Properties

Label 702.2.bb.a.71.10
Level $702$
Weight $2$
Character 702.71
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(71,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 71.10
Character \(\chi\) \(=\) 702.71
Dual form 702.2.bb.a.89.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(-0.994452 + 0.266463i) q^{5} +(0.339163 - 0.0908784i) q^{7} +(-0.707107 + 0.707107i) q^{8} +O(q^{10})\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(-0.994452 + 0.266463i) q^{5} +(0.339163 - 0.0908784i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(-0.891601 - 0.514766i) q^{10} +(-2.56893 + 2.56893i) q^{11} +(0.0241746 + 3.60547i) q^{13} +(0.304085 + 0.175564i) q^{14} -1.00000 q^{16} +(1.67236 + 2.89660i) q^{17} +(-0.969723 - 0.259837i) q^{19} +(-0.266463 - 0.994452i) q^{20} -3.63301 q^{22} +(-0.735260 - 1.27351i) q^{23} +(-3.41219 + 1.97003i) q^{25} +(-2.53236 + 2.56655i) q^{26} +(0.0908784 + 0.339163i) q^{28} +5.82075i q^{29} +(1.48558 + 5.54424i) q^{31} +(-0.707107 - 0.707107i) q^{32} +(-0.865675 + 3.23074i) q^{34} +(-0.313065 + 0.180748i) q^{35} +(4.96682 - 1.33085i) q^{37} +(-0.501966 - 0.869430i) q^{38} +(0.514766 - 0.891601i) q^{40} +(2.41936 - 9.02916i) q^{41} +(2.37192 + 1.36943i) q^{43} +(-2.56893 - 2.56893i) q^{44} +(0.380599 - 1.42041i) q^{46} +(-8.18256 - 2.19251i) q^{47} +(-5.95541 + 3.43835i) q^{49} +(-3.80581 - 1.01976i) q^{50} +(-3.60547 + 0.0241746i) q^{52} -2.67501i q^{53} +(1.87015 - 3.23920i) q^{55} +(-0.175564 + 0.304085i) q^{56} +(-4.11589 + 4.11589i) q^{58} +(3.42622 - 3.42622i) q^{59} +(-2.86325 + 4.95929i) q^{61} +(-2.86991 + 4.97083i) q^{62} -1.00000i q^{64} +(-0.984764 - 3.57903i) q^{65} +(14.5603 + 3.90143i) q^{67} +(-2.89660 + 1.67236i) q^{68} +(-0.349179 - 0.0935622i) q^{70} +(1.53985 - 5.74681i) q^{71} +(2.47165 + 2.47165i) q^{73} +(4.45313 + 2.57101i) q^{74} +(0.259837 - 0.969723i) q^{76} +(-0.637824 + 1.10474i) q^{77} +(-1.76544 - 3.05783i) q^{79} +(0.994452 - 0.266463i) q^{80} +(8.09532 - 4.67384i) q^{82} +(2.23652 - 8.34680i) q^{83} +(-2.43491 - 2.43491i) q^{85} +(0.708868 + 2.64553i) q^{86} -3.63301i q^{88} +(2.68520 + 10.0213i) q^{89} +(0.335858 + 1.22064i) q^{91} +(1.27351 - 0.735260i) q^{92} +(-4.23561 - 7.33629i) q^{94} +1.03358 q^{95} +(-3.82280 - 14.2669i) q^{97} +(-6.64239 - 1.77982i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 4 q^{7} - 56 q^{16} - 8 q^{19} - 4 q^{28} + 8 q^{31} - 24 q^{35} - 4 q^{37} + 36 q^{38} + 48 q^{41} + 12 q^{43} - 60 q^{47} + 24 q^{50} - 4 q^{52} + 120 q^{65} - 56 q^{67} - 24 q^{71} + 28 q^{73} - 48 q^{74} + 4 q^{76} + 24 q^{77} - 24 q^{79} + 60 q^{83} - 48 q^{86} + 4 q^{91} + 24 q^{92} + 20 q^{97} + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −0.994452 + 0.266463i −0.444732 + 0.119166i −0.474234 0.880399i \(-0.657275\pi\)
0.0295011 + 0.999565i \(0.490608\pi\)
\(6\) 0 0
\(7\) 0.339163 0.0908784i 0.128191 0.0343488i −0.194153 0.980971i \(-0.562196\pi\)
0.322344 + 0.946622i \(0.395529\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) −0.891601 0.514766i −0.281949 0.162783i
\(11\) −2.56893 + 2.56893i −0.774560 + 0.774560i −0.978900 0.204340i \(-0.934495\pi\)
0.204340 + 0.978900i \(0.434495\pi\)
\(12\) 0 0
\(13\) 0.0241746 + 3.60547i 0.00670484 + 0.999978i
\(14\) 0.304085 + 0.175564i 0.0812701 + 0.0469213i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 1.67236 + 2.89660i 0.405606 + 0.702530i 0.994392 0.105759i \(-0.0337273\pi\)
−0.588786 + 0.808289i \(0.700394\pi\)
\(18\) 0 0
\(19\) −0.969723 0.259837i −0.222470 0.0596106i 0.145862 0.989305i \(-0.453404\pi\)
−0.368332 + 0.929694i \(0.620071\pi\)
\(20\) −0.266463 0.994452i −0.0595829 0.222366i
\(21\) 0 0
\(22\) −3.63301 −0.774560
\(23\) −0.735260 1.27351i −0.153312 0.265545i 0.779131 0.626861i \(-0.215661\pi\)
−0.932443 + 0.361317i \(0.882327\pi\)
\(24\) 0 0
\(25\) −3.41219 + 1.97003i −0.682439 + 0.394006i
\(26\) −2.53236 + 2.56655i −0.496636 + 0.503341i
\(27\) 0 0
\(28\) 0.0908784 + 0.339163i 0.0171744 + 0.0640957i
\(29\) 5.82075i 1.08089i 0.841380 + 0.540443i \(0.181743\pi\)
−0.841380 + 0.540443i \(0.818257\pi\)
\(30\) 0 0
\(31\) 1.48558 + 5.54424i 0.266817 + 0.995775i 0.961129 + 0.276101i \(0.0890423\pi\)
−0.694312 + 0.719675i \(0.744291\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 0 0
\(34\) −0.865675 + 3.23074i −0.148462 + 0.554068i
\(35\) −0.313065 + 0.180748i −0.0529177 + 0.0305520i
\(36\) 0 0
\(37\) 4.96682 1.33085i 0.816540 0.218791i 0.173707 0.984797i \(-0.444426\pi\)
0.642833 + 0.766006i \(0.277759\pi\)
\(38\) −0.501966 0.869430i −0.0814296 0.141040i
\(39\) 0 0
\(40\) 0.514766 0.891601i 0.0813917 0.140975i
\(41\) 2.41936 9.02916i 0.377840 1.41012i −0.471311 0.881967i \(-0.656219\pi\)
0.849151 0.528151i \(-0.177114\pi\)
\(42\) 0 0
\(43\) 2.37192 + 1.36943i 0.361714 + 0.208836i 0.669833 0.742512i \(-0.266366\pi\)
−0.308118 + 0.951348i \(0.599699\pi\)
\(44\) −2.56893 2.56893i −0.387280 0.387280i
