.40705i 0.343864i
\(465\) 0 0
\(466\) 12.5536 + 12.5536i 0.581536 + 0.581536i
\(467\) 30.1627 1.39576 0.697881 0.716214i \(-0.254126\pi\)
0.697881 + 0.716214i \(0.254126\pi\)
\(468\) 0 0
\(469\) −7.32023 −0.338017
\(470\) −26.4835 26.4835i −1.22159 1.22159i
\(471\) 0 0
\(472\) 6.31002i 0.290442i
\(473\) −7.96884 + 2.13524i −0.366407 + 0.0981786i
\(474\) 0 0
\(475\) −18.2992 + 4.90326i −0.839626 + 0.224977i
\(476\) 1.44160 1.44160i 0.0660757 0.0660757i
\(477\) 0 0
\(478\) 9.66076 + 5.57764i 0.441873 + 0.255115i
\(479\) −8.40895 + 8.40895i −0.384215 + 0.384215i −0.872618 0.488403i \(-0.837580\pi\)
0.488403 + 0.872618i \(0.337580\pi\)
\(480\) 0 0
\(481\) 13.4043 12.6135i 0.611186 0.575124i
\(482\) 2.28749 + 1.32068i 0.104192 + 0.0601554i
\(483\) 0 0
\(484\) 6.54150 0.297341
\(485\) −33.8650 58.6559i −1.53773 2.66343i
\(486\) 0 0
\(487\) 20.6057 + 5.52129i 0.933735 + 0.250194i 0.693447 0.720508i \(-0.256091\pi\)
0.240288 + 0.970702i \(0.422758\pi\)
\(488\) −0.222855 0.831705i −0.0100882 0.0376495i
\(489\) 0 0
\(490\) −8.50634 −0.384277
\(491\) 9.99582 + 17.3133i 0.451105 + 0.781337i 0.998455 0.0555669i \(-0.0176966\pi\)
−0.547350 + 0.836904i \(0.684363\pi\)
\(492\) 0 0
\(493\) 5.97677 3.45069i 0.269180 0.155411i
\(494\) −5.93611 3.67211i −0.267078 0.165216i
\(495\) 0 0
\(496\) 0.333283 + 1.24383i 0.0149649 + 0.0558497i
\(497\) 24.5552i 1.10145i
\(498\) 0 0
\(499\) −0.0739605 0.276024i −0.00331093 0.0123565i 0.964251 0.264992i \(-0.0853693\pi\)
−0.967562 + 0.252635i \(0.918703\pi\)
\(500\) 13.0127 + 13.0127i 0.581947 + 0.581947i
\(501\) 0 0
\(502\) 1.63582 6.10498i 0.0730104 0.272478i
\(503\) 6.95762 4.01698i 0.310225 0.179108i −0.336802 0.941575i \(-0.609345\pi\)
0.647027 + 0.762467i \(0.276012\pi\)
\(504\) 0 0
\(505\) −22.1284 + 5.92927i −0.984699 + 0.263849i
\(506\) 16.3967 + 28.4000i 0.728923 + 1.26253i
\(507\) 0 0
\(508\) −0.0532087 + 0.0921603i −0.00236076 + 0.00408895i
\(509\) 7.97104 29.7483i 0.353310 1.31857i −0.529288 0.848442i \(-0.677541\pi\)
0.882598 0.470129i \(-0.155792\pi\)
\(510\) 0 0
\(511\) −6.57417 3.79560i −0.290824 0.167907i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 0.264813 0.988297i 0.0116804 0.0435919i
\(515\) −13.4734 3.61019i −0.593710 0.159084i
\(516\) 0 0
\(517\) 35.3290 20.3972i 1.55377 0.897068i
\(518\) 10.7894 + 2.89101i 0.474059 + 0.127024i
\(519\) 0 0
\(520\) −0.421249 + 13.8578i −0.0184730 + 0.607705i
