Properties

Label 702.2.bb.a.71.12
Level $702$
Weight $2$
Character 702.71
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(71,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 71.12
Character \(\chi\) \(=\) 702.71
Dual form 702.2.bb.a.89.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(-0.339151 + 0.0908752i) q^{5} +(2.97685 - 0.797644i) q^{7} +(-0.707107 + 0.707107i) q^{8} +O(q^{10})\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(-0.339151 + 0.0908752i) q^{5} +(2.97685 - 0.797644i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(-0.304074 - 0.175557i) q^{10} +(2.35360 - 2.35360i) q^{11} +(2.60734 + 2.49034i) q^{13} +(2.66897 + 1.54093i) q^{14} -1.00000 q^{16} +(-3.87756 - 6.71613i) q^{17} +(3.67410 + 0.984473i) q^{19} +(-0.0908752 - 0.339151i) q^{20} +3.32849 q^{22} +(3.34250 + 5.78938i) q^{23} +(-4.22336 + 2.43836i) q^{25} +(0.0827293 + 3.60460i) q^{26} +(0.797644 + 2.97685i) q^{28} +5.68973i q^{29} +(0.293661 + 1.09596i) q^{31} +(-0.707107 - 0.707107i) q^{32} +(2.00717 - 7.49087i) q^{34} +(-0.937115 + 0.541044i) q^{35} +(8.90068 - 2.38493i) q^{37} +(1.90186 + 3.29411i) q^{38} +(0.175557 - 0.304074i) q^{40} +(0.678577 - 2.53248i) q^{41} +(-3.68906 - 2.12988i) q^{43} +(2.35360 + 2.35360i) q^{44} +(-1.73021 + 6.45722i) q^{46} +(4.17527 + 1.11876i) q^{47} +(2.16322 - 1.24894i) q^{49} +(-4.71055 - 1.26219i) q^{50} +(-2.49034 + 2.60734i) q^{52} +5.65439i q^{53} +(-0.584342 + 1.01211i) q^{55} +(-1.54093 + 2.66897i) q^{56} +(-4.02325 + 4.02325i) q^{58} +(-7.75962 + 7.75962i) q^{59} +(5.01742 - 8.69042i) q^{61} +(-0.567309 + 0.982608i) q^{62} -1.00000i q^{64} +(-1.11059 - 0.607659i) q^{65} +(-13.3180 - 3.56856i) q^{67} +(6.71613 - 3.87756i) q^{68} +(-1.04522 - 0.280065i) q^{70} +(0.343507 - 1.28199i) q^{71} +(-2.19140 - 2.19140i) q^{73} +(7.98013 + 4.60733i) q^{74} +(-0.984473 + 3.67410i) q^{76} +(5.12898 - 8.88365i) q^{77} +(-6.22990 - 10.7905i) q^{79} +(0.339151 - 0.0908752i) q^{80} +(2.27056 - 1.31091i) q^{82} +(1.05166 - 3.92483i) q^{83} +(1.92541 + 1.92541i) q^{85} +(-1.10251 - 4.11462i) q^{86} +3.32849i q^{88} +(-1.43929 - 5.37149i) q^{89} +(9.74806 + 5.33364i) q^{91} +(-5.78938 + 3.34250i) q^{92} +(2.16128 + 3.74344i) q^{94} -1.33554 q^{95} +(-0.218799 - 0.816569i) q^{97} +(2.41276 + 0.646496i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 4 q^{7} - 56 q^{16} - 8 q^{19} - 4 q^{28} + 8 q^{31} - 24 q^{35} - 4 q^{37} + 36 q^{38} + 48 q^{41} + 12 q^{43} - 60 q^{47} + 24 q^{50} - 4 q^{52} + 120 q^{65} - 56 q^{67} - 24 q^{71} + 28 q^{73} - 48 q^{74} + 4 q^{76} + 24 q^{77} - 24 q^{79} + 60 q^{83} - 48 q^{86} + 4 q^{91} + 24 q^{92} + 20 q^{97} + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −0.339151 + 0.0908752i −0.151673 + 0.0406406i −0.333857 0.942624i \(-0.608350\pi\)
0.182184 + 0.983265i \(0.441683\pi\)
\(6\) 0 0
\(7\) 2.97685 0.797644i 1.12514 0.301481i 0.352180 0.935932i \(-0.385440\pi\)
0.772963 + 0.634451i \(0.218774\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) −0.304074 0.175557i −0.0961568 0.0555161i
\(11\) 2.35360 2.35360i 0.709637 0.709637i −0.256821 0.966459i \(-0.582675\pi\)
0.966459 + 0.256821i \(0.0826752\pi\)
\(12\) 0 0
\(13\) 2.60734 + 2.49034i 0.723145 + 0.690696i
\(14\) 2.66897 + 1.54093i 0.713312 + 0.411831i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −3.87756 6.71613i −0.940446 1.62890i −0.764622 0.644479i \(-0.777074\pi\)
−0.175824 0.984422i \(-0.556259\pi\)
\(18\) 0 0
\(19\) 3.67410 + 0.984473i 0.842897 + 0.225854i 0.654332 0.756207i \(-0.272950\pi\)
0.188565 + 0.982061i \(0.439616\pi\)
\(20\) −0.0908752 0.339151i −0.0203203 0.0758364i
\(21\) 0 0
\(22\) 3.32849 0.709637
\(23\) 3.34250 + 5.78938i 0.696960 + 1.20717i 0.969515 + 0.245030i \(0.0787978\pi\)
−0.272556 + 0.962140i \(0.587869\pi\)
\(24\) 0 0
\(25\) −4.22336 + 2.43836i −0.844672 + 0.487672i
\(26\) 0.0827293 + 3.60460i 0.0162246 + 0.706921i
\(27\) 0 0
\(28\) 0.797644 + 2.97685i 0.150741 + 0.562572i
\(29\) 5.68973i 1.05656i 0.849071 + 0.528278i \(0.177162\pi\)
−0.849071 + 0.528278i \(0.822838\pi\)
\(30\) 0 0
\(31\) 0.293661 + 1.09596i 0.0527430 + 0.196840i 0.987270 0.159052i \(-0.0508438\pi\)
−0.934527 + 0.355892i \(0.884177\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 0 0
\(34\) 2.00717 7.49087i 0.344227 1.28467i
\(35\) −0.937115 + 0.541044i −0.158401 + 0.0914531i
\(36\) 0 0
\(37\) 8.90068 2.38493i 1.46326 0.392080i 0.562647 0.826697i \(-0.309783\pi\)
0.900615 + 0.434617i \(0.143116\pi\)
\(38\) 1.90186 + 3.29411i 0.308522 + 0.534375i
\(39\) 0 0
\(40\) 0.175557 0.304074i 0.0277581 0.0480784i
\(41\) 0.678577 2.53248i 0.105976 0.395508i −0.892478 0.451091i \(-0.851035\pi\)
0.998454 + 0.0555831i \(0.0177018\pi\)
\(42\) 0 0
\(43\) −3.68906 2.12988i −0.562577 0.324804i 0.191602 0.981473i \(-0.438632\pi\)
−0.754179 + 0.656669i \(0.771965\pi\)
\(44\) 2.35360 + 2.35360i 0.354819 + 0.354819i
\(45\) 0 0
\(46\) −1.73021 + 6.45722i −0.255105 + 0.952065i
