Properties

Label 702.2.bb.a.71.13
Level $702$
Weight $2$
Character 702.71
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(71,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 71.13
Character \(\chi\) \(=\) 702.71
Dual form 702.2.bb.a.89.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(3.62177 - 0.970449i) q^{5} +(-3.13748 + 0.840685i) q^{7} +(-0.707107 + 0.707107i) q^{8} +O(q^{10})\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(3.62177 - 0.970449i) q^{5} +(-3.13748 + 0.840685i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(3.24719 + 1.87476i) q^{10} +(1.54706 - 1.54706i) q^{11} +(0.305736 + 3.59257i) q^{13} +(-2.81299 - 1.62408i) q^{14} -1.00000 q^{16} +(3.50770 + 6.07551i) q^{17} +(4.70354 + 1.26031i) q^{19} +(0.970449 + 3.62177i) q^{20} +2.18787 q^{22} +(-0.415879 - 0.720323i) q^{23} +(7.84529 - 4.52948i) q^{25} +(-2.32414 + 2.75652i) q^{26} +(-0.840685 - 3.13748i) q^{28} -9.26729i q^{29} +(-0.141470 - 0.527973i) q^{31} +(-0.707107 - 0.707107i) q^{32} +(-1.81572 + 6.77635i) q^{34} +(-10.5474 + 6.08953i) q^{35} +(1.90093 - 0.509353i) q^{37} +(2.43473 + 4.21708i) q^{38} +(-1.87476 + 3.24719i) q^{40} +(-0.455940 + 1.70159i) q^{41} +(0.0503260 + 0.0290558i) q^{43} +(1.54706 + 1.54706i) q^{44} +(0.215275 - 0.803416i) q^{46} +(-5.83570 - 1.56367i) q^{47} +(3.07486 - 1.77527i) q^{49} +(8.75029 + 2.34463i) q^{50} +(-3.59257 + 0.305736i) q^{52} -1.62324i q^{53} +(4.10174 - 7.10443i) q^{55} +(1.62408 - 2.81299i) q^{56} +(6.55297 - 6.55297i) q^{58} +(-2.06291 + 2.06291i) q^{59} +(-1.78999 + 3.10035i) q^{61} +(0.273299 - 0.473367i) q^{62} -1.00000i q^{64} +(4.59371 + 12.7147i) q^{65} +(-12.5547 - 3.36401i) q^{67} +(-6.07551 + 3.50770i) q^{68} +(-11.7641 - 3.15217i) q^{70} +(2.31786 - 8.65035i) q^{71} +(3.38343 + 3.38343i) q^{73} +(1.70433 + 0.983995i) q^{74} +(-1.26031 + 4.70354i) q^{76} +(-3.55328 + 6.15446i) q^{77} +(-5.86001 - 10.1498i) q^{79} +(-3.62177 + 0.970449i) q^{80} +(-1.52561 + 0.880809i) q^{82} +(-3.75798 + 14.0250i) q^{83} +(18.6000 + 18.6000i) q^{85} +(0.0150404 + 0.0561314i) q^{86} +2.18787i q^{88} +(-3.50606 - 13.0848i) q^{89} +(-3.97946 - 11.0146i) q^{91} +(0.720323 - 0.415879i) q^{92} +(-3.02078 - 5.23214i) q^{94} +18.2582 q^{95} +(2.55453 + 9.53363i) q^{97} +(3.42956 + 0.918947i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 4 q^{7} - 56 q^{16} - 8 q^{19} - 4 q^{28} + 8 q^{31} - 24 q^{35} - 4 q^{37} + 36 q^{38} + 48 q^{41} + 12 q^{43} - 60 q^{47} + 24 q^{50} - 4 q^{52} + 120 q^{65} - 56 q^{67} - 24 q^{71} + 28 q^{73} - 48 q^{74} + 4 q^{76} + 24 q^{77} - 24 q^{79} + 60 q^{83} - 48 q^{86} + 4 q^{91} + 24 q^{92} + 20 q^{97} + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 3.62177 0.970449i 1.61970 0.433998i 0.668789 0.743452i \(-0.266813\pi\)
0.950914 + 0.309454i \(0.100146\pi\)
\(6\) 0 0
\(7\) −3.13748 + 0.840685i −1.18586 + 0.317749i −0.797247 0.603653i \(-0.793711\pi\)
−0.388609 + 0.921403i \(0.627044\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) 3.24719 + 1.87476i 1.02685 + 0.592852i
\(11\) 1.54706 1.54706i 0.466456 0.466456i −0.434308 0.900764i \(-0.643007\pi\)
0.900764 + 0.434308i \(0.143007\pi\)
\(12\) 0 0
\(13\) 0.305736 + 3.59257i 0.0847958 + 0.996398i
\(14\) −2.81299 1.62408i −0.751803 0.434054i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 3.50770 + 6.07551i 0.850742 + 1.47353i 0.880540 + 0.473972i \(0.157180\pi\)
−0.0297983 + 0.999556i \(0.509487\pi\)
\(18\) 0 0
\(19\) 4.70354 + 1.26031i 1.07907 + 0.289135i 0.754213 0.656630i \(-0.228019\pi\)
0.324853 + 0.945765i \(0.394685\pi\)
\(20\) 0.970449 + 3.62177i 0.216999 + 0.809852i
\(21\) 0 0
\(22\) 2.18787 0.466456
\(23\) −0.415879 0.720323i −0.0867167 0.150198i 0.819405 0.573215i \(-0.194304\pi\)
−0.906121 + 0.423018i \(0.860971\pi\)
\(24\) 0 0
\(25\) 7.84529 4.52948i 1.56906 0.905896i
\(26\) −2.32414 + 2.75652i −0.455801 + 0.540597i
\(27\) 0 0
\(28\) −0.840685 3.13748i −0.158875 0.592928i
\(29\) 9.26729i 1.72089i −0.509541 0.860447i \(-0.670185\pi\)
0.509541 0.860447i \(-0.329815\pi\)
\(30\) 0 0
\(31\) −0.141470 0.527973i −0.0254087 0.0948267i 0.952057 0.305920i \(-0.0989641\pi\)
−0.977466 + 0.211094i \(0.932297\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 0 0
\(34\) −1.81572 + 6.77635i −0.311393 + 1.16213i
\(35\) −10.5474 + 6.08953i −1.78283 + 1.02932i
\(36\) 0 0
\(37\) 1.90093 0.509353i 0.312511 0.0837372i −0.0991544 0.995072i \(-0.531614\pi\)
0.411666 + 0.911335i \(0.364947\pi\)
\(38\) 2.43473 + 4.21708i 0.394966 + 0.684100i
\(39\) 0 0
\(40\) −1.87476 + 3.24719i −0.296426 + 0.513425i
\(41\) −0.455940 + 1.70159i −0.0712059 + 0.265744i −0.992346 0.123487i \(-0.960592\pi\)
0.921140 + 0.389231i \(0.127259\pi\)
\(42\) 0 0
\(43\) 0.0503260 + 0.0290558i 0.00767465 + 0.00443096i 0.503832 0.863801i \(-0.331923\pi\)
−0.496158 + 0.868232i \(0.665256\pi\)
\(44\) 1.54706 + 1.54706i 0.233228 + 0.233228i
\(45\) 0 0