\(521\) 5.90138i 0.258544i −0.991609 0.129272i \(-0.958736\pi\)
0.991609 0.129272i \(-0.0412640\pi\)
\(522\) 0 0
\(523\) 5.66854 9.81820i 0.247868 0.429320i −0.715066 0.699057i \(-0.753603\pi\)
0.962934 + 0.269737i \(0.0869368\pi\)
\(524\) 6.19013 10.7216i 0.270417 0.468376i
\(525\) 0 0
\(526\) 8.23595 8.23595i 0.359105 0.359105i
\(527\) −0.848386 + 0.848386i −0.0369563 + 0.0369563i
\(528\) 0 0
\(529\) −19.1533 + 33.1745i −0.832752 + 1.44237i
\(530\) −3.92592 + 6.79990i −0.170531 + 0.295369i
\(531\) 0 0
\(532\) 4.23603i 0.183655i
\(533\) 9.05233 + 38.4172i 0.392100 + 1.66404i
\(534\) 0 0
\(535\) 16.5134 + 4.42474i 0.713935 + 0.191298i
\(536\) 2.89725 1.67273i 0.125142 0.0722509i
\(537\) 0 0
\(538\) −27.1911 7.28584i −1.17229 0.314115i
\(539\) 2.39800 8.94945i 0.103289 0.385480i
\(540\) 0 0
\(541\) 1.72650 + 1.72650i 0.0742279 + 0.0742279i 0.743246 0.669018i \(-0.233285\pi\)
−0.669018 + 0.743246i \(0.733285\pi\)
\(542\) 1.75185 + 1.01143i 0.0752483 + 0.0434446i
\(543\) 0 0
\(544\) −0.241150 + 0.899984i −0.0103392 + 0.0385865i
\(545\) 15.7624 27.3013i 0.675187 1.16946i
\(546\) 0 0
\(547\) −9.56787 16.5720i −0.409092 0.708569i 0.585696 0.810531i \(-0.300821\pi\)
−0.994788 + 0.101962i \(0.967488\pi\)
\(548\) 2.54424 0.681728i 0.108685 0.0291220i
\(549\) 0 0
\(550\) −35.4947 + 20.4929i −1.51350 + 0.873818i
\(551\) 3.71134 13.8509i 0.158109 0.590069i
\(552\) 0 0
\(553\) 19.7500 + 19.7500i 0.839857 + 0.839857i
\(554\) −4.09113 15.2683i −0.173815 0.648688i
\(555\) 0 0
\(556\) 14.6578i 0.621629i
\(557\) −5.72596 21.3696i −0.242617 0.905457i −0.974566 0.224099i \(-0.928056\pi\)
0.731950 0.681359i \(-0.238611\pi\)
\(558\) 0 0
\(559\) 7.09886 + 0.215791i 0.300250 + 0.00912699i
\(560\) −7.28657 + 4.20690i −0.307914 + 0.177774i
\(561\) 0 0
\(562\) 9.78798 + 16.9533i 0.412881 + 0.715131i
\(563\) −16.2778 −0.686026 −0.343013 0.939331i \(-0.611448\pi\)
−0.343013 + 0.939331i \(0.611448\pi\)
\(564\) 0 0
\(565\) −12.5066 46.6752i −0.526155 1.96364i
\(566\) 31.3837 + 8.40922i 1.31915 + 0.353466i
\(567\) 0 0
\(568\) −5.61105 9.71863i −0.235435 0.407785i
\(569\) −14.6047 −0.612260 −0.306130 0.951990i \(-0.599034\pi\)
−0.306130 + 0.951990i \(0.599034\pi\)
\(570\) 0 0
\(571\) −17.7611 10.2544i −0.743278 0.429132i 0.0799818 0.996796i \(-0.474514\pi\)
−0.823260 + 0.567664i \(0.807847\pi\)
\(572\) −14.4609 4.34981i −0.604642 0.181875i