\(47\) 4.17527 + 1.11876i 0.609026 + 0.163188i 0.550134 0.835076i \(-0.314577\pi\)
0.0588917 + 0.998264i \(0.481243\pi\)
\(48\) 0 0
\(49\) 2.16322 1.24894i 0.309031 0.178419i
\(50\) −4.71055 1.26219i −0.666172 0.178500i
\(51\) 0 0
\(52\) −2.49034 + 2.60734i −0.345348 + 0.361573i
\(53\) 5.65439i 0.776690i 0.921514 + 0.388345i \(0.126953\pi\)
−0.921514 + 0.388345i \(0.873047\pi\)
\(54\) 0 0
\(55\) −0.584342 + 1.01211i −0.0787927 + 0.136473i
\(56\) −1.54093 + 2.66897i −0.205916 + 0.356656i
\(57\) 0 0
\(58\) −4.02325 + 4.02325i −0.528278 + 0.528278i
\(59\) −7.75962 + 7.75962i −1.01022 + 1.01022i −0.0102689 + 0.999947i \(0.503269\pi\)
−0.999947 + 0.0102689i \(0.996731\pi\)
\(60\) 0 0
\(61\) 5.01742 8.69042i 0.642415 1.11269i −0.342478 0.939526i \(-0.611266\pi\)
0.984892 0.173169i \(-0.0554006\pi\)
\(62\) −0.567309 + 0.982608i −0.0720483 + 0.124791i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −1.11059 0.607659i −0.137752 0.0753708i
\(66\) 0 0
\(67\) −13.3180 3.56856i −1.62706 0.435969i −0.673994 0.738737i \(-0.735423\pi\)
−0.953064 + 0.302768i \(0.902089\pi\)
\(68\) 6.71613 3.87756i 0.814450 0.470223i
\(69\) 0 0
\(70\) −1.04522 0.280065i −0.124927 0.0334741i
\(71\) 0.343507 1.28199i 0.0407668 0.152144i −0.942542 0.334087i \(-0.891572\pi\)
0.983309 + 0.181943i \(0.0582387\pi\)
\(72\) 0 0
\(73\) −2.19140 2.19140i −0.256484 0.256484i 0.567138 0.823622i \(-0.308050\pi\)
−0.823622 + 0.567138i \(0.808050\pi\)
\(74\) 7.98013 + 4.60733i 0.927671 + 0.535591i
\(75\) 0 0
\(76\) −0.984473 + 3.67410i −0.112927 + 0.421448i
\(77\) 5.12898 8.88365i 0.584502 1.01239i
\(78\) 0 0
\(79\) −6.22990 10.7905i −0.700919 1.21403i −0.968144 0.250393i \(-0.919440\pi\)
0.267225 0.963634i \(-0.413893\pi\)
\(80\) 0.339151 0.0908752i 0.0379182 0.0101602i
\(81\) 0 0
\(82\) 2.27056 1.31091i 0.250742 0.144766i
\(83\) 1.05166 3.92483i 0.115434 0.430806i −0.883885 0.467705i \(-0.845081\pi\)
0.999319 + 0.0368984i \(0.0117478\pi\)
\(84\) 0 0
\(85\) 1.92541 + 1.92541i 0.208840 + 0.208840i
\(86\) −1.10251 4.11462i −0.118887 0.443691i
\(87\) 0 0
\(88\) 3.32849i 0.354819i
\(89\) −1.43929 5.37149i −0.152564 0.569377i −0.999302 0.0373662i \(-0.988103\pi\)
0.846737 0.532011i \(-0.178563\pi\)
\(90\) 0 0
\(91\) 9.74806 + 5.33364i 1.02187 + 0.559117i
\(92\) −5.78938 + 3.34250i −0.603585 + 0.348480i
\(93\) 0 0
\(94\) 2.16128 + 3.74344i 0.222919 + 0.386107i
\(95\) −1.33554 −0.137023
\(96\) 0 0
\(97\) −0.218799 0.816569i −0.0222157 0.0829101i 0.953928 0.300036i \(-0.0969986\pi\)
−0.976144 + 0.217126i \(0.930332\pi\)
\(98\) 2.41276 + 0.646496i 0.243725 + 0.0653060i
\(99\) 0 0
\(100\) −2.43836 4.22336i −0.243836 0.422336i
\(101\) −10.5139 −1.04617 −0.523087 0.852279i \(-0.675220\pi\)
−0.523087 + 0.852279i \(0.675220\pi\)
\(102\) 0 0
\(103\) −1.30284 0.752193i −0.128372 0.0741158i 0.434439 0.900701i \(-0.356947\pi\)
−0.562811 + 0.826586i \(0.690280\pi\)
\(104\) −3.60460 + 0.0827293i −0.353460 + 0.00811228i
\(105\) 0 0
\(106\) −3.99826 + 3.99826i −0.388345 + 0.388345i
\(107\) −4.75429 2.74489i −0.459615 0.265359i 0.252267 0.967658i \(-0.418824\pi\)
−0.711882 + 0.702299i \(0.752157\pi\)
\(108\) 0 0
\(109\) 2.22967 2.22967i 0.213564 0.213564i −0.592216 0.805780i \(-0.701747\pi\)
0.805780 + 0.592216i \(0.201747\pi\)
\(110\) −1.12886 + 0.302478i −0.107633 + 0.0288401i
\(111\) 0 0
\(112\) −2.97685 + 0.797644i −0.281286 + 0.0753703i
\(113\) 6.68745i 0.629102i 0.949241 + 0.314551i \(0.101854\pi\)
−0.949241 + 0.314551i \(0.898146\pi\)
\(114\) 0 0
\(115\) −1.65972 1.65972i −0.154770 0.154770i
\(116\) −5.68973 −0.528278
\(117\) 0 0
\(118\) −10.9738 −1.01022
\(119\) −16.9000 16.9000i −1.54922 1.54922i
\(120\) 0 0
\(121\) 0.0788774i 0.00717067i
\(122\) 9.69291 2.59721i 0.877555 0.235140i
\(123\) 0 0
\(124\) −1.09596 + 0.293661i −0.0984199 + 0.0263715i
\(125\) 2.45215 2.45215i 0.219327 0.219327i
\(126\) 0 0
\(127\) −10.6922 6.17316i −0.948782 0.547780i −0.0560797 0.998426i \(-0.517860\pi\)
−0.892702 + 0.450647i \(0.851193\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 0 0
\(130\) −0.355627 1.21499i −0.0311905 0.106561i
\(131\) −4.12094 2.37922i −0.360048 0.207874i 0.309054 0.951045i \(-0.399988\pi\)
−0.669102 + 0.743171i \(0.733321\pi\)
\(132\) 0 0
\(133\) 11.7225 1.01647
\(134\) −6.89393 11.9406i −0.595545 1.03151i
\(135\) 0 0
\(136\) 7.49087 + 2.00717i 0.642337 + 0.172114i
\(137\) 1.27487 + 4.75789i 0.108920 + 0.406494i 0.998760 0.0497773i \(-0.0158512\pi\)
−0.889840 + 0.456272i \(0.849185\pi\)
\(138\) 0 0
\(139\) 4.10037 0.347789 0.173894 0.984764i \(-0.444365\pi\)
0.173894 + 0.984764i \(0.444365\pi\)
\(140\) −0.541044 0.937115i −0.0457265 0.0792007i
\(141\) 0 0
\(142\) 1.14940 0.663605i 0.0964553 0.0556885i
\(143\) 11.9979 0.275364i 1.00331 0.0230271i
\(144\) 0 0
\(145\) −0.517055 1.92968i −0.0429391 0.160251i
\(146\) 3.09911i 0.256484i
\(147\) 0 0
\(148\) 2.38493 + 8.90068i 0.196040 + 0.731631i