\(46\) 0.215275 0.803416i 0.0317405 0.118457i
\(47\) −5.83570 1.56367i −0.851224 0.228085i −0.193272 0.981145i \(-0.561910\pi\)
−0.657951 + 0.753060i \(0.728577\pi\)
\(48\) 0 0
\(49\) 3.07486 1.77527i 0.439265 0.253610i
\(50\) 8.75029 + 2.34463i 1.23748 + 0.331581i
\(51\) 0 0
\(52\) −3.59257 + 0.305736i −0.498199 + 0.0423979i
\(53\) 1.62324i 0.222969i −0.993766 0.111484i \(-0.964440\pi\)
0.993766 0.111484i \(-0.0355605\pi\)
\(54\) 0 0
\(55\) 4.10174 7.10443i 0.553079 0.957961i
\(56\) 1.62408 2.81299i 0.217027 0.375901i
\(57\) 0 0
\(58\) 6.55297 6.55297i 0.860447 0.860447i
\(59\) −2.06291 + 2.06291i −0.268568 + 0.268568i −0.828523 0.559955i \(-0.810818\pi\)
0.559955 + 0.828523i \(0.310818\pi\)
\(60\) 0 0
\(61\) −1.78999 + 3.10035i −0.229185 + 0.396959i −0.957567 0.288212i \(-0.906939\pi\)
0.728382 + 0.685171i \(0.240273\pi\)
\(62\) 0.273299 0.473367i 0.0347090 0.0601177i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 4.59371 + 12.7147i 0.569779 + 1.57707i
\(66\) 0 0
\(67\) −12.5547 3.36401i −1.53380 0.410979i −0.609541 0.792755i \(-0.708646\pi\)
−0.924255 + 0.381775i \(0.875313\pi\)
\(68\) −6.07551 + 3.50770i −0.736764 + 0.425371i
\(69\) 0 0
\(70\) −11.7641 3.15217i −1.40608 0.376757i
\(71\) 2.31786 8.65035i 0.275079 1.02661i −0.680710 0.732553i \(-0.738329\pi\)
0.955789 0.294055i \(-0.0950048\pi\)
\(72\) 0 0
\(73\) 3.38343 + 3.38343i 0.396001 + 0.396001i 0.876820 0.480819i \(-0.159661\pi\)
−0.480819 + 0.876820i \(0.659661\pi\)
\(74\) 1.70433 + 0.983995i 0.198124 + 0.114387i
\(75\) 0 0
\(76\) −1.26031 + 4.70354i −0.144567 + 0.539533i
\(77\) −3.55328 + 6.15446i −0.404934 + 0.701366i
\(78\) 0 0
\(79\) −5.86001 10.1498i −0.659302 1.14194i −0.980797 0.195033i \(-0.937518\pi\)
0.321494 0.946911i \(-0.395815\pi\)
\(80\) −3.62177 + 0.970449i −0.404926 + 0.108500i
\(81\) 0 0
\(82\) −1.52561 + 0.880809i −0.168475 + 0.0972691i
\(83\) −3.75798 + 14.0250i −0.412492 + 1.53944i 0.377315 + 0.926085i \(0.376848\pi\)
−0.789807 + 0.613356i \(0.789819\pi\)
\(84\) 0 0
\(85\) 18.6000 + 18.6000i 2.01746 + 2.01746i
\(86\) 0.0150404 + 0.0561314i 0.00162184 + 0.00605280i
\(87\) 0 0
\(88\) 2.18787i 0.233228i
\(89\) −3.50606 13.0848i −0.371642 1.38699i −0.858190 0.513332i \(-0.828411\pi\)
0.486548 0.873654i \(-0.338256\pi\)
\(90\) 0 0
\(91\) −3.97946 11.0146i −0.417160 1.15464i
\(92\) 0.720323 0.415879i 0.0750989 0.0433583i
\(93\) 0 0
\(94\) −3.02078 5.23214i −0.311570 0.539654i
\(95\) 18.2582 1.87325
\(96\) 0 0
\(97\) 2.55453 + 9.53363i 0.259373 + 0.967993i 0.965605 + 0.260013i \(0.0837268\pi\)
−0.706232 + 0.707980i \(0.749607\pi\)
\(98\) 3.42956 + 0.918947i 0.346438 + 0.0928277i
\(99\) 0 0
\(100\) 4.52948 + 7.84529i 0.452948 + 0.784529i
\(101\) −4.39893 −0.437710 −0.218855 0.975757i \(-0.570232\pi\)
−0.218855 + 0.975757i \(0.570232\pi\)
\(102\) 0 0
\(103\) −8.09876 4.67582i −0.797994 0.460722i 0.0447750 0.998997i \(-0.485743\pi\)
−0.842769 + 0.538275i \(0.819076\pi\)
\(104\) −2.75652 2.32414i −0.270299 0.227901i
\(105\) 0 0
\(106\) 1.14780 1.14780i 0.111484 0.111484i
\(107\) −4.41803 2.55075i −0.427107 0.246590i 0.271007 0.962577i \(-0.412643\pi\)
−0.698113 + 0.715987i \(0.745977\pi\)
\(108\) 0 0
\(109\) −0.923072 + 0.923072i −0.0884142 + 0.0884142i −0.749931 0.661516i \(-0.769913\pi\)
0.661516 + 0.749931i \(0.269913\pi\)
\(110\) 7.92396 2.12322i 0.755520 0.202441i
\(111\) 0 0
\(112\) 3.13748 0.840685i 0.296464 0.0794373i
\(113\) 11.5693i 1.08835i −0.838971 0.544176i \(-0.816842\pi\)
0.838971 0.544176i \(-0.183158\pi\)
\(114\) 0 0
\(115\) −2.20525 2.20525i −0.205641 0.205641i
\(116\) 9.26729 0.860447
\(117\) 0 0
\(118\) −2.91739 −0.268568
\(119\) −16.1129 16.1129i −1.47707 1.47707i
\(120\) 0 0
\(121\) 6.21322i 0.564838i
\(122\) −3.45799 + 0.926566i −0.313072 + 0.0838874i
\(123\) 0 0
\(124\) 0.527973 0.141470i 0.0474133 0.0127044i
\(125\) 10.7616 10.7616i 0.962547 0.962547i
\(126\) 0 0
\(127\) 2.86070 + 1.65163i 0.253846 + 0.146558i 0.621524 0.783395i \(-0.286514\pi\)
−0.367678 + 0.929953i \(0.619847\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 0 0
\(130\) −5.74243 + 12.2389i −0.503645 + 1.07342i
\(131\) −9.54763 5.51233i −0.834181 0.481614i 0.0211014 0.999777i \(-0.493283\pi\)
−0.855282 + 0.518163i \(0.826616\pi\)
\(132\) 0 0
\(133\) −15.8168 −1.37149
\(134\) −6.49877 11.2562i −0.561408 0.972388i
\(135\) 0 0
\(136\) −6.77635 1.81572i −0.581067 0.155697i
\(137\) −2.94490 10.9905i −0.251600 0.938984i −0.969950 0.243303i \(-0.921769\pi\)
0.718350 0.695682i \(-0.244898\pi\)
\(138\) 0 0
\(139\) 3.67668 0.311852 0.155926 0.987769i \(-0.450164\pi\)
0.155926 + 0.987769i \(0.450164\pi\)
\(140\) −6.08953 10.5474i −0.514659 0.891416i
\(141\) 0 0
\(142\) 7.75569 4.47775i 0.650843 0.375765i
\(143\) 6.03090 + 5.08492i 0.504329 + 0.425222i
\(144\) 0 0
\(145\) −8.99344 33.5640i −0.746864 2.78734i
\(146\) 4.78490i 0.396001i
\(147\) 0 0
\(148\) 0.509353 + 1.90093i 0.0418686 + 0.156256i