\(573\) 0 0
\(574\) −16.9372 + 16.9372i −0.706946 + 0.706946i
\(575\) −66.3565 38.3109i −2.76726 1.59768i
\(576\) 0 0
\(577\) −21.6621 + 21.6621i −0.901806 + 0.901806i −0.995592 0.0937859i \(-0.970103\pi\)
0.0937859 + 0.995592i \(0.470103\pi\)
\(578\) 15.5822 4.17524i 0.648134 0.173667i
\(579\) 0 0
\(580\) −27.5114 + 7.37165i −1.14235 + 0.306091i
\(581\) 12.3048i 0.510487i
\(582\) 0 0
\(583\) −6.04737 6.04737i −0.250457 0.250457i
\(584\) 3.46929 0.143560
\(585\) 0 0
\(586\) 14.5410 0.600684
\(587\) 10.9465 + 10.9465i 0.451811 + 0.451811i 0.895955 0.444144i \(-0.146492\pi\)
−0.444144 + 0.895955i \(0.646492\pi\)
\(588\) 0 0
\(589\) 2.49291i 0.102719i
\(590\) 23.4368 6.27986i 0.964876 0.258538i
\(591\) 0 0
\(592\) −4.93092 + 1.32124i −0.202660 + 0.0543025i
\(593\) −15.6420 + 15.6420i −0.642338 + 0.642338i −0.951130 0.308791i \(-0.900075\pi\)
0.308791 + 0.951130i \(0.400075\pi\)
\(594\) 0 0
\(595\) −6.78913 3.91970i −0.278327 0.160692i
\(596\) −4.33712 + 4.33712i −0.177655 + 0.177655i
\(597\) 0 0
\(598\) −6.47479 27.4784i −0.264774 1.12368i
\(599\) −23.9942 13.8531i −0.980378 0.566022i −0.0779938 0.996954i \(-0.524851\pi\)
−0.902384 + 0.430932i \(0.858185\pi\)
\(600\) 0 0
\(601\) 46.3112 1.88907 0.944536 0.328407i \(-0.106512\pi\)
0.944536 + 0.328407i \(0.106512\pi\)
\(602\) 2.15505 + 3.73265i 0.0878332 + 0.152132i
\(603\) 0 0
\(604\) 3.82090 + 1.02381i 0.155470 + 0.0416581i
\(605\) −6.51024 24.2966i −0.264679 0.987795i
\(606\) 0 0
\(607\) −0.676366 −0.0274528 −0.0137264 0.999906i \(-0.504369\pi\)
−0.0137264 + 0.999906i \(0.504369\pi\)
\(608\) 0.967965 + 1.67657i 0.0392562 + 0.0679937i
\(609\) 0 0
\(610\) −2.86734 + 1.65546i −0.116095 + 0.0670276i
\(611\) −34.1826 + 8.05452i −1.38288 + 0.325851i
\(612\) 0 0
\(613\) 6.69356 + 24.9807i 0.270351 + 1.00896i 0.958893 + 0.283766i \(0.0915840\pi\)
−0.688543 + 0.725196i \(0.741749\pi\)
\(614\) 8.49238i 0.342724i
\(615\) 0 0
\(616\) −2.37191 8.85210i −0.0955671 0.356661i
\(617\) 16.4300 + 16.4300i 0.661445 + 0.661445i 0.955721 0.294275i \(-0.0950783\pi\)
−0.294275 + 0.955721i \(0.595078\pi\)
\(618\) 0 0
\(619\) −2.71346 + 10.1268i −0.109063 + 0.407029i −0.998774 0.0494944i \(-0.984239\pi\)
0.889711 + 0.456524i \(0.150906\pi\)
\(620\) 4.28816 2.47577i 0.172217 0.0994294i
\(621\) 0 0
\(622\) −13.7896 + 3.69493i −0.552915 + 0.148153i
\(623\) −2.20935 3.82671i −0.0885158 0.153314i
\(624\) 0 0