\(149\) −5.36748 5.36748i −0.439721 0.439721i 0.452197 0.891918i \(-0.350640\pi\)
−0.891918 + 0.452197i \(0.850640\pi\)
\(150\) 0 0
\(151\) −3.77372 + 14.0837i −0.307101 + 1.14612i 0.624021 + 0.781408i \(0.285498\pi\)
−0.931122 + 0.364709i \(0.881169\pi\)
\(152\) −3.29411 + 1.90186i −0.267188 + 0.154261i
\(153\) 0 0
\(154\) 9.90843 2.65496i 0.798444 0.213942i
\(155\) −0.199191 0.345008i −0.0159994 0.0277117i
\(156\) 0 0
\(157\) −8.20325 + 14.2085i −0.654691 + 1.13396i 0.327280 + 0.944927i \(0.393868\pi\)
−0.981971 + 0.189031i \(0.939465\pi\)
\(158\) 3.22484 12.0353i 0.256554 0.957473i
\(159\) 0 0
\(160\) 0.304074 + 0.175557i 0.0240392 + 0.0138790i
\(161\) 14.5680 + 14.5680i 1.14812 + 1.14812i
\(162\) 0 0
\(163\) 4.81720 17.9780i 0.377312 1.40815i −0.472625 0.881263i \(-0.656694\pi\)
0.849937 0.526884i \(-0.176640\pi\)
\(164\) 2.53248 + 0.678577i 0.197754 + 0.0529880i
\(165\) 0 0
\(166\) 3.51891 2.03164i 0.273120 0.157686i
\(167\) 0.832317 + 0.223019i 0.0644066 + 0.0172577i 0.290878 0.956760i \(-0.406052\pi\)
−0.226472 + 0.974018i \(0.572719\pi\)
\(168\) 0 0
\(169\) 0.596413 + 12.9863i 0.0458779 + 0.998947i
\(170\) 2.72294i 0.208840i
\(171\) 0 0
\(172\) 2.12988 3.68906i 0.162402 0.281289i
\(173\) 11.9390 20.6789i 0.907702 1.57219i 0.0904542 0.995901i \(-0.471168\pi\)
0.817248 0.576286i \(-0.195499\pi\)
\(174\) 0 0
\(175\) −10.6274 + 10.6274i −0.803354 + 0.803354i
\(176\) −2.35360 + 2.35360i −0.177409 + 0.177409i
\(177\) 0 0
\(178\) 2.78049 4.81595i 0.208407 0.360971i
\(179\) 5.19785 9.00294i 0.388506 0.672912i −0.603743 0.797179i \(-0.706325\pi\)
0.992249 + 0.124267i \(0.0396581\pi\)
\(180\) 0 0
\(181\) 0.635701i 0.0472513i 0.999721 + 0.0236256i \(0.00752097\pi\)
−0.999721 + 0.0236256i \(0.992479\pi\)
\(182\) 3.12146 + 10.6644i 0.231378 + 0.790496i
\(183\) 0 0
\(184\) −6.45722 1.73021i −0.476033 0.127553i
\(185\) −2.80194 + 1.61770i −0.206003 + 0.118936i
\(186\) 0 0
\(187\) −24.9333 6.68086i −1.82330 0.488553i
\(188\) −1.11876 + 4.17527i −0.0815940 + 0.304513i
\(189\) 0 0
\(190\) −0.944369 0.944369i −0.0685117 0.0685117i
\(191\) −0.129112 0.0745427i −0.00934220 0.00539372i 0.495322 0.868710i \(-0.335050\pi\)
−0.504664 + 0.863316i \(0.668384\pi\)
\(192\) 0 0
\(193\) −1.10422 + 4.12101i −0.0794837 + 0.296637i −0.994213 0.107431i \(-0.965737\pi\)
0.914729 + 0.404068i \(0.132404\pi\)
\(194\) 0.422687 0.732116i 0.0303472 0.0525629i
\(195\) 0 0
\(196\) 1.24894 + 2.16322i 0.0892097 + 0.154516i
\(197\) −18.4733 + 4.94991i −1.31617 + 0.352667i −0.847542 0.530729i \(-0.821918\pi\)
−0.468629 + 0.883395i \(0.655252\pi\)
\(198\) 0 0
\(199\) −4.55185 + 2.62801i −0.322672 + 0.186295i −0.652583 0.757717i \(-0.726315\pi\)
0.329911 + 0.944012i \(0.392981\pi\)
\(200\) 1.26219 4.71055i 0.0892501 0.333086i
\(201\) 0 0
\(202\) −7.43446 7.43446i −0.523087 0.523087i
\(203\) 4.53838 + 16.9375i 0.318532 + 1.18878i
\(204\) 0 0
\(205\) 0.920560i 0.0642947i
\(206\) −0.389364 1.45313i −0.0271283 0.101244i
\(207\) 0 0
\(208\) −2.60734 2.49034i −0.180786 0.172674i
\(209\) 10.9644 6.33032i 0.758425 0.437877i
\(210\) 0 0
\(211\) −11.9338 20.6699i −0.821556 1.42298i −0.904523 0.426424i \(-0.859773\pi\)
0.0829678 0.996552i \(-0.473560\pi\)
\(212\) −5.65439 −0.388345
\(213\) 0 0
\(214\) −1.42086 5.30272i −0.0971280 0.362487i
\(215\) 1.44470 + 0.387107i 0.0985279 + 0.0264005i
\(216\) 0 0
\(217\) 1.74837 + 3.02826i 0.118687 + 0.205572i
\(218\) 3.15324 0.213564
\(219\) 0 0
\(220\) −1.01211 0.584342i −0.0682364 0.0393963i
\(221\) 6.61534 27.1677i 0.444996 1.82749i
\(222\) 0 0
\(223\) −15.6524 + 15.6524i −1.04816 + 1.04816i −0.0493797 + 0.998780i \(0.515724\pi\)
−0.998780 + 0.0493797i \(0.984276\pi\)
\(224\) −2.66897 1.54093i −0.178328 0.102958i
\(225\) 0 0
\(226\) −4.72874 + 4.72874i −0.314551 + 0.314551i
\(227\) −21.5776 + 5.78170i −1.43216 + 0.383745i −0.889780 0.456390i \(-0.849142\pi\)
−0.542377 + 0.840135i \(0.682475\pi\)
\(228\) 0 0
\(229\) 8.99230 2.40948i 0.594228 0.159223i 0.0508431 0.998707i \(-0.483809\pi\)
0.543385 + 0.839484i \(0.317142\pi\)
\(230\) 2.34720i 0.154770i
\(231\) 0 0
\(232\) −4.02325 4.02325i −0.264139 0.264139i
\(233\) 28.4945 1.86674 0.933370 0.358917i \(-0.116854\pi\)
0.933370 + 0.358917i \(0.116854\pi\)
\(234\) 0 0
\(235\) −1.51771 −0.0990047
\(236\) −7.75962 7.75962i −0.505108 0.505108i
\(237\) 0 0
\(238\) 23.9002i 1.54922i
\(239\) −13.9526 + 3.73860i −0.902521 + 0.241830i −0.680099 0.733121i \(-0.738063\pi\)
−0.222422 + 0.974950i \(0.571396\pi\)
\(240\) 0 0
\(241\) 29.4794 7.89898i 1.89894 0.508818i 0.901893 0.431959i \(-0.142178\pi\)
0.997042 0.0768587i \(-0.0244890\pi\)
\(242\) 0.0557747 0.0557747i 0.00358534 0.00358534i
\(243\) 0 0
\(244\) 8.69042 + 5.01742i 0.556347 + 0.321207i
\(245\) −0.620160 + 0.620160i −0.0396206 + 0.0396206i
\(246\) 0 0
\(247\) 7.12795 + 11.7166i 0.453541 + 0.745511i
\(248\) −0.982608 0.567309i −0.0623957 0.0360242i
\(249\) 0 0
\(250\) 3.46786 0.219327