\(149\) −6.41670 6.41670i −0.525676 0.525676i 0.393604 0.919280i \(-0.371228\pi\)
−0.919280 + 0.393604i \(0.871228\pi\)
\(150\) 0 0
\(151\) 4.88320 18.2244i 0.397389 1.48308i −0.420283 0.907393i \(-0.638069\pi\)
0.817672 0.575684i \(-0.195264\pi\)
\(152\) −4.21708 + 2.43473i −0.342050 + 0.197483i
\(153\) 0 0
\(154\) −6.86441 + 1.83931i −0.553150 + 0.148216i
\(155\) −1.02474 1.77490i −0.0823092 0.142564i
\(156\) 0 0
\(157\) 11.0256 19.0969i 0.879939 1.52410i 0.0285320 0.999593i \(-0.490917\pi\)
0.851407 0.524506i \(-0.175750\pi\)
\(158\) 3.03336 11.3207i 0.241321 0.900623i
\(159\) 0 0
\(160\) −3.24719 1.87476i −0.256713 0.148213i
\(161\) 1.91038 + 1.91038i 0.150559 + 0.150559i
\(162\) 0 0
\(163\) −1.64426 + 6.13647i −0.128789 + 0.480646i −0.999946 0.0103577i \(-0.996703\pi\)
0.871158 + 0.491003i \(0.163370\pi\)
\(164\) −1.70159 0.455940i −0.132872 0.0356030i
\(165\) 0 0
\(166\) −12.5744 + 7.25986i −0.975967 + 0.563475i
\(167\) 8.50863 + 2.27988i 0.658417 + 0.176422i 0.572532 0.819883i \(-0.305961\pi\)
0.0858858 + 0.996305i \(0.472628\pi\)
\(168\) 0 0
\(169\) −12.8131 + 2.19675i −0.985619 + 0.168981i
\(170\) 26.3044i 2.01746i
\(171\) 0 0
\(172\) −0.0290558 + 0.0503260i −0.00221548 + 0.00383732i
\(173\) 0.0252410 0.0437187i 0.00191904 0.00332387i −0.865064 0.501661i \(-0.832722\pi\)
0.866983 + 0.498337i \(0.166056\pi\)
\(174\) 0 0
\(175\) −20.8066 + 20.8066i −1.57283 + 1.57283i
\(176\) −1.54706 + 1.54706i −0.116614 + 0.116614i
\(177\) 0 0
\(178\) 6.77319 11.7315i 0.507672 0.879314i
\(179\) 3.55609 6.15933i 0.265795 0.460370i −0.701977 0.712200i \(-0.747699\pi\)
0.967772 + 0.251830i \(0.0810323\pi\)
\(180\) 0 0
\(181\) 20.6330i 1.53364i 0.641863 + 0.766820i \(0.278162\pi\)
−0.641863 + 0.766820i \(0.721838\pi\)
\(182\) 4.97458 10.6024i 0.368741 0.785901i
\(183\) 0 0
\(184\) 0.803416 + 0.215275i 0.0592286 + 0.0158703i
\(185\) 6.39043 3.68952i 0.469834 0.271259i
\(186\) 0 0
\(187\) 14.8258 + 3.97256i 1.08417 + 0.290502i
\(188\) 1.56367 5.83570i 0.114042 0.425612i
\(189\) 0 0
\(190\) 12.9105 + 12.9105i 0.936625 + 0.936625i
\(191\) 19.4788 + 11.2461i 1.40944 + 0.813738i 0.995334 0.0964927i \(-0.0307624\pi\)
0.414102 + 0.910231i \(0.364096\pi\)
\(192\) 0 0
\(193\) 1.74990 6.53071i 0.125961 0.470091i −0.873912 0.486085i \(-0.838425\pi\)
0.999872 + 0.0159939i \(0.00509122\pi\)
\(194\) −4.93497 + 8.54762i −0.354310 + 0.613683i
\(195\) 0 0
\(196\) 1.77527 + 3.07486i 0.126805 + 0.219633i
\(197\) 5.95380 1.59532i 0.424191 0.113662i −0.0404072 0.999183i \(-0.512866\pi\)
0.464598 + 0.885522i \(0.346199\pi\)
\(198\) 0 0
\(199\) 3.29772 1.90394i 0.233769 0.134967i −0.378541 0.925585i \(-0.623574\pi\)
0.612310 + 0.790618i \(0.290241\pi\)
\(200\) −2.34463 + 8.75029i −0.165791 + 0.618739i
\(201\) 0 0
\(202\) −3.11051 3.11051i −0.218855 0.218855i
\(203\) 7.79088 + 29.0760i 0.546813 + 2.04073i
\(204\) 0 0
\(205\) 6.60524i 0.461330i
\(206\) −2.42038 9.03299i −0.168636 0.629358i
\(207\) 0 0
\(208\) −0.305736 3.59257i −0.0211989 0.249100i
\(209\) 9.22643 5.32688i 0.638205 0.368468i
\(210\) 0 0
\(211\) 9.59387 + 16.6171i 0.660469 + 1.14397i 0.980493 + 0.196556i \(0.0629758\pi\)
−0.320024 + 0.947410i \(0.603691\pi\)
\(212\) 1.62324 0.111484
\(213\) 0 0
\(214\) −1.32036 4.92767i −0.0902582 0.336848i
\(215\) 0.210466 + 0.0563943i 0.0143537 + 0.00384606i
\(216\) 0 0
\(217\) 0.887718 + 1.53757i 0.0602622 + 0.104377i
\(218\) −1.30542 −0.0884142
\(219\) 0 0
\(220\) 7.10443 + 4.10174i 0.478980 + 0.276539i
\(221\) −20.7542 + 14.4591i −1.39608 + 0.972627i
\(222\) 0 0
\(223\) 0.198374 0.198374i 0.0132841 0.0132841i −0.700434 0.713718i \(-0.747010\pi\)
0.713718 + 0.700434i \(0.247010\pi\)
\(224\) 2.81299 + 1.62408i 0.187951 + 0.108513i
\(225\) 0 0
\(226\) 8.18076 8.18076i 0.544176 0.544176i
\(227\) −12.3064 + 3.29749i −0.816804 + 0.218862i −0.642949 0.765909i \(-0.722289\pi\)
−0.173856 + 0.984771i \(0.555623\pi\)
\(228\) 0 0
\(229\) 4.16011 1.11470i 0.274908 0.0736613i −0.118731 0.992926i \(-0.537883\pi\)
0.393639 + 0.919265i \(0.371216\pi\)
\(230\) 3.11870i 0.205641i
\(231\) 0 0
\(232\) 6.55297 + 6.55297i 0.430223 + 0.430223i
\(233\) 21.0744 1.38063 0.690313 0.723511i \(-0.257473\pi\)
0.690313 + 0.723511i \(0.257473\pi\)
\(234\) 0 0
\(235\) −22.6530 −1.47772
\(236\) −2.06291 2.06291i −0.134284 0.134284i
\(237\) 0 0
\(238\) 22.7871i 1.47707i
\(239\) −12.5730 + 3.36892i −0.813278 + 0.217917i −0.641406 0.767202i \(-0.721648\pi\)
−0.171873 + 0.985119i \(0.554982\pi\)
\(240\) 0 0
\(241\) −1.20385 + 0.322572i −0.0775471 + 0.0207787i −0.297384 0.954758i \(-0.596114\pi\)
0.219837 + 0.975537i \(0.429447\pi\)
\(242\) −4.39341 + 4.39341i −0.282419 + 0.282419i
\(243\) 0 0
\(244\) −3.10035 1.78999i −0.198480 0.114592i
\(245\) 9.41360 9.41360i 0.601413 0.601413i
\(246\) 0 0
\(247\) −3.08971 + 17.2831i −0.196593 + 1.09970i
\(248\) 0.473367 + 0.273299i 0.0300588 + 0.0173545i
\(249\) 0 0