\(45\) 0 0
\(46\) 0.380599 1.42041i 0.0561162 0.209429i
\(47\) −8.18256 2.19251i −1.19355 0.319811i −0.393262 0.919427i \(-0.628653\pi\)
−0.800288 + 0.599616i \(0.795320\pi\)
\(48\) 0 0
\(49\) −5.95541 + 3.43835i −0.850772 + 0.491194i
\(50\) −3.80581 1.01976i −0.538223 0.144216i
\(51\) 0 0
\(52\) −3.60547 + 0.0241746i −0.499989 + 0.00335242i
\(53\) 2.67501i 0.367442i −0.982978 0.183721i \(-0.941186\pi\)
0.982978 0.183721i \(-0.0588142\pi\)
\(54\) 0 0
\(55\) 1.87015 3.23920i 0.252171 0.436773i
\(56\) −0.175564 + 0.304085i −0.0234607 + 0.0406351i
\(57\) 0 0
\(58\) −4.11589 + 4.11589i −0.540443 + 0.540443i
\(59\) 3.42622 3.42622i 0.446055 0.446055i −0.447985 0.894041i \(-0.647858\pi\)
0.894041 + 0.447985i \(0.147858\pi\)
\(60\) 0 0
\(61\) −2.86325 + 4.95929i −0.366601 + 0.634972i −0.989032 0.147703i \(-0.952812\pi\)
0.622431 + 0.782675i \(0.286145\pi\)
\(62\) −2.86991 + 4.97083i −0.364479 + 0.631296i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −0.984764 3.57903i −0.122145 0.443924i
\(66\) 0 0
\(67\) 14.5603 + 3.90143i 1.77883 + 0.476636i 0.990369 0.138451i \(-0.0442125\pi\)
0.788459 + 0.615087i \(0.210879\pi\)
\(68\) −2.89660 + 1.67236i −0.351265 + 0.202803i
\(69\) 0 0
\(70\) −0.349179 0.0935622i −0.0417349 0.0111828i
\(71\) 1.53985 5.74681i 0.182747 0.682021i −0.812355 0.583164i \(-0.801815\pi\)
0.995102 0.0988571i \(-0.0315187\pi\)
\(72\) 0 0
\(73\) 2.47165 + 2.47165i 0.289285 + 0.289285i 0.836797 0.547513i \(-0.184425\pi\)
−0.547513 + 0.836797i \(0.684425\pi\)
\(74\) 4.45313 + 2.57101i 0.517665 + 0.298874i
\(75\) 0 0
\(76\) 0.259837 0.969723i 0.0298053 0.111235i
\(77\) −0.637824 + 1.10474i −0.0726868 + 0.125897i
\(78\) 0 0
\(79\) −1.76544 3.05783i −0.198627 0.344033i 0.749456 0.662054i \(-0.230315\pi\)
−0.948084 + 0.318021i \(0.896982\pi\)
\(80\) 0.994452 0.266463i 0.111183 0.0297914i
\(81\) 0 0
\(82\) 8.09532 4.67384i 0.893979 0.516139i
\(83\) 2.23652 8.34680i 0.245490 0.916181i −0.727647 0.685952i \(-0.759386\pi\)
0.973137 0.230228i \(-0.0739474\pi\)
\(84\) 0 0
\(85\) −2.43491 2.43491i −0.264103 0.264103i
\(86\) 0.708868 + 2.64553i 0.0764392 + 0.285275i
\(87\) 0 0
\(88\) 3.63301i 0.387280i
\(89\) 2.68520 + 10.0213i 0.284630 + 1.06225i 0.949109 + 0.314947i \(0.101987\pi\)
−0.664479 + 0.747307i \(0.731347\pi\)
\(90\) 0 0
\(91\) 0.335858 + 1.22064i 0.0352075 + 0.127958i
\(92\) 1.27351 0.735260i 0.132772 0.0766562i
\(93\) 0 0
\(94\) −4.23561 7.33629i −0.436869 0.756680i
\(95\) 1.03358 0.106043
\(96\) 0 0
\(97\) −3.82280 14.2669i −0.388147 1.44858i −0.833146 0.553053i \(-0.813463\pi\)
0.444999 0.895531i \(-0.353204\pi\)
\(98\) −6.64239 1.77982i −0.670983 0.179789i
\(99\) 0 0
\(100\) −1.97003 3.41219i −0.197003 0.341219i
\(101\) 17.3422 1.72561 0.862804 0.505538i \(-0.168706\pi\)
0.862804 + 0.505538i \(0.168706\pi\)
\(102\) 0 0
\(103\) 9.22402 + 5.32549i 0.908870 + 0.524736i 0.880067 0.474849i \(-0.157497\pi\)
0.0288023 + 0.999585i \(0.490831\pi\)
\(104\) −2.56655 2.53236i −0.251671 0.248318i
\(105\) 0 0
\(106\) 1.89152 1.89152i 0.183721 0.183721i
\(107\) −0.693025 0.400118i −0.0669973 0.0386809i 0.466127 0.884718i \(-0.345649\pi\)
−0.533124 + 0.846037i \(0.678982\pi\)
\(108\) 0 0
\(109\) 5.83921 5.83921i 0.559294 0.559294i −0.369812 0.929107i \(-0.620578\pi\)
0.929107 + 0.369812i \(0.120578\pi\)
\(110\) 3.61285 0.968061i 0.344472 0.0923010i
\(111\) 0 0
\(112\) −0.339163 + 0.0908784i −0.0320479 + 0.00858720i
\(113\) 13.4923i 1.26925i 0.772822 + 0.634623i \(0.218844\pi\)
−0.772822 + 0.634623i \(0.781156\pi\)
\(114\) 0 0
\(115\) 1.07052 + 1.07052i 0.0998268 + 0.0998268i
\(116\) −5.82075 −0.540443
\(117\) 0 0
\(118\) 4.84540 0.446055
\(119\) 0.830439 + 0.830439i 0.0761262 + 0.0761262i
\(120\) 0 0
\(121\) 2.19876i 0.199887i
\(122\) −5.53137 + 1.48213i −0.500787 + 0.134185i
\(123\) 0 0
\(124\) −5.54424 + 1.48558i −0.497888 + 0.133409i
\(125\) 6.50827 6.50827i 0.582117 0.582117i
\(126\) 0 0
\(127\) −16.2637 9.38987i −1.44317 0.833216i −0.445112 0.895475i \(-0.646836\pi\)
−0.998060 + 0.0622590i \(0.980170\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 0 0
\(130\) 1.83442 3.22709i 0.160889 0.283034i
\(131\) 2.91497 + 1.68296i 0.254682 + 0.147041i 0.621906 0.783092i \(-0.286358\pi\)
−0.367224 + 0.930133i \(0.619692\pi\)
\(132\) 0 0
\(133\) −0.352507 −0.0305663
\(134\) 7.53699 + 13.0544i 0.651096 + 1.12773i
\(135\) 0 0
\(136\) −3.23074 0.865675i −0.277034 0.0742310i
\(137\) 1.00768 + 3.76073i 0.0860923 + 0.321301i 0.995519 0.0945638i \(-0.0301456\pi\)
−0.909426 + 0.415865i \(0.863479\pi\)
\(138\) 0 0
\(139\) 0.552490 0.0468616 0.0234308 0.999725i \(-0.492541\pi\)
0.0234308 + 0.999725i \(0.492541\pi\)
\(140\) −0.180748 0.313065i −0.0152760 0.0264588i
\(141\) 0 0
\(142\) 5.15245 2.97477i 0.432384 0.249637i
\(143\) −9.32429 9.20008i −0.779736 0.769350i
\(144\) 0 0
\(145\) −1.55101 5.78846i −0.128805 0.480705i
\(146\) 3.49544i 0.289285i
\(147\) 0 0