\(251\) 8.22674 + 14.2491i 0.519267 + 0.899397i 0.999749 + 0.0223928i \(0.00712844\pi\)
−0.480482 + 0.877005i \(0.659538\pi\)
\(252\) 0 0
\(253\) 21.4928 + 5.75898i 1.35124 + 0.362064i
\(254\) −3.19546 11.9256i −0.200501 0.748281i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 6.07726 + 10.5261i 0.379089 + 0.656601i 0.990930 0.134380i \(-0.0429041\pi\)
−0.611841 + 0.790981i \(0.709571\pi\)
\(258\) 0 0
\(259\) 24.5936 14.1991i 1.52818 0.882292i
\(260\) 0.607659 1.11059i 0.0376854 0.0688759i
\(261\) 0 0
\(262\) −1.23158 4.59631i −0.0760871 0.283961i
\(263\) 8.30088i 0.511854i 0.966696 + 0.255927i \(0.0823808\pi\)
−0.966696 + 0.255927i \(0.917619\pi\)
\(264\) 0 0
\(265\) −0.513844 1.91769i −0.0315652 0.117803i
\(266\) 8.28907 + 8.28907i 0.508235 + 0.508235i
\(267\) 0 0
\(268\) 3.56856 13.3180i 0.217985 0.813529i
\(269\) 15.3432 8.85839i 0.935490 0.540105i 0.0469463 0.998897i \(-0.485051\pi\)
0.888544 + 0.458792i \(0.151718\pi\)
\(270\) 0 0
\(271\) −6.44584 + 1.72716i −0.391557 + 0.104917i −0.449226 0.893418i \(-0.648300\pi\)
0.0576685 + 0.998336i \(0.481633\pi\)
\(272\) 3.87756 + 6.71613i 0.235112 + 0.407225i
\(273\) 0 0
\(274\) −2.46287 + 4.26581i −0.148787 + 0.257707i
\(275\) −4.20118 + 15.6790i −0.253341 + 0.945481i
\(276\) 0 0
\(277\) −15.1301 8.73535i −0.909077 0.524856i −0.0289433 0.999581i \(-0.509214\pi\)
−0.880134 + 0.474725i \(0.842548\pi\)
\(278\) 2.89940 + 2.89940i 0.173894 + 0.173894i
\(279\) 0 0
\(280\) 0.280065 1.04522i 0.0167371 0.0624636i
\(281\) −13.9665 3.74231i −0.833172 0.223248i −0.183075 0.983099i \(-0.558605\pi\)
−0.650097 + 0.759851i \(0.725272\pi\)
\(282\) 0 0
\(283\) 3.09306 1.78578i 0.183863 0.106154i −0.405243 0.914209i \(-0.632813\pi\)
0.589107 + 0.808055i \(0.299480\pi\)
\(284\) 1.28199 + 0.343507i 0.0760719 + 0.0203834i
\(285\) 0 0
\(286\) 8.67851 + 8.28908i 0.513171 + 0.490144i
\(287\) 8.08009i 0.476953i
\(288\) 0 0
\(289\) −21.5709 + 37.3619i −1.26888 + 2.19776i
\(290\) 0.998874 1.73010i 0.0586559 0.101595i
\(291\) 0 0
\(292\) 2.19140 2.19140i 0.128242 0.128242i
\(293\) 4.84724 4.84724i 0.283179 0.283179i −0.551197 0.834375i \(-0.685829\pi\)
0.834375 + 0.551197i \(0.185829\pi\)
\(294\) 0 0
\(295\) 1.92652 3.33684i 0.112167 0.194278i
\(296\) −4.60733 + 7.98013i −0.267796 + 0.463836i
\(297\) 0 0
\(298\) 7.59077i 0.439721i
\(299\) −5.70251 + 23.4188i −0.329784 + 1.35435i
\(300\) 0 0
\(301\) −12.6807 3.39778i −0.730902 0.195845i
\(302\) −12.6271 + 7.29027i −0.726609 + 0.419508i
\(303\) 0 0
\(304\) −3.67410 0.984473i −0.210724 0.0564634i
\(305\) −0.911918 + 3.40332i −0.0522163 + 0.194874i
\(306\) 0 0
\(307\) 2.89643 + 2.89643i 0.165308 + 0.165308i 0.784913 0.619605i \(-0.212707\pi\)
−0.619605 + 0.784913i \(0.712707\pi\)
\(308\) 8.88365 + 5.12898i 0.506193 + 0.292251i
\(309\) 0 0
\(310\) 0.103109 0.384807i 0.00585618 0.0218556i
\(311\) −14.2341 + 24.6543i −0.807144 + 1.39801i 0.107690 + 0.994185i \(0.465655\pi\)
−0.914834 + 0.403830i \(0.867679\pi\)
\(312\) 0 0
\(313\) −2.79680 4.84421i −0.158085 0.273811i 0.776093 0.630618i \(-0.217199\pi\)
−0.934178 + 0.356807i \(0.883865\pi\)
\(314\) −15.8475 + 4.24632i −0.894324 + 0.239634i
\(315\) 0 0
\(316\) 10.7905 6.22990i 0.607014 0.350459i
\(317\) −0.535423 + 1.99822i −0.0300723 + 0.112231i −0.979331 0.202266i \(-0.935169\pi\)
0.949258 + 0.314498i \(0.101836\pi\)
\(318\) 0 0
\(319\) 13.3914 + 13.3914i 0.749772 + 0.749772i
\(320\) 0.0908752 + 0.339151i 0.00508008 + 0.0189591i
\(321\) 0 0
\(322\) 20.6023i 1.14812i
\(323\) −7.63470 28.4931i −0.424806 1.58540i
\(324\) 0 0
\(325\) −17.0841 4.15998i −0.947654 0.230754i
\(326\) 16.1187 9.30611i 0.892730 0.515418i
\(327\) 0 0
\(328\) 1.31091 + 2.27056i 0.0723829 + 0.125371i
\(329\) 13.3215 0.734439
\(330\) 0 0
\(331\) 6.28560 + 23.4582i 0.345488 + 1.28938i 0.892042 + 0.451953i \(0.149273\pi\)
−0.546554 + 0.837424i \(0.684061\pi\)
\(332\) 3.92483 + 1.05166i 0.215403 + 0.0577171i
\(333\) 0 0
\(334\) 0.430839 + 0.746235i 0.0235745 + 0.0408322i
\(335\) 4.84112 0.264499
\(336\) 0 0
\(337\) 23.9772 + 13.8433i 1.30612 + 0.754090i 0.981447 0.191735i \(-0.0614113\pi\)
0.324676 + 0.945825i \(0.394745\pi\)
\(338\) −8.76098 + 9.60444i −0.476535 + 0.522412i
\(339\) 0 0
\(340\) −1.92541 + 1.92541i −0.104420 + 0.104420i
\(341\) 3.27061 + 1.88829i 0.177113 + 0.102256i
\(342\) 0 0
\(343\) −9.81106 + 9.81106i −0.529748 + 0.529748i
\(344\) 4.11462 1.10251i 0.221845 0.0594433i
\(345\) 0 0
\(346\) 23.0643 6.18006i 1.23994 0.332242i
\(347\) 2.18710i 0.117410i −0.998275 0.0587049i \(-0.981303\pi\)
0.998275 0.0587049i \(-0.0186971\pi\)
\(348\) 0 0
\(349\) −20.5657 20.5657i −1.10086 1.10086i −0.994307 0.106552i \(-0.966019\pi\)
−0.106552 0.994307i \(-0.533981\pi\)
\(350\) −15.0294 −0.803354
\(351\) 0 0
\(352\) −3.32849 −0.177409
\(353\) 5.13936 + 5.13936i 0.273541 + 0.273541i 0.830524 0.556983i \(-0.188041\pi\)
−0.556983 + 0.830524i \(0.688041\pi\)
\(354\) 0 0
\(355\) 0.466003i 0.0247329i