\(250\) 15.2192 0.962547
\(251\) −5.64794 9.78252i −0.356495 0.617467i 0.630878 0.775882i \(-0.282695\pi\)
−0.987373 + 0.158415i \(0.949362\pi\)
\(252\) 0 0
\(253\) −1.75777 0.470993i −0.110510 0.0296111i
\(254\) 0.854944 + 3.19070i 0.0536440 + 0.200202i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 0.813117 + 1.40836i 0.0507209 + 0.0878511i 0.890271 0.455431i \(-0.150515\pi\)
−0.839550 + 0.543282i \(0.817181\pi\)
\(258\) 0 0
\(259\) −5.53593 + 3.19617i −0.343986 + 0.198601i
\(260\) −12.7147 + 4.59371i −0.788534 + 0.284890i
\(261\) 0 0
\(262\) −2.85339 10.6490i −0.176283 0.657897i
\(263\) 11.3766i 0.701511i 0.936467 + 0.350755i \(0.114075\pi\)
−0.936467 + 0.350755i \(0.885925\pi\)
\(264\) 0 0
\(265\) −1.57527 5.87898i −0.0967680 0.361143i
\(266\) −11.1842 11.1842i −0.685745 0.685745i
\(267\) 0 0
\(268\) 3.36401 12.5547i 0.205490 0.766898i
\(269\) −10.3721 + 5.98835i −0.632400 + 0.365116i −0.781681 0.623678i \(-0.785637\pi\)
0.149281 + 0.988795i \(0.452304\pi\)
\(270\) 0 0
\(271\) 23.9876 6.42745i 1.45714 0.390440i 0.558640 0.829410i \(-0.311323\pi\)
0.898502 + 0.438970i \(0.144657\pi\)
\(272\) −3.50770 6.07551i −0.212685 0.368382i
\(273\) 0 0
\(274\) 5.68912 9.85384i 0.343692 0.595292i
\(275\) 5.12975 19.1445i 0.309336 1.15446i
\(276\) 0 0
\(277\) −13.5548 7.82589i −0.814432 0.470212i 0.0340608 0.999420i \(-0.489156\pi\)
−0.848493 + 0.529207i \(0.822489\pi\)
\(278\) 2.59981 + 2.59981i 0.155926 + 0.155926i
\(279\) 0 0
\(280\) 3.15217 11.7641i 0.188378 0.703038i
\(281\) −4.25406 1.13987i −0.253776 0.0679991i 0.129688 0.991555i \(-0.458602\pi\)
−0.383464 + 0.923556i \(0.625269\pi\)
\(282\) 0 0
\(283\) 15.8083 9.12694i 0.939707 0.542540i 0.0498385 0.998757i \(-0.484129\pi\)
0.889868 + 0.456217i \(0.150796\pi\)
\(284\) 8.65035 + 2.31786i 0.513304 + 0.137539i
\(285\) 0 0
\(286\) 0.668910 + 7.86007i 0.0395535 + 0.464776i
\(287\) 5.72202i 0.337760i
\(288\) 0 0
\(289\) −16.1079 + 27.8997i −0.947523 + 1.64116i
\(290\) 17.3740 30.0926i 1.02024 1.76710i
\(291\) 0 0
\(292\) −3.38343 + 3.38343i −0.198000 + 0.198000i
\(293\) −7.90296 + 7.90296i −0.461696 + 0.461696i −0.899211 0.437515i \(-0.855859\pi\)
0.437515 + 0.899211i \(0.355859\pi\)
\(294\) 0 0
\(295\) −5.46942 + 9.47332i −0.318442 + 0.551558i
\(296\) −0.983995 + 1.70433i −0.0571936 + 0.0990622i
\(297\) 0 0
\(298\) 9.07458i 0.525676i
\(299\) 2.46066 1.71430i 0.142304 0.0991405i
\(300\) 0 0
\(301\) −0.182324 0.0488535i −0.0105090 0.00281587i
\(302\) 16.3395 9.43362i 0.940234 0.542844i
\(303\) 0 0
\(304\) −4.70354 1.26031i −0.269767 0.0722837i
\(305\) −3.47419 + 12.9658i −0.198931 + 0.742422i
\(306\) 0 0
\(307\) −14.9777 14.9777i −0.854823 0.854823i 0.135900 0.990723i \(-0.456608\pi\)
−0.990723 + 0.135900i \(0.956608\pi\)
\(308\) −6.15446 3.55328i −0.350683 0.202467i
\(309\) 0 0
\(310\) 0.530445 1.97965i 0.0301273 0.112436i
\(311\) −6.94304 + 12.0257i −0.393704 + 0.681915i −0.992935 0.118661i \(-0.962140\pi\)
0.599231 + 0.800576i \(0.295473\pi\)
\(312\) 0 0
\(313\) 4.79094 + 8.29816i 0.270800 + 0.469040i 0.969067 0.246798i \(-0.0793784\pi\)
−0.698267 + 0.715838i \(0.746045\pi\)
\(314\) 21.2998 5.70727i 1.20202 0.322080i
\(315\) 0 0
\(316\) 10.1498 5.86001i 0.570972 0.329651i
\(317\) −4.16793 + 15.5549i −0.234095 + 0.873653i 0.744460 + 0.667667i \(0.232707\pi\)
−0.978555 + 0.205986i \(0.933960\pi\)
\(318\) 0 0
\(319\) −14.3370 14.3370i −0.802721 0.802721i
\(320\) −0.970449 3.62177i −0.0542498 0.202463i
\(321\) 0 0
\(322\) 2.70168i 0.150559i
\(323\) 8.84157 + 32.9972i 0.491958 + 1.83601i
\(324\) 0 0
\(325\) 18.6710 + 26.7999i 1.03568 + 1.48659i
\(326\) −5.50181 + 3.17647i −0.304717 + 0.175928i
\(327\) 0 0
\(328\) −0.880809 1.52561i −0.0486345 0.0842375i
\(329\) 19.6239 1.08190
\(330\) 0 0
\(331\) 1.91411 + 7.14356i 0.105209 + 0.392646i 0.998369 0.0570939i \(-0.0181834\pi\)
−0.893160 + 0.449740i \(0.851517\pi\)
\(332\) −14.0250 3.75798i −0.769721 0.206246i
\(333\) 0 0
\(334\) 4.40439 + 7.62863i 0.240998 + 0.417420i
\(335\) −48.7346 −2.66266
\(336\) 0 0
\(337\) −16.2869 9.40326i −0.887205 0.512228i −0.0141778 0.999899i \(-0.504513\pi\)
−0.873027 + 0.487671i \(0.837846\pi\)
\(338\) −10.6135 7.50686i −0.577300 0.408319i
\(339\) 0 0
\(340\) −18.6000 + 18.6000i −1.00873 + 1.00873i
\(341\) −1.03567 0.597942i −0.0560845 0.0323804i
\(342\) 0 0
\(343\) 7.92271 7.92271i 0.427786 0.427786i
\(344\) −0.0561314 + 0.0150404i −0.00302640 + 0.000810922i
\(345\) 0 0
\(346\) 0.0487619 0.0130657i 0.00262145 0.000702417i
\(347\) 24.7596i 1.32916i 0.747215 + 0.664582i \(0.231390\pi\)
−0.747215 + 0.664582i \(0.768610\pi\)
\(348\) 0 0
\(349\) 2.41492 + 2.41492i 0.129267 + 0.129267i 0.768780 0.639513i \(-0.220864\pi\)
−0.639513 + 0.768780i \(0.720864\pi\)
\(350\) −29.4250 −1.57283
\(351\) 0 0
\(352\) −2.18787 −0.116614
\(353\) −3.14228 3.14228i −0.167247 0.167247i 0.618521 0.785768i \(-0.287732\pi\)
−0.785768 + 0.618521i \(0.787732\pi\)