\(625\) 10.9169 18.9086i 0.436675 0.756343i
\(626\) 0.0443588 0.165549i 0.00177293 0.00661668i
\(627\) 0 0
\(628\) −7.33355 4.23403i −0.292640 0.168956i
\(629\) −3.36326 3.36326i −0.134102 0.134102i
\(630\) 0 0
\(631\) −6.92325 + 25.8379i −0.275610 + 1.02859i 0.679821 + 0.733378i \(0.262057\pi\)
−0.955431 + 0.295213i \(0.904609\pi\)
\(632\) −12.3298 3.30377i −0.490455 0.131417i
\(633\) 0 0
\(634\) −17.1528 + 9.90320i −0.681226 + 0.393306i
\(635\) 0.395257 + 0.105909i 0.0156853 + 0.00420287i
\(636\) 0 0
\(637\) −4.19609 + 6.78315i −0.166255 + 0.268758i
\(638\) 31.0226i 1.22820i
\(639\) 0 0
\(640\) 1.92262 3.33007i 0.0759982 0.131633i
\(641\) 8.11862 14.0619i 0.320666 0.555410i −0.659959 0.751301i \(-0.729427\pi\)
0.980626 + 0.195891i \(0.0627598\pi\)
\(642\) 0 0
\(643\) −28.2088 + 28.2088i −1.11245 + 1.11245i −0.119629 + 0.992819i \(0.538170\pi\)
−0.992819 + 0.119629i \(0.961830\pi\)
\(644\) 12.1146 12.1146i 0.477381 0.477381i
\(645\) 0 0
\(646\) −0.901884 + 1.56211i −0.0354841 + 0.0614603i
\(647\) 1.17726 2.03908i 0.0462830 0.0801645i −0.841956 0.539546i \(-0.818596\pi\)
0.888239 + 0.459382i \(0.151929\pi\)
\(648\) 0 0
\(649\) 26.4280i 1.03739i
\(650\) 34.3429 8.09228i 1.34704 0.317405i
\(651\) 0 0
\(652\) −1.91264 0.512492i −0.0749049 0.0200707i
\(653\) 12.6180 7.28502i 0.493782 0.285085i −0.232360 0.972630i \(-0.574645\pi\)
0.726142 + 0.687545i \(0.241312\pi\)
\(654\) 0 0
\(655\) −45.9829 12.3211i −1.79670 0.481425i
\(656\) 2.83325 10.5738i 0.110620 0.412838i
\(657\) 0 0
\(658\) −15.0703 15.0703i −0.587501 0.587501i
\(659\) −3.83999 2.21702i −0.149585 0.0863628i 0.423339 0.905971i \(-0.360858\pi\)
−0.572924 + 0.819608i \(0.694191\pi\)
\(660\) 0 0
\(661\) 5.45199 20.3471i 0.212058 0.791411i −0.775124 0.631809i \(-0.782313\pi\)
0.987182 0.159601i \(-0.0510208\pi\)
\(662\) −12.1652 + 21.0708i −0.472816 + 0.818941i
\(663\) 0 0
\(664\) 2.81173 + 4.87006i 0.109116 + 0.188995i
\(665\) −15.7335 + 4.21579i −0.610120 + 0.163481i
\(666\) 0 0
\(667\) 50.2261 28.9981i 1.94476 1.12281i
\(668\) 5.80101 21.6497i 0.224448 0.837651i
\(669\) 0 0
\(670\) −9.09628 9.09628i −0.351420 0.351420i
\(671\) −0.933373 3.48339i −0.0360325 0.134475i
\(672\) 0 0
\(673\) 32.8052i 1.26455i −0.774745 0.632274i \(-0.782122\pi\)
0.774745 0.632274i \(-0.217878\pi\)
\(674\) −2.63517 9.83459i −0.101503 0.378814i
\(675\) 0 0
\(676\) 10.8427 + 7.17183i 0.417028 + 0.275840i