\(148\) 1.33085 + 4.96682i 0.109396 + 0.408270i
\(149\) 9.15442 + 9.15442i 0.749960 + 0.749960i 0.974471 0.224512i \(-0.0720787\pi\)
−0.224512 + 0.974471i \(0.572079\pi\)
\(150\) 0 0
\(151\) 2.33886 8.72875i 0.190334 0.710336i −0.803092 0.595856i \(-0.796813\pi\)
0.993426 0.114480i \(-0.0365203\pi\)
\(152\) 0.869430 0.501966i 0.0705201 0.0407148i
\(153\) 0 0
\(154\) −1.23218 + 0.330162i −0.0992920 + 0.0266052i
\(155\) −2.95467 5.11763i −0.237325 0.411058i
\(156\) 0 0
\(157\) 5.60064 9.70059i 0.446980 0.774191i −0.551208 0.834368i \(-0.685833\pi\)
0.998188 + 0.0601763i \(0.0191663\pi\)
\(158\) 0.913858 3.41056i 0.0727026 0.271330i
\(159\) 0 0
\(160\) 0.891601 + 0.514766i 0.0704873 + 0.0406958i
\(161\) −0.365107 0.365107i −0.0287745 0.0287745i
\(162\) 0 0
\(163\) −2.29883 + 8.57937i −0.180059 + 0.671988i 0.815576 + 0.578650i \(0.196420\pi\)
−0.995635 + 0.0933377i \(0.970246\pi\)
\(164\) 9.02916 + 2.41936i 0.705059 + 0.188920i
\(165\) 0 0
\(166\) 7.48354 4.32062i 0.580835 0.335345i
\(167\) 8.97462 + 2.40474i 0.694477 + 0.186084i 0.588755 0.808311i \(-0.299618\pi\)
0.105721 + 0.994396i \(0.466285\pi\)
\(168\) 0 0
\(169\) −12.9988 + 0.174322i −0.999910 + 0.0134094i
\(170\) 3.44349i 0.264103i
\(171\) 0 0
\(172\) −1.36943 + 2.37192i −0.104418 + 0.180857i
\(173\) −5.29421 + 9.16985i −0.402512 + 0.697171i −0.994028 0.109122i \(-0.965196\pi\)
0.591517 + 0.806293i \(0.298529\pi\)
\(174\) 0 0
\(175\) −0.978256 + 0.978256i −0.0739492 + 0.0739492i
\(176\) 2.56893 2.56893i 0.193640 0.193640i
\(177\) 0 0
\(178\) −5.18740 + 8.98484i −0.388812 + 0.673442i
\(179\) 12.5097 21.6674i 0.935018 1.61950i 0.160417 0.987049i \(-0.448716\pi\)
0.774601 0.632450i \(-0.217951\pi\)
\(180\) 0 0
\(181\) 23.3875i 1.73838i 0.494482 + 0.869188i \(0.335358\pi\)
−0.494482 + 0.869188i \(0.664642\pi\)
\(182\) −0.625638 + 1.10061i −0.0463754 + 0.0815829i
\(183\) 0 0
\(184\) 1.42041 + 0.380599i 0.104714 + 0.0280581i
\(185\) −4.58464 + 2.64694i −0.337069 + 0.194607i
\(186\) 0 0
\(187\) −11.7373 3.14500i −0.858318 0.229986i
\(188\) 2.19251 8.18256i 0.159905 0.596775i
\(189\) 0 0
\(190\) 0.730852 + 0.730852i 0.0530215 + 0.0530215i
\(191\) −10.6625 6.15600i −0.771512 0.445432i 0.0619020 0.998082i \(-0.480283\pi\)
−0.833414 + 0.552650i \(0.813617\pi\)
\(192\) 0 0
\(193\) −3.34912 + 12.4991i −0.241075 + 0.899704i 0.734241 + 0.678889i \(0.237538\pi\)
−0.975316 + 0.220815i \(0.929128\pi\)
\(194\) 7.38509 12.7913i 0.530218 0.918365i
\(195\) 0 0
\(196\) −3.43835 5.95541i −0.245597 0.425386i
\(197\) 20.6372 5.52972i 1.47034 0.393976i 0.567292 0.823517i \(-0.307991\pi\)
0.903048 + 0.429540i \(0.141324\pi\)
\(198\) 0 0
\(199\) 19.2376 11.1069i 1.36372 0.787344i 0.373603 0.927589i \(-0.378122\pi\)
0.990117 + 0.140245i \(0.0447889\pi\)
\(200\) 1.01976 3.80581i 0.0721082 0.269111i
\(201\) 0 0
\(202\) 12.2628 + 12.2628i 0.862804 + 0.862804i
\(203\) 0.528980 + 1.97418i 0.0371271 + 0.138560i
\(204\) 0 0
\(205\) 9.62373i 0.672151i
\(206\) 2.75668 + 10.2881i 0.192067 + 0.716803i
\(207\) 0 0
\(208\) −0.0241746 3.60547i −0.00167621 0.249994i
\(209\) 3.15865 1.82365i 0.218488 0.126144i
\(210\) 0 0
\(211\) −9.17554 15.8925i −0.631670 1.09408i −0.987210 0.159424i \(-0.949036\pi\)
0.355540 0.934661i \(-0.384297\pi\)
\(212\) 2.67501 0.183721
\(213\) 0 0
\(214\) −0.207116 0.772969i −0.0141582 0.0528391i
\(215\) −2.72366 0.729803i −0.185752 0.0497722i
\(216\) 0 0
\(217\) 1.00770 + 1.74539i 0.0684073 + 0.118485i
\(218\) 8.25788 0.559294
\(219\) 0 0
\(220\) 3.23920 + 1.87015i 0.218387 + 0.126086i
\(221\) −10.4032 + 6.09965i −0.699794 + 0.410307i
\(222\) 0 0
\(223\) 17.9280 17.9280i 1.20055 1.20055i 0.226550 0.974000i \(-0.427255\pi\)
0.974000 0.226550i \(-0.0727446\pi\)
\(224\) −0.304085 0.175564i −0.0203175 0.0117303i
\(225\) 0 0
\(226\) −9.54047 + 9.54047i −0.634623 + 0.634623i
\(227\) −24.0759 + 6.45111i −1.59797 + 0.428175i −0.944429 0.328715i \(-0.893384\pi\)
−0.653542 + 0.756890i \(0.726718\pi\)
\(228\) 0 0
\(229\) −1.49912 + 0.401688i −0.0990647 + 0.0265443i −0.308011 0.951383i \(-0.599663\pi\)
0.208946 + 0.977927i \(0.432997\pi\)
\(230\) 1.51395i 0.0998268i
\(231\) 0 0
\(232\) −4.11589 4.11589i −0.270222 0.270222i
\(233\) −9.96467 −0.652807 −0.326403 0.945231i \(-0.605837\pi\)
−0.326403 + 0.945231i \(0.605837\pi\)
\(234\) 0 0
\(235\) 8.72139 0.568921
\(236\) 3.42622 + 3.42622i 0.223028 + 0.223028i
\(237\) 0 0
\(238\) 1.17442i 0.0761262i
\(239\) 0.0697473 0.0186887i 0.00451158 0.00120887i −0.256563 0.966528i \(-0.582590\pi\)
0.261074 + 0.965319i \(0.415923\pi\)
\(240\) 0 0
\(241\) −18.0719 + 4.84236i −1.16412 + 0.311924i −0.788609 0.614895i \(-0.789198\pi\)
−0.375507 + 0.926819i \(0.622532\pi\)
\(242\) 1.55476 1.55476i 0.0999436 0.0999436i
\(243\) 0 0
\(244\) −4.95929 2.86325i −0.317486 0.183301i
\(245\) 5.00617 5.00617i 0.319833 0.319833i
\(246\) 0 0
\(247\) 0.913390 3.50259i 0.0581176 0.222864i
\(248\) −4.97083 2.86991i −0.315648 0.182240i