\(354\) 0 0
\(355\) 33.5789i 1.78218i
\(356\) 13.0848 3.50606i 0.693493 0.185821i
\(357\) 0 0
\(358\) 6.86984 1.84077i 0.363082 0.0972876i
\(359\) 1.76025 1.76025i 0.0929022 0.0929022i −0.659128 0.752031i \(-0.729075\pi\)
0.752031 + 0.659128i \(0.229075\pi\)
\(360\) 0 0
\(361\) 4.08043 + 2.35584i 0.214759 + 0.123991i
\(362\) −14.5897 + 14.5897i −0.766820 + 0.766820i
\(363\) 0 0
\(364\) 11.0146 3.97946i 0.577321 0.208580i
\(365\) 15.5375 + 8.97055i 0.813268 + 0.469540i
\(366\) 0 0
\(367\) 8.15098 0.425478 0.212739 0.977109i \(-0.431762\pi\)
0.212739 + 0.977109i \(0.431762\pi\)
\(368\) 0.415879 + 0.720323i 0.0216792 + 0.0375494i
\(369\) 0 0
\(370\) 7.12760 + 1.90984i 0.370546 + 0.0992876i
\(371\) 1.36463 + 5.09287i 0.0708481 + 0.264409i
\(372\) 0 0
\(373\) 23.6763 1.22591 0.612956 0.790117i \(-0.289980\pi\)
0.612956 + 0.790117i \(0.289980\pi\)
\(374\) 7.67439 + 13.2924i 0.396833 + 0.687336i
\(375\) 0 0
\(376\) 5.23214 3.02078i 0.269827 0.155785i
\(377\) 33.2934 2.83334i 1.71470 0.145925i
\(378\) 0 0
\(379\) 2.92796 + 10.9273i 0.150399 + 0.561297i 0.999456 + 0.0329946i \(0.0105044\pi\)
−0.849057 + 0.528302i \(0.822829\pi\)
\(380\) 18.2582i 0.936625i
\(381\) 0 0
\(382\) 5.82140 + 21.7258i 0.297849 + 1.11159i
\(383\) 21.2432 + 21.2432i 1.08548 + 1.08548i 0.995988 + 0.0894896i \(0.0285236\pi\)
0.0894896 + 0.995988i \(0.471476\pi\)
\(384\) 0 0
\(385\) −6.89655 + 25.7383i −0.351481 + 1.31174i
\(386\) 5.85528 3.38055i 0.298026 0.172065i
\(387\) 0 0
\(388\) −9.53363 + 2.55453i −0.483997 + 0.129687i
\(389\) −4.55590 7.89104i −0.230993 0.400092i 0.727108 0.686524i \(-0.240864\pi\)
−0.958101 + 0.286432i \(0.907531\pi\)
\(390\) 0 0
\(391\) 2.91755 5.05335i 0.147547 0.255559i
\(392\) −0.918947 + 3.42956i −0.0464138 + 0.173219i
\(393\) 0 0
\(394\) 5.33803 + 3.08191i 0.268926 + 0.155265i
\(395\) −31.0735 31.0735i −1.56348 1.56348i
\(396\) 0 0
\(397\) −2.78992 + 10.4121i −0.140022 + 0.522570i 0.859904 + 0.510455i \(0.170523\pi\)
−0.999927 + 0.0121147i \(0.996144\pi\)
\(398\) 3.67812 + 0.985551i 0.184368 + 0.0494012i
\(399\) 0 0
\(400\) −7.84529 + 4.52948i −0.392265 + 0.226474i
\(401\) −11.4714 3.07374i −0.572852 0.153495i −0.0392478 0.999230i \(-0.512496\pi\)
−0.533604 + 0.845734i \(0.679163\pi\)
\(402\) 0 0
\(403\) 1.85352 0.669660i 0.0923306 0.0333581i
\(404\) 4.39893i 0.218855i
\(405\) 0 0
\(406\) −15.0508 + 26.0688i −0.746960 + 1.29377i
\(407\) 2.15286 3.72885i 0.106713 0.184832i
\(408\) 0 0
\(409\) −15.1835 + 15.1835i −0.750777 + 0.750777i −0.974624 0.223847i \(-0.928138\pi\)
0.223847 + 0.974624i \(0.428138\pi\)
\(410\) −4.67061 + 4.67061i −0.230665 + 0.230665i
\(411\) 0 0
\(412\) 4.67582 8.09876i 0.230361 0.398997i
\(413\) 4.73808 8.20659i 0.233146 0.403820i
\(414\) 0 0
\(415\) 54.4421i 2.67246i
\(416\) 2.32414 2.75652i 0.113950 0.135149i
\(417\) 0 0
\(418\) 10.2907 + 2.75740i 0.503337 + 0.134869i
\(419\) 9.35158 5.39914i 0.456855 0.263765i −0.253866 0.967239i \(-0.581702\pi\)
0.710721 + 0.703474i \(0.248369\pi\)
\(420\) 0 0
\(421\) 6.34283 + 1.69956i 0.309131 + 0.0828313i 0.410049 0.912063i \(-0.365512\pi\)
−0.100919 + 0.994895i \(0.532178\pi\)
\(422\) −4.96615 + 18.5339i −0.241748 + 0.902217i
\(423\) 0 0
\(424\) 1.14780 + 1.14780i 0.0557422 + 0.0557422i
\(425\) 55.0378 + 31.7761i 2.66973 + 1.54137i
\(426\) 0 0
\(427\) 3.00963 11.2321i 0.145646 0.543560i
\(428\) 2.55075 4.41803i 0.123295 0.213553i
\(429\) 0 0
\(430\) 0.108945 + 0.188699i 0.00525381 + 0.00909987i
\(431\) −5.36331 + 1.43709i −0.258341 + 0.0692224i −0.385665 0.922639i \(-0.626028\pi\)
0.127324 + 0.991861i \(0.459361\pi\)
\(432\) 0 0
\(433\) 31.1666 17.9940i 1.49777 0.864737i 0.497773 0.867308i \(-0.334151\pi\)
0.999997 + 0.00257012i \(0.000818096\pi\)
\(434\) −0.459516 + 1.71494i −0.0220575 + 0.0823197i
\(435\) 0 0
\(436\) −0.923072 0.923072i −0.0442071 0.0442071i
\(437\) −1.04827 3.91220i −0.0501456 0.187146i
\(438\) 0 0
\(439\) 20.3140i 0.969533i 0.874644 + 0.484767i \(0.161095\pi\)
−0.874644 + 0.484767i \(0.838905\pi\)
\(440\) 2.12322 + 7.92396i 0.101220 + 0.377760i
\(441\) 0 0
\(442\) −24.8996 4.45131i −1.18435 0.211727i
\(443\) 16.2468 9.38011i 0.771910 0.445662i −0.0616456 0.998098i \(-0.519635\pi\)
0.833556 + 0.552436i \(0.186302\pi\)
\(444\) 0 0
\(445\) −25.3963 43.9876i −1.20390 2.08521i
\(446\) 0.280543 0.0132841
\(447\) 0 0
\(448\) 0.840685 + 3.13748i 0.0397187 + 0.148232i
\(449\) −15.3460 4.11194i −0.724221 0.194055i −0.122167 0.992510i \(-0.538984\pi\)
−0.602054 + 0.798455i \(0.705651\pi\)
\(450\) 0 0
\(451\) 1.92710 + 3.33783i 0.0907435 + 0.157172i
\(452\) 11.5693 0.544176
\(453\) 0 0
\(454\) −11.0336 6.37026i −0.517833 0.298971i
\(455\) −25.1018 36.0304i −1.17679 1.68913i
\(456\) 0 0
\(457\) −0.620379 + 0.620379i −0.0290201 + 0.0290201i −0.721468 0.692448i \(-0.756532\pi\)
0.692448 + 0.721468i \(0.256532\pi\)
\(458\) 3.72985 + 2.15343i 0.174285 + 0.100623i
\(459\) 0 0