\(677\) −19.6014 + 11.3169i −0.753344 + 0.434944i −0.826901 0.562347i \(-0.809898\pi\)
0.0735566 + 0.997291i \(0.476565\pi\)
\(678\) 0 0
\(679\) −19.2707 33.3778i −0.739541 1.28092i
\(680\) 3.58273 0.137391
\(681\) 0 0
\(682\) 1.39588 + 5.20948i 0.0534509 + 0.199481i
\(683\) −11.5934 3.10645i −0.443611 0.118865i 0.0300976 0.999547i \(-0.490418\pi\)
−0.473708 + 0.880682i \(0.657085\pi\)
\(684\) 0 0
\(685\) −5.06417 8.77140i −0.193492 0.335138i
\(686\) −20.1573 −0.769607
\(687\) 0 0
\(688\) −1.70588 0.984890i −0.0650360 0.0375486i
\(689\) 3.48578 + 6.48494i 0.132798 + 0.247057i
\(690\) 0 0
\(691\) −15.6544 + 15.6544i −0.595522 + 0.595522i −0.939118 0.343596i \(-0.888355\pi\)
0.343596 + 0.939118i \(0.388355\pi\)
\(692\) 16.4934 + 9.52249i 0.626986 + 0.361991i
\(693\) 0 0
\(694\) 11.4031 11.4031i 0.432857 0.432857i
\(695\) −54.4422 + 14.5877i −2.06511 + 0.553345i
\(696\) 0 0
\(697\) 9.85196 2.63983i 0.373170 0.0999905i
\(698\) 29.3815i 1.11211i
\(699\) 0 0
\(700\) 15.1409 + 15.1409i 0.572274 + 0.572274i
\(701\) −26.8651 −1.01468 −0.507341 0.861746i \(-0.669371\pi\)
−0.507341 + 0.861746i \(0.669371\pi\)
\(702\) 0 0
\(703\) −9.88267 −0.372732
\(704\) 2.96155 + 2.96155i 0.111617 + 0.111617i
\(705\) 0 0
\(706\) 21.2880i 0.801184i
\(707\) −12.5920 + 3.37402i −0.473571 + 0.126893i
\(708\) 0 0
\(709\) 18.0428 4.83455i 0.677611 0.181565i 0.0964301 0.995340i \(-0.469258\pi\)
0.581181 + 0.813774i \(0.302591\pi\)
\(710\) −30.5128 + 30.5128i −1.14513 + 1.14513i
\(711\) 0 0
\(712\) 1.74886 + 1.00971i 0.0655415 + 0.0378404i
\(713\) −7.12945 + 7.12945i −0.267000 + 0.267000i
\(714\) 0 0
\(715\) −1.76430 + 58.0401i −0.0659811 + 2.17057i
\(716\) 0.442894 + 0.255705i 0.0165517 + 0.00955615i
\(717\) 0 0
\(718\) 16.7689 0.625809
\(719\) 14.5977 + 25.2840i 0.544404 + 0.942936i 0.998644 + 0.0520563i \(0.0165775\pi\)
−0.454240 + 0.890879i \(0.650089\pi\)
\(720\) 0 0
\(721\) −7.66697 2.05436i −0.285533 0.0765083i
\(722\) −3.94755 14.7325i −0.146913 0.548286i
\(723\) 0 0
\(724\) 2.38215 0.0885319
\(725\) 36.2422 + 62.7733i 1.34600 + 2.33134i
\(726\) 0 0
\(727\) 36.4712 21.0566i 1.35264 0.780948i 0.364022 0.931390i \(-0.381403\pi\)
0.988619 + 0.150443i \(0.0480699\pi\)
\(728\) −0.239709 + 7.88570i −0.00888422 + 0.292264i
\(729\) 0 0
\(730\) −3.45271 12.8857i −0.127791 0.476921i
\(731\) 1.83531i 0.0678812i
\(732\) 0 0