\(249\) 0 0
\(250\) 9.20409 0.582117
\(251\) 10.5789 + 18.3232i 0.667735 + 1.15655i 0.978536 + 0.206075i \(0.0660692\pi\)
−0.310802 + 0.950475i \(0.600597\pi\)
\(252\) 0 0
\(253\) 5.16037 + 1.38272i 0.324430 + 0.0869308i
\(254\) −4.86055 18.1398i −0.304978 1.13819i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 7.32194 + 12.6820i 0.456730 + 0.791079i 0.998786 0.0492631i \(-0.0156873\pi\)
−0.542056 + 0.840342i \(0.682354\pi\)
\(258\) 0 0
\(259\) 1.56361 0.902752i 0.0971582 0.0560943i
\(260\) 3.57903 0.984764i 0.221962 0.0610724i
\(261\) 0 0
\(262\) 0.871165 + 3.25123i 0.0538207 + 0.200862i
\(263\) 11.5254i 0.710686i 0.934736 + 0.355343i \(0.115636\pi\)
−0.934736 + 0.355343i \(0.884364\pi\)
\(264\) 0 0
\(265\) 0.712791 + 2.66017i 0.0437864 + 0.163413i
\(266\) −0.249260 0.249260i −0.0152831 0.0152831i
\(267\) 0 0
\(268\) −3.90143 + 14.5603i −0.238318 + 0.889414i
\(269\) −17.7279 + 10.2352i −1.08089 + 0.624052i −0.931136 0.364671i \(-0.881182\pi\)
−0.149754 + 0.988723i \(0.547848\pi\)
\(270\) 0 0
\(271\) 0.537040 0.143899i 0.0326229 0.00874127i −0.242471 0.970159i \(-0.577958\pi\)
0.275094 + 0.961417i \(0.411291\pi\)
\(272\) −1.67236 2.89660i −0.101401 0.175632i
\(273\) 0 0
\(274\) −1.94670 + 3.37178i −0.117604 + 0.203697i
\(275\) 3.70481 13.8265i 0.223408 0.833772i
\(276\) 0 0
\(277\) 10.4571 + 6.03744i 0.628309 + 0.362754i 0.780097 0.625659i \(-0.215170\pi\)
−0.151788 + 0.988413i \(0.548503\pi\)
\(278\) 0.390670 + 0.390670i 0.0234308 + 0.0234308i
\(279\) 0 0
\(280\) 0.0935622 0.349179i 0.00559141 0.0208674i
\(281\) −14.0707 3.77024i −0.839388 0.224913i −0.186583 0.982439i \(-0.559741\pi\)
−0.652805 + 0.757526i \(0.726408\pi\)
\(282\) 0 0
\(283\) −11.5559 + 6.67178i −0.686925 + 0.396596i −0.802459 0.596707i \(-0.796475\pi\)
0.115534 + 0.993304i \(0.463142\pi\)
\(284\) 5.74681 + 1.53985i 0.341010 + 0.0913735i
\(285\) 0 0
\(286\) −0.0878267 13.0987i −0.00519330 0.774543i
\(287\) 3.28222i 0.193743i
\(288\) 0 0
\(289\) 2.90646 5.03413i 0.170968 0.296125i
\(290\) 2.99633 5.18979i 0.175950 0.304755i
\(291\) 0 0
\(292\) −2.47165 + 2.47165i −0.144642 + 0.144642i
\(293\) −14.9275 + 14.9275i −0.872071 + 0.872071i −0.992698 0.120627i \(-0.961510\pi\)
0.120627 + 0.992698i \(0.461510\pi\)
\(294\) 0 0
\(295\) −2.49425 + 4.32017i −0.145221 + 0.251530i
\(296\) −2.57101 + 4.45313i −0.149437 + 0.258833i
\(297\) 0 0
\(298\) 12.9463i 0.749960i
\(299\) 4.57382 2.68174i 0.264511 0.155089i
\(300\) 0 0
\(301\) 0.928918 + 0.248903i 0.0535419 + 0.0143465i
\(302\) 7.82599 4.51833i 0.450335 0.260001i
\(303\) 0 0
\(304\) 0.969723 + 0.259837i 0.0556174 + 0.0149027i
\(305\) 1.52590 5.69472i 0.0873726 0.326079i
\(306\) 0 0
\(307\) −10.9437 10.9437i −0.624590 0.624590i 0.322111 0.946702i \(-0.395607\pi\)
−0.946702 + 0.322111i \(0.895607\pi\)
\(308\) −1.10474 0.637824i −0.0629486 0.0363434i
\(309\) 0 0
\(310\) 1.52945 5.70798i 0.0868668 0.324191i
\(311\) −12.9553 + 22.4392i −0.734626 + 1.27241i 0.220262 + 0.975441i \(0.429309\pi\)
−0.954887 + 0.296968i \(0.904024\pi\)
\(312\) 0 0
\(313\) 17.6482 + 30.5676i 0.997537 + 1.72779i 0.559509 + 0.828824i \(0.310990\pi\)
0.438028 + 0.898961i \(0.355677\pi\)
\(314\) 10.8196 2.89910i 0.610586 0.163606i
\(315\) 0 0
\(316\) 3.05783 1.76544i 0.172016 0.0993137i
\(317\) 3.27025 12.2048i 0.183676 0.685487i −0.811234 0.584721i \(-0.801204\pi\)
0.994910 0.100766i \(-0.0321294\pi\)
\(318\) 0 0
\(319\) −14.9531 14.9531i −0.837212 0.837212i
\(320\) 0.266463 + 0.994452i 0.0148957 + 0.0555916i
\(321\) 0 0
\(322\) 0.516339i 0.0287745i
\(323\) −0.869078 3.24344i −0.0483568 0.180470i
\(324\) 0 0
\(325\) −7.18538 12.2549i −0.398573 0.679782i
\(326\) −7.69205 + 4.44101i −0.426023 + 0.245965i
\(327\) 0 0
\(328\) 4.67384 + 8.09532i 0.258069 + 0.446989i
\(329\) −2.97447 −0.163988
\(330\) 0 0
\(331\) −2.57987 9.62819i −0.141802 0.529213i −0.999877 0.0156883i \(-0.995006\pi\)
0.858075 0.513525i \(-0.171661\pi\)
\(332\) 8.34680 + 2.23652i 0.458090 + 0.122745i
\(333\) 0 0
\(334\) 4.64560 + 8.04642i 0.254196 + 0.440281i
\(335\) −15.5191 −0.847901
\(336\) 0 0
\(337\) −25.2475 14.5766i −1.37532 0.794040i −0.383727 0.923447i \(-0.625360\pi\)
−0.991592 + 0.129406i \(0.958693\pi\)
\(338\) −9.31483 9.06830i −0.506660 0.493250i
\(339\) 0 0
\(340\) 2.43491 2.43491i 0.132052 0.132052i
\(341\) −18.0591 10.4264i −0.977954 0.564622i
\(342\) 0 0
\(343\) −3.44537 + 3.44537i −0.186032 + 0.186032i
\(344\) −2.64553 + 0.708868i −0.142638 + 0.0382196i
\(345\) 0 0
\(346\) −10.2276 + 2.74049i −0.549841 + 0.147329i
\(347\) 14.3451i 0.770084i −0.922899 0.385042i \(-0.874187\pi\)
0.922899 0.385042i \(-0.125813\pi\)
\(348\) 0 0
\(349\) 18.7095 + 18.7095i 1.00150 + 1.00150i 0.999999 + 0.00149761i \(0.000476704\pi\)
0.00149761 + 0.999999i \(0.499523\pi\)
\(350\) −1.38346 −0.0739492
\(351\) 0 0
\(352\) 3.63301 0.193640
\(353\) 8.42845 + 8.42845i 0.448601 + 0.448601i 0.894889 0.446288i \(-0.147254\pi\)
