Properties

Label 702.2.bb.a.449.8
Level $702$
Weight $2$
Character 702.449
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(71,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.71"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([10, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 449.8
Character \(\chi\) \(=\) 702.449
Dual form 702.2.bb.a.197.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} -1.00000i q^{4} +(-0.891175 - 3.32591i) q^{5} +(-0.00737496 - 0.0275237i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-2.98193 - 1.72162i) q^{10} +(-3.07674 - 3.07674i) q^{11} +(-3.57728 + 0.450627i) q^{13} +(-0.0246771 - 0.0142473i) q^{14} -1.00000 q^{16} +(3.35521 + 5.81139i) q^{17} +(-0.521462 + 1.94612i) q^{19} +(-3.32591 + 0.891175i) q^{20} -4.35116 q^{22} +(-0.264071 - 0.457384i) q^{23} +(-5.93735 + 3.42793i) q^{25} +(-2.21088 + 2.84816i) q^{26} +(-0.0275237 + 0.00737496i) q^{28} -8.30696i q^{29} +(1.39364 - 0.373424i) q^{31} +(-0.707107 + 0.707107i) q^{32} +(6.48176 + 1.73678i) q^{34} +(-0.0849690 + 0.0490569i) q^{35} +(-2.09857 - 7.83198i) q^{37} +(1.00739 + 1.74484i) q^{38} +(-1.72162 + 2.98193i) q^{40} +(-4.85352 - 1.30050i) q^{41} +(7.58793 + 4.38090i) q^{43} +(-3.07674 + 3.07674i) q^{44} +(-0.510146 - 0.136693i) q^{46} +(0.207869 - 0.775777i) q^{47} +(6.06147 - 3.49959i) q^{49} +(-1.77443 + 6.62226i) q^{50} +(0.450627 + 3.57728i) q^{52} -5.06566i q^{53} +(-7.49104 + 12.9749i) q^{55} +(-0.0142473 + 0.0246771i) q^{56} +(-5.87391 - 5.87391i) q^{58} +(-10.1180 - 10.1180i) q^{59} +(0.0107467 - 0.0186139i) q^{61} +(0.721399 - 1.24950i) q^{62} +1.00000i q^{64} +(4.68673 + 11.4961i) q^{65} +(-0.244574 + 0.912763i) q^{67} +(5.81139 - 3.35521i) q^{68} +(-0.0253937 + 0.0947706i) q^{70} +(-9.32969 - 2.49988i) q^{71} +(6.53713 - 6.53713i) q^{73} +(-7.02196 - 4.05413i) q^{74} +(1.94612 + 0.521462i) q^{76} +(-0.0619924 + 0.107374i) q^{77} +(1.40950 + 2.44132i) q^{79} +(0.891175 + 3.32591i) q^{80} +(-4.35155 + 2.51237i) q^{82} +(14.1896 + 3.80210i) q^{83} +(16.3381 - 16.3381i) q^{85} +(8.46324 - 2.26772i) q^{86} +4.35116i q^{88} +(10.8696 - 2.91249i) q^{89} +(0.0387852 + 0.0951367i) q^{91} +(-0.457384 + 0.264071i) q^{92} +(-0.401572 - 0.695542i) q^{94} +6.93734 q^{95} +(-0.455998 + 0.122184i) q^{97} +(1.81152 - 6.76070i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7} - 56 q^{16} - 8 q^{19} - 4 q^{28} + 8 q^{31} - 24 q^{35} - 4 q^{37} + 36 q^{38} + 48 q^{41} + 12 q^{43} - 60 q^{47} + 24 q^{50} - 4 q^{52} + 120 q^{65} - 56 q^{67} - 24 q^{71} + 28 q^{73}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −0.891175 3.32591i −0.398545 1.48739i −0.815657 0.578536i \(-0.803624\pi\)
0.417111 0.908855i \(-0.363043\pi\)
\(6\) 0 0
\(7\) −0.00737496 0.0275237i −0.00278747 0.0104030i 0.964518 0.264017i \(-0.0850474\pi\)