\(356\) 5.37149 1.43929i 0.284689 0.0762821i
\(357\) 0 0
\(358\) 10.0415 2.69061i 0.530709 0.142203i
\(359\) −5.00179 + 5.00179i −0.263985 + 0.263985i −0.826671 0.562686i \(-0.809768\pi\)
0.562686 + 0.826671i \(0.309768\pi\)
\(360\) 0 0
\(361\) −3.92464 2.26589i −0.206560 0.119257i
\(362\) −0.449508 + 0.449508i −0.0236256 + 0.0236256i
\(363\) 0 0
\(364\) −5.33364 + 9.74806i −0.279559 + 0.510937i
\(365\) 0.942359 + 0.544071i 0.0493253 + 0.0284780i
\(366\) 0 0
\(367\) 17.5261 0.914857 0.457428 0.889246i \(-0.348771\pi\)
0.457428 + 0.889246i \(0.348771\pi\)
\(368\) −3.34250 5.78938i −0.174240 0.301793i
\(369\) 0 0
\(370\) −3.12516 0.837384i −0.162469 0.0435335i
\(371\) 4.51019 + 16.8323i 0.234157 + 0.873888i
\(372\) 0 0
\(373\) 12.1273 0.627927 0.313963 0.949435i \(-0.398343\pi\)
0.313963 + 0.949435i \(0.398343\pi\)
\(374\) −12.9064 22.3546i −0.667376 1.15593i
\(375\) 0 0
\(376\) −3.74344 + 2.16128i −0.193053 + 0.111459i
\(377\) −14.1694 + 14.8350i −0.729759 + 0.764044i
\(378\) 0 0
\(379\) 1.59520 + 5.95337i 0.0819399 + 0.305804i 0.994717 0.102654i \(-0.0327334\pi\)
−0.912777 + 0.408458i \(0.866067\pi\)
\(380\) 1.33554i 0.0685117i
\(381\) 0 0
\(382\) −0.0385862 0.144006i −0.00197424 0.00736796i
\(383\) 10.3289 + 10.3289i 0.527785 + 0.527785i 0.919911 0.392127i \(-0.128260\pi\)
−0.392127 + 0.919911i \(0.628260\pi\)
\(384\) 0 0
\(385\) −0.932194 + 3.47900i −0.0475090 + 0.177306i
\(386\) −3.69480 + 2.13319i −0.188060 + 0.108577i
\(387\) 0 0
\(388\) 0.816569 0.218799i 0.0414550 0.0111078i
\(389\) −2.49669 4.32440i −0.126587 0.219256i 0.795765 0.605606i \(-0.207069\pi\)
−0.922352 + 0.386350i \(0.873736\pi\)
\(390\) 0 0
\(391\) 25.9215 44.8974i 1.31091 2.27056i
\(392\) −0.646496 + 2.41276i −0.0326530 + 0.121863i
\(393\) 0 0
\(394\) −16.5627 9.56250i −0.834419 0.481752i
\(395\) 3.09347 + 3.09347i 0.155649 + 0.155649i
\(396\) 0 0
\(397\) −1.56112 + 5.82617i −0.0783503 + 0.292407i −0.993972 0.109634i \(-0.965032\pi\)
0.915622 + 0.402041i \(0.131699\pi\)
\(398\) −5.07693 1.36036i −0.254483 0.0681886i
\(399\) 0 0
\(400\) 4.22336 2.43836i 0.211168 0.121918i
\(401\) −7.37085 1.97501i −0.368083 0.0986274i 0.0700364 0.997544i \(-0.477688\pi\)
−0.438119 + 0.898917i \(0.644355\pi\)
\(402\) 0 0
\(403\) −1.96363 + 3.58884i −0.0978155 + 0.178773i
\(404\) 10.5139i 0.523087i
\(405\) 0 0
\(406\) −8.76748 + 15.1857i −0.435123 + 0.753655i
\(407\) 15.3355 26.5618i 0.760151 1.31662i
\(408\) 0 0
\(409\) −3.33008 + 3.33008i −0.164662 + 0.164662i −0.784628 0.619966i \(-0.787146\pi\)
0.619966 + 0.784628i \(0.287146\pi\)
\(410\) −0.650934 + 0.650934i −0.0321474 + 0.0321474i
\(411\) 0 0
\(412\) 0.752193 1.30284i 0.0370579 0.0641862i
\(413\) −16.9098 + 29.2886i −0.832077 + 1.44120i
\(414\) 0 0
\(415\) 1.42668i 0.0700329i
\(416\) −0.0827293 3.60460i −0.00405614 0.176730i
\(417\) 0 0
\(418\) 12.2292 + 3.27681i 0.598151 + 0.160274i
\(419\) 12.1816 7.03305i 0.595110 0.343587i −0.172005 0.985096i \(-0.555025\pi\)
0.767116 + 0.641509i \(0.221691\pi\)
\(420\) 0 0
\(421\) 29.6767 + 7.95186i 1.44636 + 0.387550i 0.894755 0.446558i \(-0.147350\pi\)
0.551601 + 0.834108i \(0.314017\pi\)
\(422\) 6.17738 23.0543i 0.300710 1.12227i
\(423\) 0 0
\(424\) −3.99826 3.99826i −0.194172 0.194172i
\(425\) 32.7527 + 18.9098i 1.58874 + 0.917258i
\(426\) 0 0
\(427\) 8.00423 29.8722i 0.387352 1.44562i
\(428\) 2.74489 4.75429i 0.132679 0.229807i
\(429\) 0 0
\(430\) 0.747833 + 1.29529i 0.0360637 + 0.0624642i
\(431\) −37.7065 + 10.1034i −1.81626 + 0.486665i −0.996314 0.0857790i \(-0.972662\pi\)
−0.819944 + 0.572444i \(0.805995\pi\)
\(432\) 0 0
\(433\) −1.12288 + 0.648297i −0.0539623 + 0.0311552i −0.526738 0.850027i \(-0.676585\pi\)
0.472776 + 0.881183i \(0.343252\pi\)
\(434\) −0.905022 + 3.37759i −0.0434424 + 0.162129i
\(435\) 0 0
\(436\) 2.22967 + 2.22967i 0.106782 + 0.106782i
\(437\) 6.58121 + 24.5614i 0.314822 + 1.17493i
\(438\) 0 0
\(439\) 18.8010i 0.897321i 0.893702 + 0.448660i \(0.148099\pi\)
−0.893702 + 0.448660i \(0.851901\pi\)
\(440\) −0.302478 1.12886i −0.0144201 0.0538164i
\(441\) 0 0
\(442\) 23.8882 14.5327i 1.13625 0.691249i
\(443\) −18.8039 + 10.8564i −0.893400 + 0.515805i −0.875053 0.484027i \(-0.839174\pi\)
−0.0183470 + 0.999832i \(0.505840\pi\)
\(444\) 0 0
\(445\) 0.976271 + 1.69095i 0.0462797 + 0.0801588i
\(446\) −22.1358 −1.04816
\(447\) 0 0
\(448\) −0.797644 2.97685i −0.0376852 0.140643i
\(449\) 21.9490 + 5.88123i 1.03584 + 0.277552i 0.736388 0.676559i \(-0.236530\pi\)
0.299451 + 0.954112i \(0.403196\pi\)
\(450\) 0 0
\(451\) −4.36336 7.55756i −0.205463 0.355872i
\(452\) −6.68745 −0.314551
\(453\) 0 0
\(454\) −19.3460 11.1694i −0.907951 0.524206i
\(455\) −3.79076 0.923052i −0.177713 0.0432734i
\(456\) 0 0
\(457\) −20.5331 + 20.5331i −0.960498 + 0.960498i −0.999249 0.0387513i \(-0.987662\pi\)
0.0387513 + 0.999249i \(0.487662\pi\)
\(458\) 8.06228 + 4.65476i 0.376725 + 0.217503i
\(459\) 0 0