−0.446288 + 0.894889i \(0.647254\pi\)
\(354\) 0 0
\(355\) 6.12524i 0.325094i
\(356\) −10.0213 + 2.68520i −0.531127 + 0.142315i
\(357\) 0 0
\(358\) 24.1669 6.47549i 1.27726 0.342240i
\(359\) −13.9898 + 13.9898i −0.738351 + 0.738351i −0.972259 0.233907i \(-0.924849\pi\)
0.233907 + 0.972259i \(0.424849\pi\)
\(360\) 0 0
\(361\) −15.5816 8.99606i −0.820086 0.473477i
\(362\) −16.5374 + 16.5374i −0.869188 + 0.869188i
\(363\) 0 0
\(364\) −1.22064 + 0.335858i −0.0639791 + 0.0176038i
\(365\) −3.11654 1.79934i −0.163127 0.0941815i
\(366\) 0 0
\(367\) 16.6794 0.870658 0.435329 0.900271i \(-0.356632\pi\)
0.435329 + 0.900271i \(0.356632\pi\)
\(368\) 0.735260 + 1.27351i 0.0383281 + 0.0663862i
\(369\) 0 0
\(370\) −5.11350 1.37016i −0.265838 0.0712311i
\(371\) −0.243101 0.907265i −0.0126212 0.0471029i
\(372\) 0 0
\(373\) −0.533360 −0.0276163 −0.0138082 0.999905i \(-0.504395\pi\)
−0.0138082 + 0.999905i \(0.504395\pi\)
\(374\) −6.07568 10.5234i −0.314166 0.544152i
\(375\) 0 0
\(376\) 7.33629 4.23561i 0.378340 0.218435i
\(377\) −20.9865 + 0.140715i −1.08086 + 0.00724717i
\(378\) 0 0
\(379\) −8.93403 33.3422i −0.458910 1.71268i −0.676331 0.736598i \(-0.736431\pi\)
0.217421 0.976078i \(-0.430236\pi\)
\(380\) 1.03358i 0.0530215i
\(381\) 0 0
\(382\) −3.18658 11.8925i −0.163040 0.608472i
\(383\) −1.42871 1.42871i −0.0730038 0.0730038i 0.669662 0.742666i \(-0.266439\pi\)
−0.742666 + 0.669662i \(0.766439\pi\)
\(384\) 0 0
\(385\) 0.339912 1.26857i 0.0173235 0.0646523i
\(386\) −11.2064 + 6.47000i −0.570389 + 0.329314i
\(387\) 0 0
\(388\) 14.2669 3.82280i 0.724292 0.194073i
\(389\) −0.968658 1.67777i −0.0491129 0.0850661i 0.840424 0.541930i \(-0.182306\pi\)
−0.889537 + 0.456864i \(0.848973\pi\)
\(390\) 0 0
\(391\) 2.45923 4.25951i 0.124369 0.215413i
\(392\) 1.77982 6.64239i 0.0898947 0.335491i
\(393\) 0 0
\(394\) 18.5028 + 10.6826i 0.932158 + 0.538182i
\(395\) 2.57044 + 2.57044i 0.129333 + 0.129333i
\(396\) 0 0
\(397\) −8.86089 + 33.0693i −0.444716 + 1.65970i 0.271971 + 0.962305i \(0.412324\pi\)
−0.716687 + 0.697395i \(0.754342\pi\)
\(398\) 21.4568 + 5.74933i 1.07553 + 0.288188i
\(399\) 0 0
\(400\) 3.41219 1.97003i 0.170610 0.0985016i
\(401\) −8.68363 2.32677i −0.433640 0.116193i 0.0353944 0.999373i \(-0.488731\pi\)
−0.469034 + 0.883180i \(0.655398\pi\)
\(402\) 0 0
\(403\) −19.9537 + 5.49023i −0.993964 + 0.273488i
\(404\) 17.3422i 0.862804i
\(405\) 0 0
\(406\) −1.02191 + 1.77000i −0.0507166 + 0.0878438i
\(407\) −9.34052 + 16.1783i −0.462992 + 0.801926i
\(408\) 0 0
\(409\) −10.4309 + 10.4309i −0.515772 + 0.515772i −0.916289 0.400517i \(-0.868831\pi\)
0.400517 + 0.916289i \(0.368831\pi\)
\(410\) −6.80501 + 6.80501i −0.336075 + 0.336075i
\(411\) 0 0
\(412\) −5.32549 + 9.22402i −0.262368 + 0.454435i
\(413\) 0.850676 1.47341i 0.0418590 0.0725019i
\(414\) 0 0
\(415\) 8.89644i 0.436709i
\(416\) 2.53236 2.56655i 0.124159 0.125835i
\(417\) 0 0
\(418\) 3.52301 + 0.943989i 0.172316 + 0.0461720i
\(419\) 30.2692 17.4759i 1.47875 0.853755i 0.479036 0.877795i \(-0.340986\pi\)
0.999711 + 0.0240402i \(0.00765296\pi\)
\(420\) 0 0
\(421\) 2.55665 + 0.685052i 0.124603 + 0.0333874i 0.320582 0.947221i \(-0.396122\pi\)
−0.195978 + 0.980608i \(0.562788\pi\)
\(422\) 4.74961 17.7258i 0.231207 0.862878i
\(423\) 0 0
\(424\) 1.89152 + 1.89152i 0.0918604 + 0.0918604i
\(425\) −11.4128 6.58918i −0.553602 0.319622i
\(426\) 0 0
\(427\) −0.520414 + 1.94221i −0.0251846 + 0.0939903i
\(428\) 0.400118 0.693025i 0.0193404 0.0334986i
\(429\) 0 0
\(430\) −1.40987 2.44197i −0.0679900 0.117762i
\(431\) 14.1857 3.80104i 0.683301 0.183090i 0.0995618 0.995031i \(-0.468256\pi\)
0.583739 + 0.811942i \(0.301589\pi\)
\(432\) 0 0
\(433\) −13.2828 + 7.66884i −0.638332 + 0.368541i −0.783972 0.620797i \(-0.786809\pi\)
0.145640 + 0.989338i \(0.453476\pi\)
\(434\) −0.521626 + 1.94673i −0.0250388 + 0.0934462i
\(435\) 0 0
\(436\) 5.83921 + 5.83921i 0.279647 + 0.279647i
\(437\) 0.382095 + 1.42600i 0.0182781 + 0.0682147i
\(438\) 0 0
\(439\) 10.8523i 0.517952i 0.965884 + 0.258976i \(0.0833851\pi\)
−0.965884 + 0.258976i \(0.916615\pi\)
\(440\) 0.968061 + 3.61285i 0.0461505 + 0.172236i
\(441\) 0 0
\(442\) −11.6693 3.04306i −0.555051 0.144744i
\(443\) −28.8694 + 16.6678i −1.37163 + 0.791909i −0.991133 0.132874i \(-0.957579\pi\)
−0.380494 + 0.924783i \(0.624246\pi\)
\(444\) 0 0
\(445\) −5.34060 9.25018i −0.253169 0.438501i
\(446\) 25.3541 1.20055
\(447\) 0 0
\(448\) −0.0908784 0.339163i −0.00429360 0.0160239i
\(449\) 17.6413 + 4.72697i 0.832543 + 0.223079i 0.649823 0.760086i \(-0.274843\pi\)
0.182720 + 0.983165i \(0.441510\pi\)
\(450\) 0 0
\(451\) 16.9801 + 29.4104i 0.799561 + 1.38488i
\(452\) −13.4923 −0.634623
\(453\) 0 0
\(454\) −21.5858 12.4626i −1.01307 0.584898i
\(455\) −0.659251 1.12438i −0.0309062 0.0527117i
\(456\) 0 0
\(457\) 4.51133 4.51133i 0.211031 0.211031i −0.593674 0.804705i \(-0.702323\pi\)
0.804705 + 0.593674i \(0.202323\pi\)