−0.967306 + 0.253614i \(0.918381\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 0 0
\(10\) −2.98193 1.72162i −0.942969 0.544423i
\(11\) −3.07674 3.07674i −0.927671 0.927671i 0.0698842 0.997555i \(-0.477737\pi\)
−0.997555 + 0.0698842i \(0.977737\pi\)
\(12\) 0 0
\(13\) −3.57728 + 0.450627i −0.992159 + 0.124981i
\(14\) −0.0246771 0.0142473i −0.00659523 0.00380776i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 3.35521 + 5.81139i 0.813757 + 1.40947i 0.910217 + 0.414131i \(0.135915\pi\)
−0.0964602 + 0.995337i \(0.530752\pi\)
\(18\) 0 0
\(19\) −0.521462 + 1.94612i −0.119632 + 0.446471i −0.999592 0.0285767i \(-0.990903\pi\)
0.879960 + 0.475048i \(0.157569\pi\)
\(20\) −3.32591 + 0.891175i −0.743696 + 0.199273i
\(21\) 0 0
\(22\) −4.35116 −0.927671
\(23\) −0.264071 0.457384i −0.0550626 0.0953712i 0.837180 0.546927i \(-0.184202\pi\)
−0.892243 + 0.451556i \(0.850869\pi\)
\(24\) 0 0
\(25\) −5.93735 + 3.42793i −1.18747 + 0.685587i
\(26\) −2.21088 + 2.84816i −0.433589 + 0.558570i
\(27\) 0 0
\(28\) −0.0275237 + 0.00737496i −0.00520149 + 0.00139374i
\(29\) 8.30696i 1.54256i −0.636493 0.771282i \(-0.719616\pi\)
0.636493 0.771282i \(-0.280384\pi\)
\(30\) 0 0
\(31\) 1.39364 0.373424i 0.250305 0.0670689i −0.131485 0.991318i \(-0.541975\pi\)
0.381790 + 0.924249i \(0.375308\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) 6.48176 + 1.73678i 1.11161 + 0.297856i
\(35\) −0.0849690 + 0.0490569i −0.0143624 + 0.00829212i
\(36\) 0 0
\(37\) −2.09857 7.83198i −0.345003 1.28757i −0.892608 0.450833i \(-0.851127\pi\)
0.547605 0.836737i \(-0.315540\pi\)
\(38\) 1.00739 + 1.74484i 0.163420 + 0.283051i
\(39\) 0 0
\(40\) −1.72162 + 2.98193i −0.272212 + 0.471484i
\(41\) −4.85352 1.30050i −0.757992 0.203103i −0.140932 0.990019i \(-0.545010\pi\)
−0.617060 + 0.786916i \(0.711677\pi\)
\(42\) 0 0
\(43\) 7.58793 + 4.38090i 1.15715 + 0.668080i 0.950619 0.310360i \(-0.100450\pi\)
0.206530 + 0.978440i \(0.433783\pi\)
\(44\) −3.07674 + 3.07674i −0.463835 + 0.463835i
\(45\) 0 0
\(46\) −0.510146 0.136693i −0.0752169 0.0201543i
\(47\) 0.207869 0.775777i 0.0303208 0.113159i −0.949107 0.314954i \(-0.898011\pi\)
0.979428 + 0.201795i \(0.0646776\pi\)
\(48\) 0 0
\(49\) 6.06147 3.49959i 0.865925 0.499942i
\(50\) −1.77443 + 6.62226i −0.250942 + 0.936529i
\(51\) 0 0
\(52\) 0.450627 + 3.57728i 0.0624907 + 0.496080i
\(53\) 5.06566i 0.695822i −0.937527 0.347911i \(-0.886891\pi\)
0.937527 0.347911i \(-0.113109\pi\)
\(54\) 0 0
\(55\) −7.49104 + 12.9749i −1.01009 + 1.74953i
\(56\) −0.0142473 + 0.0246771i −0.00190388 + 0.00329761i
\(57\) 0 0
\(58\) −5.87391 5.87391i −0.771282 0.771282i
\(59\) −10.1180 10.1180i −1.31725 1.31725i −0.915948 0.401298i \(-0.868559\pi\)
−0.401298 0.915948i \(-0.631441\pi\)
\(60\) 0 0
\(61\) 0.0107467 0.0186139i 0.00137598 0.00238327i −0.865337 0.501191i \(-0.832895\pi\)
0.866713 + 0.498808i \(0.166229\pi\)