\(460\) 2.20525 2.20525i 0.102820 0.102820i
\(461\) −22.4997 + 6.02877i −1.04792 + 0.280788i −0.741390 0.671074i \(-0.765833\pi\)
−0.306525 + 0.951863i \(0.599166\pi\)
\(462\) 0 0
\(463\) −17.4167 + 4.66680i −0.809424 + 0.216885i −0.639718 0.768610i \(-0.720949\pi\)
−0.169707 + 0.985495i \(0.554282\pi\)
\(464\) 9.26729i 0.430223i
\(465\) 0 0
\(466\) 14.9018 + 14.9018i 0.690313 + 0.690313i
\(467\) −24.8989 −1.15218 −0.576091 0.817386i \(-0.695423\pi\)
−0.576091 + 0.817386i \(0.695423\pi\)
\(468\) 0 0
\(469\) 42.2181 1.94945
\(470\) −16.0181 16.0181i −0.738859 0.738859i
\(471\) 0 0
\(472\) 2.91739i 0.134284i
\(473\) 0.122808 0.0329064i 0.00564673 0.00151304i
\(474\) 0 0
\(475\) 42.6092 11.4171i 1.95504 0.523852i
\(476\) 16.1129 16.1129i 0.738535 0.738535i
\(477\) 0 0
\(478\) −11.2726 6.50825i −0.515598 0.297681i
\(479\) 5.37507 5.37507i 0.245593 0.245593i −0.573566 0.819159i \(-0.694440\pi\)
0.819159 + 0.573566i \(0.194440\pi\)
\(480\) 0 0
\(481\) 2.41107 + 6.67350i 0.109935 + 0.304285i
\(482\) −1.07935 0.623161i −0.0491629 0.0283842i
\(483\) 0 0
\(484\) −6.21322 −0.282419
\(485\) 18.5038 + 32.0495i 0.840215 + 1.45529i
\(486\) 0 0
\(487\) −32.0391 8.58485i −1.45183 0.389017i −0.555171 0.831736i \(-0.687347\pi\)
−0.896660 + 0.442720i \(0.854014\pi\)
\(488\) −0.926566 3.45799i −0.0419437 0.156536i
\(489\) 0 0
\(490\) 13.3128 0.601413
\(491\) 12.9239 + 22.3849i 0.583248 + 1.01022i 0.995091 + 0.0989607i \(0.0315518\pi\)
−0.411843 + 0.911255i \(0.635115\pi\)
\(492\) 0 0
\(493\) 56.3035 32.5069i 2.53578 1.46404i
\(494\) −14.4057 + 10.0362i −0.648145 + 0.451552i
\(495\) 0 0
\(496\) 0.141470 + 0.527973i 0.00635218 + 0.0237067i
\(497\) 29.0889i 1.30482i
\(498\) 0 0
\(499\) −4.22357 15.7626i −0.189073 0.705629i −0.993722 0.111879i \(-0.964313\pi\)
0.804649 0.593751i \(-0.202353\pi\)
\(500\) 10.7616 + 10.7616i 0.481273 + 0.481273i
\(501\) 0 0
\(502\) 2.92359 10.9110i 0.130486 0.486981i
\(503\) 6.80210 3.92720i 0.303291 0.175105i −0.340630 0.940198i \(-0.610640\pi\)
0.643920 + 0.765093i \(0.277307\pi\)
\(504\) 0 0
\(505\) −15.9319 + 4.26894i −0.708960 + 0.189965i
\(506\) −0.909889 1.57597i −0.0404495 0.0700606i
\(507\) 0 0
\(508\) −1.65163 + 2.86070i −0.0732790 + 0.126923i
\(509\) 6.70498 25.0233i 0.297193 1.10914i −0.642267 0.766481i \(-0.722006\pi\)
0.939460 0.342659i \(-0.111328\pi\)
\(510\) 0 0
\(511\) −13.4599 7.77105i −0.595429 0.343771i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −0.420900 + 1.57082i −0.0185651 + 0.0692860i
\(515\) −33.8695 9.07529i −1.49247 0.399905i
\(516\) 0 0
\(517\) −11.4473 + 6.60908i −0.503450 + 0.290667i
\(518\) −6.17453 1.65446i −0.271293 0.0726928i
\(519\) 0 0
\(520\) −12.2389 5.74243i −0.536712 0.251822i
\(521\) 44.6910i 1.95795i 0.203981 + 0.978975i \(0.434612\pi\)
−0.203981 + 0.978975i \(0.565388\pi\)
\(522\) 0 0
\(523\) 2.38397 4.12916i 0.104244 0.180556i −0.809185 0.587554i \(-0.800091\pi\)
0.913429 + 0.406998i \(0.133424\pi\)
\(524\) 5.51233 9.54763i 0.240807 0.417090i
\(525\) 0 0
\(526\) −8.04447 + 8.04447i −0.350755 + 0.350755i
\(527\) 2.71147 2.71147i 0.118113 0.118113i
\(528\) 0 0
\(529\) 11.1541 19.3195i 0.484960 0.839976i
\(530\) 3.04319 5.27095i 0.132188 0.228956i
\(531\) 0 0
\(532\) 15.8168i 0.685745i
\(533\) −6.25248 1.11776i −0.270825 0.0484155i
\(534\) 0 0
\(535\) −18.4764 4.95074i −0.798806 0.214039i
\(536\) 11.2562 6.49877i 0.486194 0.280704i
\(537\) 0 0
\(538\) −11.5686 3.09980i −0.498758 0.133642i
\(539\) 2.01054 7.50343i 0.0866000 0.323196i
\(540\) 0 0
\(541\) −31.0921 31.0921i −1.33675 1.33675i −0.899187 0.437565i \(-0.855841\pi\)
−0.437565 0.899187i \(-0.644159\pi\)
\(542\) 21.5067 + 12.4169i 0.923791 + 0.533351i
\(543\) 0 0
\(544\) 1.81572 6.77635i 0.0778483 0.290534i
\(545\) −2.44736 + 4.23894i −0.104833 + 0.181576i
\(546\) 0 0
\(547\) 7.14869 + 12.3819i 0.305656 + 0.529412i 0.977407 0.211365i \(-0.0677910\pi\)
−0.671751 + 0.740777i \(0.734458\pi\)
\(548\) 10.9905 2.94490i 0.469492 0.125800i
\(549\) 0 0
\(550\) 17.1645 9.90992i 0.731896 0.422561i
\(551\) 11.6797 43.5891i 0.497570 1.85696i
\(552\) 0 0
\(553\) 26.9185 + 26.9185i 1.14469 + 1.14469i
\(554\) −4.05098 15.1185i −0.172110 0.642322i
\(555\) 0 0
\(556\) 3.67668i 0.155926i
\(557\) −11.2642 42.0386i −0.477280 1.78123i −0.612557 0.790426i \(-0.709859\pi\)
0.135277 0.990808i \(-0.456807\pi\)
\(558\) 0 0
\(559\) −0.0889982 + 0.189683i −0.00376422 + 0.00802273i
\(560\) 10.5474 6.08953i 0.445708 0.257330i
\(561\) 0 0
\(562\) −2.20206 3.81409i −0.0928885 0.160888i
\(563\) −7.46962 −0.314807 −0.157403 0.987534i \(-0.550312\pi\)
−0.157403 + 0.987534i \(0.550312\pi\)
\(564\) 0 0
\(565\) −11.2275 41.9015i −0.472343 1.76281i
\(566\) 17.6319 + 4.72445i 0.741124 + 0.198583i
\(567\) 0 0
\(568\) 4.47775 + 7.75569i 0.187882 + 0.325422i
\(569\) 41.3056 1.73162 0.865810 0.500373i \(-0.166804\pi\)
0.865810 + 0.500373i \(0.166804\pi\)
\(570\) 0 0