\(733\) −10.0518 37.5139i −0.371272 1.38561i −0.858716 0.512452i \(-0.828737\pi\)
0.487444 0.873154i \(-0.337929\pi\)
\(734\) 6.88094 + 6.88094i 0.253980 + 0.253980i
\(735\) 0 0
\(736\) −2.02652 + 7.56306i −0.0746983 + 0.278778i
\(737\) 12.1344 7.00582i 0.446978 0.258063i
\(738\) 0 0
\(739\) −13.9922 + 3.74921i −0.514713 + 0.137917i −0.506820 0.862052i \(-0.669179\pi\)
−0.00789285 + 0.999969i \(0.502512\pi\)
\(740\) 9.81472 + 16.9996i 0.360796 + 0.624917i
\(741\) 0 0
\(742\) −2.23402 + 3.86944i −0.0820135 + 0.142052i
\(743\) 3.45307 12.8870i 0.126681 0.472780i −0.873213 0.487339i \(-0.837968\pi\)
0.999894 + 0.0145589i \(0.00463440\pi\)
\(744\) 0 0
\(745\) 20.4254 + 11.7926i 0.748329 + 0.432048i
\(746\) 16.7798 + 16.7798i 0.614351 + 0.614351i
\(747\) 0 0
\(748\) −1.01000 + 3.76936i −0.0369292 + 0.137822i
\(749\) 9.39684 + 2.51787i 0.343353 + 0.0920011i
\(750\) 0 0
\(751\) 26.4563 15.2745i 0.965402 0.557375i 0.0675709 0.997714i \(-0.478475\pi\)
0.897832 + 0.440339i \(0.145142\pi\)
\(752\) 9.40830 + 2.52095i 0.343085 + 0.0919295i
\(753\) 0 0
\(754\) −7.69276 + 25.5746i −0.280154 + 0.931371i
\(755\) 15.2106i 0.553569i
\(756\) 0 0
\(757\) −22.0323 + 38.1611i −0.800778 + 1.38699i 0.118326 + 0.992975i \(0.462247\pi\)
−0.919105 + 0.394014i \(0.871086\pi\)
\(758\) 0.0735135 0.127329i 0.00267013 0.00462480i
\(759\) 0 0
\(760\) 5.26379 5.26379i 0.190938 0.190938i
\(761\) 16.2670 16.2670i 0.589680 0.589680i −0.347865 0.937545i \(-0.613093\pi\)
0.937545 + 0.347865i \(0.113093\pi\)
\(762\) 0 0
\(763\) 8.96950 15.5356i 0.324718 0.562427i
\(764\) −11.8082 + 20.4524i −0.427206 + 0.739943i
\(765\) 0 0
\(766\) 23.0510i 0.832867i
\(767\) 6.55341 21.7868i 0.236630 0.786676i
\(768\) 0 0
\(769\) 35.2148 + 9.43577i 1.26988 + 0.340262i 0.829984 0.557788i \(-0.188350\pi\)
0.439893 + 0.898050i \(0.355016\pi\)
\(770\) −30.5180 + 17.6196i −1.09979 + 0.634966i
\(771\) 0 0
\(772\) −15.2460 4.08516i −0.548716 0.147028i
\(773\) −1.87114 + 6.98319i −0.0673002 + 0.251168i −0.991377 0.131038i \(-0.958169\pi\)
0.924077 + 0.382206i \(0.124836\pi\)
\(774\) 0 0
\(775\) −8.91049 8.91049i −0.320074 0.320074i
\(776\) 15.2542 + 8.80700i 0.547593 + 0.316153i
\(777\) 0 0
\(778\) 8.53755 31.8626i 0.306086 1.14233i
\(779\) 10.5962 18.3531i 0.379646 0.657567i
\(780\) 0 0
\(781\) −23.5005 40.7041i −0.840916 1.45651i
\(782\) −7.04674 + 1.88817i −0.251991 + 0.0675208i
\(783\) 0 0
\(784\) 1.91580 1.10609i 0.0