\(458\) −1.34408 0.776002i −0.0628045 0.0362602i
\(459\) 0 0
\(460\) −1.07052 + 1.07052i −0.0499134 + 0.0499134i
\(461\) 34.7844 9.32045i 1.62007 0.434097i 0.669049 0.743219i \(-0.266702\pi\)
0.951022 + 0.309122i \(0.100035\pi\)
\(462\) 0 0
\(463\) 21.6855 5.81062i 1.00781 0.270042i 0.283097 0.959091i \(-0.408638\pi\)
0.724715 + 0.689049i \(0.241972\pi\)
\(464\) 5.82075i 0.270222i
\(465\) 0 0
\(466\) −7.04608 7.04608i −0.326403 0.326403i
\(467\) −14.0000 −0.647843 −0.323921 0.946084i \(-0.605001\pi\)
−0.323921 + 0.946084i \(0.605001\pi\)
\(468\) 0 0
\(469\) 5.29288 0.244402
\(470\) 6.16695 + 6.16695i 0.284460 + 0.284460i
\(471\) 0 0
\(472\) 4.84540i 0.223028i
\(473\) −9.61125 + 2.57533i −0.441926 + 0.118414i
\(474\) 0 0
\(475\) 3.82077 1.02377i 0.175309 0.0469739i
\(476\) −0.830439 + 0.830439i −0.0380631 + 0.0380631i
\(477\) 0 0
\(478\) 0.0625337 + 0.0361039i 0.00286023 + 0.00165135i
\(479\) 18.8236 18.8236i 0.860073 0.860073i −0.131273 0.991346i \(-0.541907\pi\)
0.991346 + 0.131273i \(0.0419065\pi\)
\(480\) 0 0
\(481\) 4.91843 + 17.8755i 0.224261 + 0.815054i
\(482\) −16.2029 9.35472i −0.738020 0.426096i
\(483\) 0 0
\(484\) 2.19876 0.0999436
\(485\) 7.60319 + 13.1691i 0.345243 + 0.597978i
\(486\) 0 0
\(487\) −14.7534 3.95317i −0.668542 0.179135i −0.0914441 0.995810i \(-0.529148\pi\)
−0.577098 + 0.816675i \(0.695815\pi\)
\(488\) −1.48213 5.53137i −0.0670927 0.250393i
\(489\) 0 0
\(490\) 7.07980 0.319833
\(491\) 0.935816 + 1.62088i 0.0422328 + 0.0731493i 0.886369 0.462979i \(-0.153220\pi\)
−0.844136 + 0.536129i \(0.819886\pi\)
\(492\) 0 0
\(493\) −16.8604 + 9.73437i −0.759355 + 0.438414i
\(494\) 3.12257 1.83084i 0.140491 0.0823734i
\(495\) 0 0
\(496\) −1.48558 5.54424i −0.0667043 0.248944i
\(497\) 2.08904i 0.0937064i
\(498\) 0 0
\(499\) −2.93283 10.9455i −0.131291 0.489986i 0.868694 0.495349i \(-0.164960\pi\)
−0.999986 + 0.00536247i \(0.998293\pi\)
\(500\) 6.50827 + 6.50827i 0.291059 + 0.291059i
\(501\) 0 0
\(502\) −5.47604 + 20.4369i −0.244408 + 0.912142i
\(503\) −0.311572 + 0.179886i −0.0138923 + 0.00802072i −0.506930 0.861987i \(-0.669220\pi\)
0.493038 + 0.870008i \(0.335886\pi\)
\(504\) 0 0
\(505\) −17.2459 + 4.62104i −0.767434 + 0.205633i
\(506\) 2.67121 + 4.62667i 0.118750 + 0.205680i
\(507\) 0 0
\(508\) 9.38987 16.2637i 0.416608 0.721586i
\(509\) 11.1705 41.6889i 0.495124 1.84783i −0.0342084 0.999415i \(-0.510891\pi\)
0.529333 0.848414i \(-0.322442\pi\)
\(510\) 0 0
\(511\) 1.06291 + 0.613672i 0.0470204 + 0.0271472i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −3.79011 + 14.1449i −0.167175 + 0.623905i
\(515\) −10.5919 2.83809i −0.466734 0.125061i
\(516\) 0 0
\(517\) 26.6528 15.3880i 1.17219 0.676763i
\(518\) 1.74398 + 0.467299i 0.0766262 + 0.0205319i
\(519\) 0 0
\(520\) 3.22709 + 1.83442i 0.141517 + 0.0804447i
\(521\) 39.0644i 1.71144i 0.517436 + 0.855722i \(0.326887\pi\)
−0.517436 + 0.855722i \(0.673113\pi\)
\(522\) 0 0
\(523\) −22.3670 + 38.7408i −0.978041 + 1.69402i −0.308529 + 0.951215i \(0.599837\pi\)
−0.669512 + 0.742801i \(0.733497\pi\)
\(524\) −1.68296 + 2.91497i −0.0735205 + 0.127341i
\(525\) 0 0
\(526\) −8.14968 + 8.14968i −0.355343 + 0.355343i
\(527\) −13.5751 + 13.5751i −0.591339 + 0.591339i
\(528\) 0 0
\(529\) 10.4188 18.0459i 0.452991 0.784603i
\(530\) −1.37701 + 2.38505i −0.0598134 + 0.103600i
\(531\) 0 0
\(532\) 0.352507i 0.0152831i
\(533\) 32.6128 + 8.50464i 1.41262 + 0.368377i
\(534\) 0 0
\(535\) 0.795797 + 0.213233i 0.0344053 + 0.00921887i
\(536\) −13.0544 + 7.53699i −0.563866 + 0.325548i
\(537\) 0 0
\(538\) −19.7729 5.29814i −0.852471 0.228419i
\(539\) 6.46612 24.1319i 0.278515 1.03943i
\(540\) 0 0
\(541\) 20.3887 + 20.3887i 0.876580 + 0.876580i 0.993179 0.116599i \(-0.0371993\pi\)
−0.116599 + 0.993179i \(0.537199\pi\)
\(542\) 0.481497 + 0.277992i 0.0206821 + 0.0119408i
\(543\) 0 0
\(544\) 0.865675 3.23074i 0.0371155 0.138517i
\(545\) −4.25088 + 7.36274i −0.182088 + 0.315385i
\(546\) 0 0
\(547\) 9.46079 + 16.3866i 0.404514 + 0.700639i 0.994265 0.106947i \(-0.0341074\pi\)
−0.589751 + 0.807585i \(0.700774\pi\)
\(548\) −3.76073 + 1.00768i −0.160650 + 0.0430462i
\(549\) 0 0
\(550\) 12.3965 7.15714i 0.528590 0.305182i
\(551\) 1.51244 5.64452i 0.0644323 0.240465i
\(552\) 0 0
\(553\) −0.876661 0.876661i −0.0372794 0.0372794i
\(554\) 3.12521 + 11.6634i 0.132777 + 0.495532i
\(555\) 0 0
\(556\) 0.552490i 0.0234308i
\(557\) −0.839623 3.13351i −0.0355760 0.132771i 0.945854 0.324593i \(-0.105227\pi\)
−0.981430 + 0.191821i \(0.938561\pi\)
\(558\) 0 0
\(559\) −4.88009 + 8.58499i −0.206406 + 0.363106i
\(560\) 0.313065 0.180748i 0.0132294 0.00763801i
\(561\) 0 0
\(562\) −7.28354 12.6155i −0.307237 0.532151i
\(563\) −2.30675 −0.0972180 −0.0486090 0.998818i \(-0.515479\pi\)
−0.0486090 + 0.998818i \(0.515479\pi\)
\(564\) 0 0
\(565\) −3.59518 13.4174i −0.151251 0.564475i
\(566\) −12.8889 3.45357i −0.541761 0.145164i
\(567\) 0 0
\(568\) 2.97477 + 5.15245i 0.124818 + 0.216192i