\(571\) 38.0908 + 21.9917i 1.59405 + 0.920326i 0.992602 + 0.121415i \(0.0387432\pi\)
0.601449 + 0.798911i \(0.294590\pi\)
\(572\) −5.08492 + 6.03090i −0.212611 + 0.252165i
\(573\) 0 0
\(574\) 4.04608 4.04608i 0.168880 0.168880i
\(575\) −6.52538 3.76743i −0.272127 0.157113i
\(576\) 0 0
\(577\) −27.8109 + 27.8109i −1.15778 + 1.15778i −0.172831 + 0.984952i \(0.555291\pi\)
−0.984952 + 0.172831i \(0.944709\pi\)
\(578\) −31.1180 + 8.33806i −1.29434 + 0.346817i
\(579\) 0 0
\(580\) 33.5640 8.99344i 1.39367 0.373432i
\(581\) 47.1624i 1.95663i
\(582\) 0 0
\(583\) −2.51124 2.51124i −0.104005 0.104005i
\(584\) −4.78490 −0.198000
\(585\) 0 0
\(586\) −11.1765 −0.461696
\(587\) −7.42299 7.42299i −0.306380 0.306380i 0.537124 0.843503i \(-0.319511\pi\)
−0.843503 + 0.537124i \(0.819511\pi\)
\(588\) 0 0
\(589\) 2.66164i 0.109671i
\(590\) −10.5661 + 2.83118i −0.435000 + 0.116558i
\(591\) 0 0
\(592\) −1.90093 + 0.509353i −0.0781279 + 0.0209343i
\(593\) −24.8672 + 24.8672i −1.02117 + 1.02117i −0.0214039 + 0.999771i \(0.506814\pi\)
−0.999771 + 0.0214039i \(0.993186\pi\)
\(594\) 0 0
\(595\) −73.9940 42.7205i −3.03346 1.75137i
\(596\) 6.41670 6.41670i 0.262838 0.262838i
\(597\) 0 0
\(598\) 2.95214 + 0.527755i 0.120722 + 0.0215815i
\(599\) −5.46701 3.15638i −0.223376 0.128966i 0.384137 0.923276i \(-0.374499\pi\)
−0.607512 + 0.794310i \(0.707833\pi\)
\(600\) 0 0
\(601\) 33.7487 1.37664 0.688318 0.725409i \(-0.258349\pi\)
0.688318 + 0.725409i \(0.258349\pi\)
\(602\) −0.0943777 0.163467i −0.00384655 0.00666242i
\(603\) 0 0
\(604\) 18.2244 + 4.88320i 0.741539 + 0.198695i
\(605\) 6.02961 + 22.5028i 0.245139 + 0.914870i
\(606\) 0 0
\(607\) 25.8145 1.04778 0.523888 0.851787i \(-0.324481\pi\)
0.523888 + 0.851787i \(0.324481\pi\)
\(608\) −2.43473 4.21708i −0.0987414 0.171025i
\(609\) 0 0
\(610\) −11.6249 + 6.71161i −0.470677 + 0.271745i
\(611\) 3.83341 21.4432i 0.155083 0.867499i
\(612\) 0 0
\(613\) 4.39253 + 16.3932i 0.177413 + 0.662113i 0.996128 + 0.0879138i \(0.0280200\pi\)
−0.818715 + 0.574200i \(0.805313\pi\)
\(614\) 21.1817i 0.854823i
\(615\) 0 0
\(616\) −1.83931 6.86441i −0.0741080 0.276575i
\(617\) −32.7229 32.7229i −1.31737 1.31737i −0.915847 0.401528i \(-0.868479\pi\)
−0.401528 0.915847i \(-0.631521\pi\)
\(618\) 0 0
\(619\) −8.87599 + 33.1257i −0.356756 + 1.33143i 0.521504 + 0.853249i \(0.325371\pi\)
−0.878260 + 0.478183i \(0.841295\pi\)
\(620\) 1.77490 1.02474i 0.0712819 0.0411546i
\(621\) 0 0
\(622\) −13.4129 + 3.59398i −0.537809 + 0.144106i
\(623\) 22.0004 + 38.1058i 0.881428 + 1.52668i
\(624\) 0 0
\(625\) 5.88500 10.1931i 0.235400 0.407725i
\(626\) −2.47997 + 9.25539i −0.0991197 + 0.369920i
\(627\) 0 0
\(628\) 19.0969 + 11.0256i 0.762049 + 0.439969i
\(629\) 9.76248 + 9.76248i 0.389256 + 0.389256i
\(630\) 0 0
\(631\) −2.50134 + 9.33512i −0.0995767 + 0.371625i −0.997674 0.0681724i \(-0.978283\pi\)
0.898097 + 0.439798i \(0.144950\pi\)
\(632\) 11.3207 + 3.03336i 0.450312 + 0.120661i
\(633\) 0 0
\(634\) −13.9462 + 8.05183i −0.553874 + 0.319779i
\(635\) 11.9636 + 3.20564i 0.474761 + 0.127212i
\(636\) 0 0
\(637\) 7.31786 + 10.5039i 0.289944 + 0.416178i
\(638\) 20.2756i 0.802721i
\(639\) 0 0
\(640\) 1.87476 3.24719i 0.0741066 0.128356i
\(641\) 11.1614 19.3321i 0.440848 0.763570i −0.556905 0.830576i \(-0.688011\pi\)
0.997753 + 0.0670058i \(0.0213446\pi\)
\(642\) 0 0
\(643\) −26.4365 + 26.4365i −1.04255 + 1.04255i −0.0434999 + 0.999053i \(0.513851\pi\)
−0.999053 + 0.0434999i \(0.986149\pi\)
\(644\) −1.91038 + 1.91038i −0.0752794 + 0.0752794i
\(645\) 0 0
\(646\) −17.0806 + 29.5845i −0.672027 + 1.16399i
\(647\) 1.97324 3.41775i 0.0775760 0.134366i −0.824628 0.565676i \(-0.808615\pi\)
0.902204 + 0.431310i \(0.141949\pi\)
\(648\) 0 0
\(649\) 6.38288i 0.250550i
\(650\) −5.74797 + 32.1528i −0.225454 + 1.26114i
\(651\) 0 0
\(652\) −6.13647 1.64426i −0.240323 0.0643943i
\(653\) −12.8636 + 7.42680i −0.503391 + 0.290633i −0.730113 0.683326i \(-0.760533\pi\)
0.226722 + 0.973960i \(0.427199\pi\)
\(654\) 0 0
\(655\) −39.9287 10.6989i −1.56014 0.418039i
\(656\) 0.455940 1.70159i 0.0178015 0.0664360i
\(657\) 0 0
\(658\) 13.8762 + 13.8762i 0.540951 + 0.540951i
\(659\) −34.6644 20.0135i −1.35033 0.779615i −0.362037 0.932164i \(-0.617919\pi\)
−0.988296 + 0.152548i \(0.951252\pi\)
\(660\) 0 0
\(661\) 1.32797 4.95604i 0.0516519 0.192768i −0.935279 0.353911i \(-0.884852\pi\)
0.986931 + 0.161144i \(0.0515182\pi\)
\(662\) −3.69778 + 6.40474i −0.143718 + 0.248927i
\(663\) 0 0
\(664\) −7.25986 12.5744i −0.281737 0.487983i
\(665\) −57.2847 + 15.3494i −2.22141 + 0.595224i
\(666\) 0 0
\(667\) −6.67544 + 3.85407i −0.258474 + 0.149230i
\(668\) −2.27988 + 8.50863i −0.0882112 + 0.329209i
\(669\) 0 0
\(670\) −34.4606 34.4606i −1.33133 1.33133i
\(671\) 2.02721 + 7.56564i 0.0782595 + 0.292068i
\(672\) 0 0
\(673\) 40.5684i 1.56380i 0.623405 + 0.781899i \(0.285749\pi\)
−0.623405 + 0.781899i \(0.714251\pi\)