\(460\) 1.65972 1.65972i 0.0773850 0.0773850i
\(461\) −11.3082 + 3.03004i −0.526678 + 0.141123i −0.512354 0.858775i \(-0.671226\pi\)
−0.0143239 + 0.999897i \(0.504560\pi\)
\(462\) 0 0
\(463\) −17.8104 + 4.77229i −0.827722 + 0.221787i −0.647720 0.761879i \(-0.724277\pi\)
−0.180002 + 0.983666i \(0.557610\pi\)
\(464\) 5.68973i 0.264139i
\(465\) 0 0
\(466\) 20.1487 + 20.1487i 0.933370 + 0.933370i
\(467\) 15.3781 0.711613 0.355807 0.934560i \(-0.384206\pi\)
0.355807 + 0.934560i \(0.384206\pi\)
\(468\) 0 0
\(469\) −42.4923 −1.96211
\(470\) −1.07319 1.07319i −0.0495024 0.0495024i
\(471\) 0 0
\(472\) 10.9738i 0.505108i
\(473\) −13.6955 + 3.66969i −0.629719 + 0.168733i
\(474\) 0 0
\(475\) −17.9176 + 4.80100i −0.822114 + 0.220285i
\(476\) 16.9000 16.9000i 0.774610 0.774610i
\(477\) 0 0
\(478\) −12.5096 7.22241i −0.572175 0.330346i
\(479\) 10.9954 10.9954i 0.502391 0.502391i −0.409789 0.912180i \(-0.634398\pi\)
0.912180 + 0.409789i \(0.134398\pi\)
\(480\) 0 0
\(481\) 29.1463 + 15.9474i 1.32896 + 0.727139i
\(482\) 26.4305 + 15.2597i 1.20388 + 0.695058i
\(483\) 0 0
\(484\) 0.0788774 0.00358534
\(485\) 0.148412 + 0.257057i 0.00673903 + 0.0116723i
\(486\) 0 0
\(487\) 16.7862 + 4.49786i 0.760656 + 0.203817i 0.618240 0.785990i \(-0.287846\pi\)
0.142417 + 0.989807i \(0.454513\pi\)
\(488\) 2.59721 + 9.69291i 0.117570 + 0.438777i
\(489\) 0 0
\(490\) −0.877039 −0.0396206
\(491\) −4.04041 6.99820i −0.182341 0.315824i 0.760336 0.649530i \(-0.225034\pi\)
−0.942677 + 0.333706i \(0.891701\pi\)
\(492\) 0 0
\(493\) 38.2130 22.0623i 1.72103 0.993634i
\(494\) −3.24468 + 13.3251i −0.145985 + 0.599526i
\(495\) 0 0
\(496\) −0.293661 1.09596i −0.0131858 0.0492099i
\(497\) 4.09028i 0.183474i
\(498\) 0 0
\(499\) 3.39501 + 12.6704i 0.151982 + 0.567203i 0.999345 + 0.0361895i \(0.0115220\pi\)
−0.847363 + 0.531014i \(0.821811\pi\)
\(500\) 2.45215 + 2.45215i 0.109663 + 0.109663i
\(501\) 0 0
\(502\) −4.25847 + 15.8928i −0.190065 + 0.709332i
\(503\) 17.8854 10.3261i 0.797470 0.460419i −0.0451158 0.998982i \(-0.514366\pi\)
0.842586 + 0.538562i \(0.181032\pi\)
\(504\) 0 0
\(505\) 3.56580 0.955455i 0.158676 0.0425172i
\(506\) 11.1255 + 19.2699i 0.494589 + 0.856653i
\(507\) 0 0
\(508\) 6.17316 10.6922i 0.273890 0.474391i
\(509\) 8.90280 33.2257i 0.394610 1.47270i −0.427834 0.903857i \(-0.640723\pi\)
0.822444 0.568846i \(-0.192610\pi\)
\(510\) 0 0
\(511\) −8.27143 4.77551i −0.365906 0.211256i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −3.14582 + 11.7404i −0.138756 + 0.517845i
\(515\) 0.510214 + 0.136711i 0.0224827 + 0.00602423i
\(516\) 0 0
\(517\) 12.4600 7.19380i 0.547992 0.316383i
\(518\) 27.4307 + 7.35002i 1.20523 + 0.322941i
\(519\) 0 0
\(520\) 1.21499 0.355627i 0.0532807 0.0155953i
\(521\) 10.8135i 0.473747i −0.971540 0.236874i \(-0.923877\pi\)
0.971540 0.236874i \(-0.0761227\pi\)
\(522\) 0 0
\(523\) 12.9411 22.4147i 0.565876 0.980126i −0.431091 0.902308i \(-0.641871\pi\)
0.996968 0.0778180i \(-0.0247953\pi\)
\(524\) 2.37922 4.12094i 0.103937 0.180024i
\(525\) 0 0
\(526\) −5.86961 + 5.86961i −0.255927 + 0.255927i
\(527\) 6.22190 6.22190i 0.271030 0.271030i
\(528\) 0 0
\(529\) −10.8446 + 18.7835i −0.471506 + 0.816673i
\(530\) 0.992670 1.71935i 0.0431188 0.0746840i
\(531\) 0 0
\(532\) 11.7225i 0.508235i
\(533\) 8.07603 4.91315i 0.349812 0.212812i
\(534\) 0 0
\(535\) 1.86187 + 0.498885i 0.0804954 + 0.0215687i
\(536\) 11.9406 6.89393i 0.515757 0.297772i
\(537\) 0 0
\(538\) 17.1131 + 4.58544i 0.737798 + 0.197692i
\(539\) 2.15186 8.03085i 0.0926872 0.345913i
\(540\) 0 0
\(541\) −20.8711 20.8711i −0.897318 0.897318i 0.0978806 0.995198i \(-0.468794\pi\)
−0.995198 + 0.0978806i \(0.968794\pi\)
\(542\) −5.77918 3.33661i −0.248237 0.143320i
\(543\) 0 0
\(544\) −2.00717 + 7.49087i −0.0860568 + 0.321168i
\(545\) −0.553574 + 0.958818i −0.0237125 + 0.0410713i
\(546\) 0 0
\(547\) 8.21466 + 14.2282i 0.351233 + 0.608354i 0.986466 0.163967i \(-0.0524291\pi\)
−0.635233 + 0.772321i \(0.719096\pi\)
\(548\) −4.75789 + 1.27487i −0.203247 + 0.0544599i
\(549\) 0 0
\(550\) −14.0574 + 8.11607i −0.599411 + 0.346070i
\(551\) −5.60138 + 20.9047i −0.238627 + 0.890568i
\(552\) 0 0
\(553\) −27.1525 27.1525i −1.15464 1.15464i
\(554\) −4.52175 16.8754i −0.192111 0.716967i
\(555\) 0 0
\(556\) 4.10037i 0.173894i
\(557\) 6.82819 + 25.4831i 0.289320 + 1.07976i 0.945625 + 0.325260i \(0.105452\pi\)
−0.656305 + 0.754496i \(0.727882\pi\)
\(558\) 0 0
\(559\) −4.31450 14.7403i −0.182484 0.623450i
\(560\) 0.937115 0.541044i 0.0396003 0.0228633i
\(561\) 0 0
\(562\) −7.22960 12.5220i −0.304962 0.528210i
\(563\) 27.8900 1.17542 0.587712 0.809070i \(-0.300029\pi\)
0.587712 + 0.809070i \(0.300029\pi\)
\(564\) 0 0
\(565\) −0.607723 2.26805i −0.0255671 0.0954177i
\(566\) 3.44986 + 0.924387i 0.145008 + 0.0388549i
\(567\) 0 0
\(568\) 0.663605 + 1.14940i 0.0278442 + 0.0482277i
\(569\) 0.402831 0.0168875 0.00844377 0.999964i \(-0.497312\pi\)
0.00844377 + 0.999964i \(0.497312\pi\)