\(569\) −9.50229 −0.398357 −0.199178 0.979963i \(-0.563827\pi\)
−0.199178 + 0.979963i \(0.563827\pi\)
\(570\) 0 0
\(571\) −22.0695 12.7418i −0.923578 0.533228i −0.0388033 0.999247i \(-0.512355\pi\)
−0.884775 + 0.466019i \(0.845688\pi\)
\(572\) 9.20008 9.32429i 0.384675 0.389868i
\(573\) 0 0
\(574\) 2.32088 2.32088i 0.0968717 0.0968717i
\(575\) 5.01770 + 2.89697i 0.209253 + 0.120812i
\(576\) 0 0
\(577\) 17.9008 17.9008i 0.745221 0.745221i −0.228357 0.973577i \(-0.573335\pi\)
0.973577 + 0.228357i \(0.0733353\pi\)
\(578\) 5.61484 1.50449i 0.233547 0.0625786i
\(579\) 0 0
\(580\) 5.78846 1.55101i 0.240353 0.0644023i
\(581\) 3.03417i 0.125879i
\(582\) 0 0
\(583\) 6.87191 + 6.87191i 0.284606 + 0.284606i
\(584\) −3.49544 −0.144642
\(585\) 0 0
\(586\) −21.1106 −0.872071
\(587\) 21.8482 + 21.8482i 0.901773 + 0.901773i 0.995590 0.0938164i \(-0.0299067\pi\)
−0.0938164 + 0.995590i \(0.529907\pi\)
\(588\) 0 0
\(589\) 5.76239i 0.237435i
\(590\) −4.81852 + 1.29112i −0.198375 + 0.0531545i
\(591\) 0 0
\(592\) −4.96682 + 1.33085i −0.204135 + 0.0546978i
\(593\) −1.91150 + 1.91150i −0.0784959 + 0.0784959i −0.745265 0.666769i \(-0.767677\pi\)
0.666769 + 0.745265i \(0.267677\pi\)
\(594\) 0 0
\(595\) −1.04711 0.604551i −0.0429274 0.0247842i
\(596\) −9.15442 + 9.15442i −0.374980 + 0.374980i
\(597\) 0 0
\(598\) 5.13046 + 1.33790i 0.209800 + 0.0547108i
\(599\) 24.8798 + 14.3643i 1.01656 + 0.586911i 0.913105 0.407723i \(-0.133677\pi\)
0.103454 + 0.994634i \(0.467011\pi\)
\(600\) 0 0
\(601\) 30.9870 1.26399 0.631993 0.774974i \(-0.282237\pi\)
0.631993 + 0.774974i \(0.282237\pi\)
\(602\) 0.480843 + 0.832845i 0.0195977 + 0.0339442i
\(603\) 0 0
\(604\) 8.72875 + 2.33886i 0.355168 + 0.0951670i
\(605\) 0.585887 + 2.18656i 0.0238197 + 0.0888963i
\(606\) 0 0
\(607\) 10.0680 0.408647 0.204323 0.978903i \(-0.434501\pi\)
0.204323 + 0.978903i \(0.434501\pi\)
\(608\) 0.501966 + 0.869430i 0.0203574 + 0.0352600i
\(609\) 0 0
\(610\) 5.10575 2.94781i 0.206726 0.119353i
\(611\) 7.70722 29.5550i 0.311801 1.19567i
\(612\) 0 0
\(613\) −5.97413 22.2957i −0.241293 0.900516i −0.975211 0.221278i \(-0.928977\pi\)
0.733918 0.679238i \(-0.237690\pi\)
\(614\) 15.4767i 0.624590i
\(615\) 0 0
\(616\) −0.330162 1.23218i −0.0133026 0.0496460i
\(617\) −18.5480 18.5480i −0.746714 0.746714i 0.227146 0.973861i \(-0.427060\pi\)
−0.973861 + 0.227146i \(0.927060\pi\)
\(618\) 0 0
\(619\) 5.49310 20.5005i 0.220786 0.823985i −0.763263 0.646088i \(-0.776404\pi\)
0.984049 0.177897i \(-0.0569295\pi\)
\(620\) 5.11763 2.95467i 0.205529 0.118662i
\(621\) 0 0
\(622\) −25.0277 + 6.70614i −1.00352 + 0.268892i
\(623\) 1.82144 + 3.15482i 0.0729743 + 0.126395i
\(624\) 0 0
\(625\) 5.11220 8.85460i 0.204488 0.354184i
\(626\) −9.13540 + 34.0938i −0.365124 + 1.36266i
\(627\) 0 0
\(628\) 9.70059 + 5.60064i 0.387096 + 0.223490i
\(629\) 12.1612 + 12.1612i 0.484900 + 0.484900i
\(630\) 0 0
\(631\) 2.60255 9.71284i 0.103606 0.386662i −0.894578 0.446913i \(-0.852523\pi\)
0.998183 + 0.0602509i \(0.0191901\pi\)
\(632\) 3.41056 + 0.913858i 0.135665 + 0.0363513i
\(633\) 0 0
\(634\) 10.9425 6.31764i 0.434581 0.250906i
\(635\) 18.6755 + 5.00410i 0.741116 + 0.198582i
\(636\) 0 0
\(637\) −12.5409 21.3889i −0.496887 0.847460i
\(638\) 21.1468i 0.837212i
\(639\) 0 0
\(640\) −0.514766 + 0.891601i −0.0203479 + 0.0352436i
\(641\) 3.23854 5.60931i 0.127915 0.221555i −0.794954 0.606670i \(-0.792505\pi\)
0.922868 + 0.385115i \(0.125838\pi\)
\(642\) 0 0
\(643\) −5.14668 + 5.14668i −0.202965 + 0.202965i −0.801269 0.598304i \(-0.795841\pi\)
0.598304 + 0.801269i \(0.295841\pi\)
\(644\) 0.365107 0.365107i 0.0143872 0.0143872i
\(645\) 0 0
\(646\) 1.67893 2.90799i 0.0660566 0.114413i
\(647\) 2.67717 4.63699i 0.105250 0.182299i −0.808590 0.588372i \(-0.799769\pi\)
0.913840 + 0.406073i \(0.133102\pi\)
\(648\) 0 0
\(649\) 17.6034i 0.690993i
\(650\) 3.58472 13.7464i 0.140604 0.539177i
\(651\) 0 0
\(652\) −8.57937 2.29883i −0.335994 0.0900293i
\(653\) 11.7085 6.75992i 0.458190 0.264536i −0.253093 0.967442i \(-0.581448\pi\)
0.711283 + 0.702906i \(0.248114\pi\)
\(654\) 0 0
\(655\) −3.34725 0.896892i −0.130788 0.0350445i
\(656\) −2.41936 + 9.02916i −0.0944600 + 0.352529i
\(657\) 0 0
\(658\) −2.10327 2.10327i −0.0819940 0.0819940i
\(659\) 22.4923 + 12.9859i 0.876176 + 0.505861i 0.869396 0.494116i \(-0.164508\pi\)
0.00678051 + 0.999977i \(0.497842\pi\)
\(660\) 0 0
\(661\) 3.57302 13.3347i 0.138975 0.518660i −0.860975 0.508647i \(-0.830146\pi\)
0.999950 0.0100133i \(-0.00318737\pi\)
\(662\) 4.98392 8.63240i 0.193706 0.335508i
\(663\) 0 0
\(664\) 4.32062 + 7.48354i 0.167673 + 0.290418i
\(665\) 0.350552 0.0939301i 0.0135938 0.00364245i
\(666\) 0 0
\(667\) 7.41277 4.27977i 0.287024 0.165713i
\(668\) −2.40474 + 8.97462i −0.0930422 + 0.347238i
\(669\) 0 0
\(670\) −10.9737 10.9737i −0.423951 0.423951i
\(671\) −5.38458 20.0955i −0.207869 0.775779i
\(672\) 0 0
\(673\) 28.2814i 1.09017i −0.838382 0.545083i \(-0.816498\pi\)