\(674\) −4.86748 18.1657i −0.187489 0.699717i
\(675\) 0 0
\(676\) −2.19675 12.8131i −0.0844904 0.492810i
\(677\) 11.0747 6.39397i 0.425635 0.245740i −0.271851 0.962339i \(-0.587636\pi\)
0.697485 + 0.716599i \(0.254302\pi\)
\(678\) 0 0
\(679\) −16.0296 27.7640i −0.615158 1.06549i
\(680\) −26.3044 −1.00873
\(681\) 0 0
\(682\) −0.309518 1.15514i −0.0118520 0.0442324i
\(683\) 31.3371 + 8.39675i 1.19908 + 0.321293i 0.802469 0.596693i \(-0.203519\pi\)
0.396612 + 0.917986i \(0.370186\pi\)
\(684\) 0 0
\(685\) −21.3315 36.9473i −0.815035 1.41168i
\(686\) 11.2044 0.427786
\(687\) 0 0
\(688\) −0.0503260 0.0290558i −0.00191866 0.00110774i
\(689\) 5.83158 0.496281i 0.222166 0.0189068i
\(690\) 0 0
\(691\) −6.81892 + 6.81892i −0.259404 + 0.259404i −0.824812 0.565408i \(-0.808719\pi\)
0.565408 + 0.824812i \(0.308719\pi\)
\(692\) 0.0437187 + 0.0252410i 0.00166194 + 0.000959519i
\(693\) 0 0
\(694\) −17.5077 + 17.5077i −0.664582 + 0.664582i
\(695\) 13.3161 3.56803i 0.505108 0.135343i
\(696\) 0 0
\(697\) −11.9373 + 3.19860i −0.452159 + 0.121156i
\(698\) 3.41521i 0.129267i
\(699\) 0 0
\(700\) −20.8066 20.8066i −0.786415 0.786415i
\(701\) 45.7174 1.72672 0.863360 0.504588i \(-0.168355\pi\)
0.863360 + 0.504588i \(0.168355\pi\)
\(702\) 0 0
\(703\) 9.58306 0.361432
\(704\) −1.54706 1.54706i −0.0583070 0.0583070i
\(705\) 0 0
\(706\) 4.44385i 0.167247i
\(707\) 13.8016 3.69811i 0.519061 0.139082i
\(708\) 0 0
\(709\) −15.4828 + 4.14860i −0.581468 + 0.155804i −0.537551 0.843231i \(-0.680650\pi\)
−0.0439170 + 0.999035i \(0.513984\pi\)
\(710\) 23.7439 23.7439i 0.891092 0.891092i
\(711\) 0 0
\(712\) 11.7315 + 6.77319i 0.439657 + 0.253836i
\(713\) −0.321476 + 0.321476i −0.0120394 + 0.0120394i
\(714\) 0 0
\(715\) 26.7772 + 12.5637i 1.00141 + 0.469856i
\(716\) 6.15933 + 3.55609i 0.230185 + 0.132897i
\(717\) 0 0
\(718\) 2.48936 0.0929022
\(719\) 10.0799 + 17.4589i 0.375917 + 0.651107i 0.990464 0.137773i \(-0.0439944\pi\)
−0.614547 + 0.788880i \(0.710661\pi\)
\(720\) 0 0
\(721\) 29.3406 + 7.86179i 1.09270 + 0.292788i
\(722\) 1.21947 + 4.55112i 0.0453840 + 0.169375i
\(723\) 0 0
\(724\) −20.6330 −0.766820
\(725\) −41.9760 72.7046i −1.55895 2.70018i
\(726\) 0 0
\(727\) −19.8457 + 11.4579i −0.736036 + 0.424950i −0.820626 0.571465i \(-0.806375\pi\)
0.0845905 + 0.996416i \(0.473042\pi\)
\(728\) 10.6024 + 4.97458i 0.392950 + 0.184370i
\(729\) 0 0
\(730\) 4.64350 + 17.3298i 0.171864 + 0.641404i
\(731\) 0.407675i 0.0150784i
\(732\) 0 0
\(733\) 7.04796 + 26.3034i 0.260322 + 0.971536i 0.965052 + 0.262060i \(0.0844018\pi\)
−0.704729 + 0.709476i \(0.748931\pi\)
\(734\) 5.76362 + 5.76362i 0.212739 + 0.212739i
\(735\) 0 0
\(736\) −0.215275 + 0.803416i −0.00793513 + 0.0296143i
\(737\) −24.6271 + 14.2185i −0.907152 + 0.523744i
\(738\) 0 0
\(739\) 23.3006 6.24337i 0.857126 0.229666i 0.196613 0.980481i \(-0.437006\pi\)
0.660513 + 0.750815i \(0.270339\pi\)
\(740\) 3.68952 + 6.39043i 0.135629 + 0.234917i
\(741\) 0 0
\(742\) −2.63627 + 4.56615i −0.0967804 + 0.167628i
\(743\) 11.8113 44.0805i 0.433316 1.61716i −0.311747 0.950165i \(-0.600914\pi\)
0.745064 0.666993i \(-0.232419\pi\)
\(744\) 0 0
\(745\) −29.4669 17.0127i −1.07958 0.623297i
\(746\) 16.7417 + 16.7417i 0.612956 + 0.612956i
\(747\) 0 0
\(748\) −3.97256 + 14.8258i −0.145251 + 0.542084i
\(749\) 16.0058 + 4.28875i 0.584841 + 0.156708i
\(750\) 0 0
\(751\) 27.0510 15.6179i 0.987104 0.569905i 0.0826964 0.996575i \(-0.473647\pi\)
0.904407 + 0.426670i \(0.140313\pi\)
\(752\) 5.83570 + 1.56367i 0.212806 + 0.0570212i
\(753\) 0 0
\(754\) 25.5454 + 21.5385i 0.930310 + 0.784385i
\(755\) 70.7433i 2.57461i
\(756\) 0 0
\(757\) 11.2648 19.5112i 0.409426 0.709147i −0.585399 0.810745i \(-0.699062\pi\)
0.994826 + 0.101598i \(0.0323956\pi\)
\(758\) −5.65638 + 9.79713i −0.205449 + 0.355848i
\(759\) 0 0
\(760\) −12.9105 + 12.9105i −0.468313 + 0.468313i
\(761\) −23.2943 + 23.2943i −0.844417 + 0.844417i −0.989430 0.145013i \(-0.953678\pi\)
0.145013 + 0.989430i \(0.453678\pi\)
\(762\) 0 0
\(763\) 2.12011 3.67213i 0.0767530 0.132940i
\(764\) −11.2461 + 19.4788i −0.406869 + 0.704718i
\(765\) 0 0
\(766\) 30.0424i 1.08548i
\(767\) −8.04183 6.78043i −0.290374 0.244827i
\(768\) 0 0
\(769\) −50.4684 13.5230i −1.81994 0.487651i −0.823157 0.567814i \(-0.807789\pi\)
−0.996782 + 0.0801629i \(0.974456\pi\)
\(770\) −23.0763 + 13.3231i −0.831613 + 0.480132i
\(771\) 0 0
\(772\) 6.53071 + 1.74990i 0.235046 + 0.0629803i
\(773\) 10.2286 38.1735i 0.367896 1.37301i −0.495556 0.868576i \(-0.665036\pi\)
0.863452 0.504431i \(-0.168298\pi\)
\(774\) 0 0
\(775\) −3.50131 3.50131i −0.125771 0.125771i
\(776\) −8.54762 4.93497i −0.306842 0.177155i
\(777\) 0 0
\(778\) 2.35831 8.80132i 0.0845494 0.315543i
\(779\) −4.28907 + 7.42888i −0.153672 + 0.266167i
\(780\) 0 0
\(781\) −9.79675 16.9685i −0.350555 0.607179i
\(782\) 5.63628 1.51024i 0.201553 0.0540060i
\(783\) 0 0
\(784\) −3.07486 + 1.77527i −0.109816 +