\(570\) 0 0
\(571\) −30.8570 17.8153i −1.29133 0.745548i −0.312437 0.949938i \(-0.601145\pi\)
−0.978889 + 0.204390i \(0.934479\pi\)
\(572\) 0.275364 + 11.9979i 0.0115136 + 0.501657i
\(573\) 0 0
\(574\) 5.71349 5.71349i 0.238476 0.238476i
\(575\) −28.2332 16.3004i −1.17741 0.679775i
\(576\) 0 0
\(577\) 33.2996 33.2996i 1.38628 1.38628i 0.553294 0.832986i \(-0.313371\pi\)
0.832986 0.553294i \(-0.186629\pi\)
\(578\) −41.6718 + 11.1659i −1.73332 + 0.464442i
\(579\) 0 0
\(580\) 1.92968 0.517055i 0.0801255 0.0214696i
\(581\) 12.5225i 0.519520i
\(582\) 0 0
\(583\) 13.3082 + 13.3082i 0.551168 + 0.551168i
\(584\) 3.09911 0.128242
\(585\) 0 0
\(586\) 6.85503 0.283179
\(587\) −4.31874 4.31874i −0.178253 0.178253i 0.612341 0.790594i \(-0.290228\pi\)
−0.790594 + 0.612341i \(0.790228\pi\)
\(588\) 0 0
\(589\) 4.31576i 0.177828i
\(590\) 3.72176 0.997242i 0.153222 0.0410558i
\(591\) 0 0
\(592\) −8.90068 + 2.38493i −0.365816 + 0.0980200i
\(593\) 5.57423 5.57423i 0.228906 0.228906i −0.583329 0.812236i \(-0.698250\pi\)
0.812236 + 0.583329i \(0.198250\pi\)
\(594\) 0 0
\(595\) 7.26744 + 4.19586i 0.297936 + 0.172013i
\(596\) 5.36748 5.36748i 0.219861 0.219861i
\(597\) 0 0
\(598\) −20.5919 + 12.5273i −0.842066 + 0.512281i
\(599\) −12.2562 7.07612i −0.500775 0.289122i 0.228259 0.973601i \(-0.426697\pi\)
−0.729033 + 0.684478i \(0.760030\pi\)
\(600\) 0 0
\(601\) −39.6189 −1.61609 −0.808044 0.589121i \(-0.799474\pi\)
−0.808044 + 0.589121i \(0.799474\pi\)
\(602\) −6.56400 11.3692i −0.267529 0.463373i
\(603\) 0 0
\(604\) −14.0837 3.77372i −0.573058 0.153550i
\(605\) 0.00716800 + 0.0267513i 0.000291421 + 0.00108760i
\(606\) 0 0
\(607\) −6.85360 −0.278179 −0.139090 0.990280i \(-0.544418\pi\)
−0.139090 + 0.990280i \(0.544418\pi\)
\(608\) −1.90186 3.29411i −0.0771304 0.133594i
\(609\) 0 0
\(610\) −3.05134 + 1.76169i −0.123545 + 0.0713288i
\(611\) 8.10024 + 13.3148i 0.327701 + 0.538660i
\(612\) 0 0
\(613\) −5.58884 20.8578i −0.225731 0.842440i −0.982110 0.188307i \(-0.939700\pi\)
0.756379 0.654134i \(-0.226967\pi\)
\(614\) 4.09617i 0.165308i
\(615\) 0 0
\(616\) 2.65496 + 9.90843i 0.106971 + 0.399222i
\(617\) −19.7634 19.7634i −0.795644 0.795644i 0.186761 0.982405i \(-0.440201\pi\)
−0.982405 + 0.186761i \(0.940201\pi\)
\(618\) 0 0
\(619\) 4.70742 17.5683i 0.189207 0.706130i −0.804484 0.593975i \(-0.797558\pi\)
0.993691 0.112155i \(-0.0357754\pi\)
\(620\) 0.345008 0.199191i 0.0138559 0.00799969i
\(621\) 0 0
\(622\) −27.4983 + 7.36814i −1.10258 + 0.295435i
\(623\) −8.56908 14.8421i −0.343313 0.594636i
\(624\) 0 0
\(625\) 11.5830 20.0623i 0.463319 0.802493i
\(626\) 1.44773 5.40301i 0.0578630 0.215948i
\(627\) 0 0
\(628\) −14.2085 8.20325i −0.566979 0.327345i
\(629\) −50.5304 50.5304i −2.01478 2.01478i
\(630\) 0 0
\(631\) −2.24267 + 8.36975i −0.0892792 + 0.333195i −0.996090 0.0883431i \(-0.971843\pi\)
0.906811 + 0.421538i \(0.138509\pi\)
\(632\) 12.0353 + 3.22484i 0.478737 + 0.128277i
\(633\) 0 0
\(634\) −1.79156 + 1.03436i −0.0711519 + 0.0410796i
\(635\) 4.18727 + 1.12197i 0.166167 + 0.0445242i
\(636\) 0 0
\(637\) 8.75051 + 2.13076i 0.346708 + 0.0844236i
\(638\) 18.9382i 0.749772i
\(639\) 0 0
\(640\) −0.175557 + 0.304074i −0.00693952 + 0.0120196i
\(641\) 13.2773 22.9970i 0.524424 0.908329i −0.475172 0.879893i \(-0.657614\pi\)
0.999596 0.0284355i \(-0.00905254\pi\)
\(642\) 0 0
\(643\) −23.6006 + 23.6006i −0.930715 + 0.930715i −0.997751 0.0670354i \(-0.978646\pi\)
0.0670354 + 0.997751i \(0.478646\pi\)
\(644\) −14.5680 + 14.5680i −0.574060 + 0.574060i
\(645\) 0 0
\(646\) 14.7491 25.5462i 0.580296 1.00510i
\(647\) 11.9267 20.6576i 0.468886 0.812134i −0.530482 0.847696i \(-0.677989\pi\)
0.999367 + 0.0355623i \(0.0113222\pi\)
\(648\) 0 0
\(649\) 36.5261i 1.43377i
\(650\) −9.13871 15.0218i −0.358450 0.589204i
\(651\) 0 0
\(652\) 17.9780 + 4.81720i 0.704074 + 0.188656i
\(653\) 25.8931 14.9494i 1.01327 0.585014i 0.101126 0.994874i \(-0.467756\pi\)
0.912149 + 0.409859i \(0.134422\pi\)
\(654\) 0 0
\(655\) 1.61383 + 0.432425i 0.0630576 + 0.0168962i
\(656\) −0.678577 + 2.53248i −0.0264940 + 0.0988769i
\(657\) 0 0
\(658\) 9.41974 + 9.41974i 0.367220 + 0.367220i
\(659\) −20.6263 11.9086i −0.803487 0.463893i 0.0412023 0.999151i \(-0.486881\pi\)
−0.844689 + 0.535258i \(0.820215\pi\)
\(660\) 0 0
\(661\) 3.35543 12.5226i 0.130511 0.487074i −0.869465 0.493995i \(-0.835536\pi\)
0.999976 + 0.00692047i \(0.00220287\pi\)
\(662\) −12.1428 + 21.0320i −0.471945 + 0.817432i
\(663\) 0 0
\(664\) 2.03164 + 3.51891i 0.0788430 + 0.136560i
\(665\) −3.97570 + 1.06529i −0.154171 + 0.0413100i
\(666\) 0 0
\(667\) −32.9400 + 19.0179i −1.27544 + 0.736377i
\(668\) −0.223019 + 0.832317i −0.00862885 + 0.0322033i
\(669\) 0 0
\(670\) 3.42319 + 3.42319i 0.132249 + 0.132249i
\(671\) −8.64479 32.2628i −0.333728 1.24549i
\(672\) 0 0
\(673\) 46.4053i 1.78879i 0.447276 + 0.894396i \(0.352394\pi\)
−0.447276 + 0.894396i \(0.647606\pi\)