0.838382 0.545083i \(-0.183502\pi\)
\(674\) −7.54543 28.1599i −0.290639 1.08468i
\(675\) 0 0
\(676\) −0.174322 12.9988i −0.00670468 0.499955i
\(677\) 34.1714 19.7289i 1.31331 0.758242i 0.330671 0.943746i \(-0.392725\pi\)
0.982644 + 0.185504i \(0.0593917\pi\)
\(678\) 0 0
\(679\) −2.59310 4.49139i −0.0995142 0.172364i
\(680\) 3.44349 0.132052
\(681\) 0 0
\(682\) −5.39711 20.1423i −0.206666 0.771288i
\(683\) −25.3130 6.78259i −0.968574 0.259529i −0.260348 0.965515i \(-0.583837\pi\)
−0.708226 + 0.705986i \(0.750504\pi\)
\(684\) 0 0
\(685\) −2.00419 3.47136i −0.0765761 0.132634i
\(686\) −4.87249 −0.186032
\(687\) 0 0
\(688\) −2.37192 1.36943i −0.0904286 0.0522090i
\(689\) 9.64469 0.0646675i 0.367433 0.00246363i
\(690\) 0 0
\(691\) 8.34355 8.34355i 0.317404 0.317404i −0.530366 0.847769i \(-0.677945\pi\)
0.847769 + 0.530366i \(0.177945\pi\)
\(692\) −9.16985 5.29421i −0.348585 0.201256i
\(693\) 0 0
\(694\) 10.1435 10.1435i 0.385042 0.385042i
\(695\) −0.549425 + 0.147218i −0.0208409 + 0.00558430i
\(696\) 0 0
\(697\) 30.1999 8.09204i 1.14390 0.306508i
\(698\) 26.4592i 1.00150i
\(699\) 0 0
\(700\) −0.978256 0.978256i −0.0369746 0.0369746i
\(701\) 32.2520 1.21814 0.609071 0.793115i \(-0.291542\pi\)
0.609071 + 0.793115i \(0.291542\pi\)
\(702\) 0 0
\(703\) −5.16224 −0.194698
\(704\) 2.56893 + 2.56893i 0.0968200 + 0.0968200i
\(705\) 0 0
\(706\) 11.9196i 0.448601i
\(707\) 5.88181 1.57603i 0.221208 0.0592726i
\(708\) 0 0
\(709\) −13.0734 + 3.50300i −0.490981 + 0.131558i −0.495811 0.868430i \(-0.665129\pi\)
0.00482996 + 0.999988i \(0.498463\pi\)
\(710\) −4.33120 + 4.33120i −0.162547 + 0.162547i
\(711\) 0 0
\(712\) −8.98484 5.18740i −0.336721 0.194406i
\(713\) 5.96835 5.96835i 0.223516 0.223516i
\(714\) 0 0
\(715\) 11.7240 + 6.66447i 0.438454 + 0.249237i
\(716\) 21.6674 + 12.5097i 0.809750 + 0.467509i
\(717\) 0 0
\(718\) −19.7845 −0.738351
\(719\) −5.20762 9.01985i −0.194211 0.336384i 0.752430 0.658672i \(-0.228881\pi\)
−0.946642 + 0.322288i \(0.895548\pi\)
\(720\) 0 0
\(721\) 3.61241 + 0.967944i 0.134533 + 0.0360481i
\(722\) −4.65670 17.3791i −0.173305 0.646781i
\(723\) 0 0
\(724\) −23.3875 −0.869188
\(725\) −11.4671 19.8615i −0.425876 0.737639i
\(726\) 0 0
\(727\) 20.0010 11.5476i 0.741796 0.428276i −0.0809260 0.996720i \(-0.525788\pi\)
0.822722 + 0.568444i \(0.192454\pi\)
\(728\) −1.10061 0.625638i −0.0407914 0.0231877i
\(729\) 0 0
\(730\) −0.931405 3.47605i −0.0344728 0.128654i
\(731\) 9.16068i 0.338820i
\(732\) 0 0
\(733\) 6.58200 + 24.5643i 0.243112 + 0.907305i 0.974323 + 0.225154i \(0.0722885\pi\)
−0.731212 + 0.682151i \(0.761045\pi\)
\(734\) 11.7941 + 11.7941i 0.435329 + 0.435329i
\(735\) 0 0
\(736\) −0.380599 + 1.42041i −0.0140290 + 0.0523571i
\(737\) −47.4269 + 27.3819i −1.74699 + 1.00863i
\(738\) 0 0
\(739\) 23.9997 6.43070i 0.882843 0.236557i 0.211209 0.977441i \(-0.432260\pi\)
0.671633 + 0.740884i \(0.265593\pi\)
\(740\) −2.64694 4.58464i −0.0973035 0.168535i
\(741\) 0 0
\(742\) 0.469635 0.813432i 0.0172408 0.0298620i
\(743\) −5.53701 + 20.6644i −0.203133 + 0.758104i 0.786877 + 0.617110i \(0.211697\pi\)
−0.990010 + 0.140994i \(0.954970\pi\)
\(744\) 0 0
\(745\) −11.5429 6.66432i −0.422901 0.244162i
\(746\) −0.377142 0.377142i −0.0138082 0.0138082i
\(747\) 0 0
\(748\) 3.14500 11.7373i 0.114993 0.429159i
\(749\) −0.271410 0.0727242i −0.00991712 0.00265728i
\(750\) 0 0
\(751\) 36.9669 21.3428i 1.34894 0.778812i 0.360842 0.932627i \(-0.382490\pi\)
0.988100 + 0.153816i \(0.0491562\pi\)
\(752\) 8.18256 + 2.19251i 0.298387 + 0.0799527i
\(753\) 0 0
\(754\) −14.9392 14.7402i −0.544055 0.536808i
\(755\) 9.30355i 0.338591i
\(756\) 0 0
\(757\) 8.17298 14.1560i 0.297052 0.514509i −0.678408 0.734685i \(-0.737330\pi\)
0.975460 + 0.220176i \(0.0706632\pi\)
\(758\) 17.2592 29.8938i 0.626883 1.08579i
\(759\) 0 0
\(760\) −0.730852 + 0.730852i −0.0265108 + 0.0265108i
\(761\) 4.38948 4.38948i 0.159119 0.159119i −0.623057 0.782176i \(-0.714110\pi\)
0.782176 + 0.623057i \(0.214110\pi\)
\(762\) 0 0
\(763\) 1.44978 2.51110i 0.0524857 0.0909078i
\(764\) 6.15600 10.6625i 0.222716 0.385756i
\(765\) 0 0
\(766\) 2.02050i 0.0730038i
\(767\) 12.4359 + 12.2703i 0.449036 + 0.443055i
\(768\) 0 0
\(769\) −22.4859 6.02508i −0.810863 0.217270i −0.170515 0.985355i \(-0.554543\pi\)
−0.640348 + 0.768085i \(0.721210\pi\)
\(770\) 1.13737 0.656660i 0.0409879 0.0236644i
\(771\) 0 0
\(772\) −12.4991 3.34912i −0.449852 0.120537i
\(773\) 2.25389 8.41164i 0.0810668 0.302546i −0.913474 0.406898i \(-0.866610\pi\)
0.994540 + 0.104353i \(0.0332770\pi\)
\(774\) 0 0
\(775\) −15.9914 15.9914i −0.574428 0.574428i
\(776\) 12.7913 + 7.38509i 0.459183 + 0.265109i
\(777\) 0 0
\(778\) 0.501414 1.87130i 0.0179766 0.0670895i
\(779\) −4.69221 + 8.12715i −0.168116 + 0.291185i
\(780\) 0 0
\(781\) 10.8074 + 18.7189i 0.386718 + 0.669815i
\(782\) 4.75087 1.27299i 0.169891 0.0455221i
\(783\) 0 0
\(784\) 5.95541