\(674\) 7.16580 + 26.7431i 0.276016 + 1.03011i
\(675\) 0 0
\(676\) −12.9863 + 0.596413i −0.499474 + 0.0229389i
\(677\) 28.9400 16.7085i 1.11225 0.642159i 0.172841 0.984950i \(-0.444705\pi\)
0.939412 + 0.342790i \(0.111372\pi\)
\(678\) 0 0
\(679\) −1.30266 2.25628i −0.0499917 0.0865881i
\(680\) −2.72294 −0.104420
\(681\) 0 0
\(682\) 0.977449 + 3.64789i 0.0374284 + 0.139685i
\(683\) 4.57669 + 1.22632i 0.175122 + 0.0469238i 0.345314 0.938487i \(-0.387772\pi\)
−0.170192 + 0.985411i \(0.554439\pi\)
\(684\) 0 0
\(685\) −0.864749 1.49779i −0.0330404 0.0572276i
\(686\) −13.8749 −0.529748
\(687\) 0 0
\(688\) 3.68906 + 2.12988i 0.140644 + 0.0812010i
\(689\) −14.0813 + 14.7429i −0.536457 + 0.561660i
\(690\) 0 0
\(691\) 3.43143 3.43143i 0.130538 0.130538i −0.638819 0.769357i \(-0.720577\pi\)
0.769357 + 0.638819i \(0.220577\pi\)
\(692\) 20.6789 + 11.9390i 0.786093 + 0.453851i
\(693\) 0 0
\(694\) 1.54652 1.54652i 0.0587049 0.0587049i
\(695\) −1.39064 + 0.372622i −0.0527501 + 0.0141344i
\(696\) 0 0
\(697\) −19.6397 + 5.26245i −0.743907 + 0.199329i
\(698\) 29.0844i 1.10086i
\(699\) 0 0
\(700\) −10.6274 10.6274i −0.401677 0.401677i
\(701\) −1.76335 −0.0666009 −0.0333004 0.999445i \(-0.510602\pi\)
−0.0333004 + 0.999445i \(0.510602\pi\)
\(702\) 0 0
\(703\) 35.0499 1.32193
\(704\) −2.35360 2.35360i −0.0887047 0.0887047i
\(705\) 0 0
\(706\) 7.26816i 0.273541i
\(707\) −31.2984 + 8.38637i −1.17710 + 0.315402i
\(708\) 0 0
\(709\) 33.1400 8.87983i 1.24460 0.333489i 0.424350 0.905498i \(-0.360502\pi\)
0.820247 + 0.572009i \(0.193836\pi\)
\(710\) −0.329514 + 0.329514i −0.0123664 + 0.0123664i
\(711\) 0 0
\(712\) 4.81595 + 2.78049i 0.180485 + 0.104203i
\(713\) −5.36335 + 5.36335i −0.200859 + 0.200859i
\(714\) 0 0
\(715\) −4.04407 + 1.18370i −0.151240 + 0.0442679i
\(716\) 9.00294 + 5.19785i 0.336456 + 0.194253i
\(717\) 0 0
\(718\) −7.07360 −0.263985
\(719\) −15.1571 26.2528i −0.565264 0.979065i −0.997025 0.0770774i \(-0.975441\pi\)
0.431762 0.901988i \(-0.357892\pi\)
\(720\) 0 0
\(721\) −4.47833 1.19997i −0.166782 0.0446891i
\(722\) −1.17291 4.37737i −0.0436513 0.162909i
\(723\) 0 0
\(724\) −0.635701 −0.0236256
\(725\) −13.8736 24.0298i −0.515253 0.892444i
\(726\) 0 0
\(727\) 19.2180 11.0955i 0.712758 0.411511i −0.0993236 0.995055i \(-0.531668\pi\)
0.812081 + 0.583544i \(0.198335\pi\)
\(728\) −10.6644 + 3.12146i −0.395248 + 0.115689i
\(729\) 0 0
\(730\) 0.281632 + 1.05107i 0.0104237 + 0.0389017i
\(731\) 33.0350i 1.22184i
\(732\) 0 0
\(733\) 0.276984 + 1.03372i 0.0102306 + 0.0381813i 0.970852 0.239678i \(-0.0770418\pi\)
−0.960622 + 0.277859i \(0.910375\pi\)
\(734\) 12.3928 + 12.3928i 0.457428 + 0.457428i
\(735\) 0 0
\(736\) 1.73021 6.45722i 0.0637763 0.238016i
\(737\) −39.7443 + 22.9464i −1.46400 + 0.845242i
\(738\) 0 0
\(739\) −44.6085 + 11.9528i −1.64095 + 0.439691i −0.957059 0.289894i \(-0.906380\pi\)
−0.683890 + 0.729585i \(0.739713\pi\)
\(740\) −1.61770 2.80194i −0.0594679 0.103001i
\(741\) 0 0
\(742\) −8.71302 + 15.0914i −0.319865 + 0.554022i
\(743\) −0.837432 + 3.12534i −0.0307224 + 0.114658i −0.979584 0.201034i \(-0.935570\pi\)
0.948862 + 0.315692i \(0.102236\pi\)
\(744\) 0 0
\(745\) 2.30816 + 1.33262i 0.0845643 + 0.0488232i
\(746\) 8.57528 + 8.57528i 0.313963 + 0.313963i
\(747\) 0 0
\(748\) 6.68086 24.9333i 0.244277 0.911652i
\(749\) −16.3423 4.37890i −0.597133 0.160001i
\(750\) 0 0
\(751\) −19.1224 + 11.0403i −0.697785 + 0.402866i −0.806522 0.591204i \(-0.798653\pi\)
0.108737 + 0.994071i \(0.465319\pi\)
\(752\) −4.17527 1.11876i −0.152256 0.0407970i
\(753\) 0 0
\(754\) −20.5092 + 0.470707i −0.746901 + 0.0171422i
\(755\) 5.11944i 0.186316i
\(756\) 0 0
\(757\) 7.92964 13.7345i 0.288208 0.499190i −0.685174 0.728379i \(-0.740274\pi\)
0.973382 + 0.229189i \(0.0736074\pi\)
\(758\) −3.08169 + 5.33764i −0.111932 + 0.193872i
\(759\) 0 0
\(760\) 0.944369 0.944369i 0.0342559 0.0342559i
\(761\) 9.46921 9.46921i 0.343259 0.343259i −0.514332 0.857591i \(-0.671960\pi\)
0.857591 + 0.514332i \(0.171960\pi\)
\(762\) 0 0
\(763\) 4.85892 8.41589i 0.175905 0.304676i
\(764\) 0.0745427 0.129112i 0.00269686 0.00467110i
\(765\) 0 0
\(766\) 14.6073i 0.527785i
\(767\) −39.5560 + 0.907851i −1.42829 + 0.0327806i
\(768\) 0 0
\(769\) −40.5584 10.8676i −1.46257 0.391896i −0.562196 0.827004i \(-0.690043\pi\)
−0.900378 + 0.435109i \(0.856710\pi\)
\(770\) −3.11918 + 1.80086i −0.112408 + 0.0648985i
\(771\) 0 0
\(772\) −4.12101 1.10422i −0.148319 0.0397418i
\(773\) −7.14882 + 26.6797i −0.257125 + 0.959604i 0.709771 + 0.704433i \(0.248798\pi\)
−0.966896 + 0.255171i \(0.917868\pi\)
\(774\) 0 0
\(775\) −3.91257 3.91257i −0.140544 0.140544i
\(776\) 0.732116 + 0.422687i 0.0262814 + 0.0151736i
\(777\) 0 0
\(778\) 1.29238 4.82324i 0.0463342 0.172922i
\(779\) 4.98632 8.63657i 0.178654 0.309437i
\(780\) 0 0
\(781\) −2.20881 3.82576i −0.0790373 0.136897i
\(782\) 50.0765 13.4180i 1.79073 0.479825i
\(783\) 0 0
\(784\) −2.16322 + 1.24894i