\(62\) 0.721399 1.24950i 0.0916178 0.158687i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 4.68673 + 11.4961i 0.581317 + 1.42592i
\(66\) 0 0
\(67\) −0.244574 + 0.912763i −0.0298795 + 0.111512i −0.979255 0.202632i \(-0.935051\pi\)
0.949376 + 0.314143i \(0.101717\pi\)
\(68\) 5.81139 3.35521i 0.704734 0.406878i
\(69\) 0 0
\(70\) −0.0253937 + 0.0947706i −0.00303513 + 0.0113273i
\(71\) −9.32969 2.49988i −1.10723 0.296682i −0.341525 0.939873i \(-0.610943\pi\)
−0.765706 + 0.643191i \(0.777610\pi\)
\(72\) 0 0
\(73\) 6.53713 6.53713i 0.765113 0.765113i −0.212129 0.977242i \(-0.568040\pi\)
0.977242 + 0.212129i \(0.0680396\pi\)
\(74\) −7.02196 4.05413i −0.816286 0.471283i
\(75\) 0 0
\(76\) 1.94612 + 0.521462i 0.223235 + 0.0598158i
\(77\) −0.0619924 + 0.107374i −0.00706469 + 0.0122364i
\(78\) 0 0
\(79\) 1.40950 + 2.44132i 0.158581 + 0.274670i 0.934357 0.356338i \(-0.115975\pi\)
−0.775776 + 0.631008i \(0.782641\pi\)
\(80\) 0.891175 + 3.32591i 0.0996364 + 0.371848i
\(81\) 0 0
\(82\) −4.35155 + 2.51237i −0.480548 + 0.277444i
\(83\) 14.1896 + 3.80210i 1.55752 + 0.417335i 0.931876 0.362777i \(-0.118171\pi\)
0.625640 + 0.780112i \(0.284838\pi\)
\(84\) 0 0
\(85\) 16.3381 16.3381i 1.77211 1.77211i
\(86\) 8.46324 2.26772i 0.912615 0.244534i
\(87\) 0 0
\(88\) 4.35116i 0.463835i
\(89\) 10.8696 2.91249i 1.15217 0.308724i 0.368337 0.929692i \(-0.379927\pi\)
0.783835 + 0.620969i \(0.213261\pi\)
\(90\) 0 0
\(91\) 0.0387852 + 0.0951367i 0.00406579 + 0.00997303i
\(92\) −0.457384 + 0.264071i −0.0476856 + 0.0275313i
\(93\) 0 0
\(94\) −0.401572 0.695542i −0.0414189 0.0717397i
\(95\) 6.93734 0.711756
\(96\) 0 0
\(97\) −0.455998 + 0.122184i −0.0462996 + 0.0124059i −0.281895 0.959445i \(-0.590963\pi\)
0.235595 + 0.971851i \(0.424296\pi\)
\(98\) 1.81152 6.76070i 0.182991 0.682933i
\(99\) 0 0
\(100\) 3.42793 + 5.93735i 0.342793 + 0.593735i
\(101\) 5.49087 0.546362 0.273181 0.961963i \(-0.411924\pi\)
0.273181 + 0.961963i \(0.411924\pi\)
\(102\) 0 0
\(103\) −3.62390 2.09226i −0.357073 0.206156i 0.310723 0.950501i \(-0.399429\pi\)
−0.667796 + 0.744344i \(0.732762\pi\)
\(104\) 2.84816 + 2.21088i 0.279285 + 0.216794i
\(105\) 0 0
\(106\) −3.58197 3.58197i −0.347911 0.347911i
\(107\) −2.85234 1.64680i −0.275746 0.159202i 0.355750 0.934581i \(-0.384226\pi\)
−0.631496 + 0.775379i \(0.717559\pi\)
\(108\) 0 0
\(109\) −5.40316 5.40316i −0.517529 0.517529i 0.399294 0.916823i \(-0.369255\pi\)
−0.916823 + 0.399294i \(0.869255\pi\)
\(110\) 3.87765 + 14.4716i 0.369719 + 1.37981i
\(111\) 0 0
\(112\) 0.00737496 + 0.0275237i 0.000696868 + 0.00260075i
\(113\) 0.581902i 0.0547407i −0.999625 0.0273704i \(-0.991287\pi\)
0.999625 0.0273704i \(-0.00871334\pi\)
\(114\) 0 0
\(115\) −1.28588 + 1.28588i −0.119909 + 0.119909i
\(116\) −8.30696 −0.771282
\(117\) 0 0
\(118\) −14.3089 −1.31725
\(119\) 0.135206 0.135206i 0.0123944 0.0123944i
\(120\) 0 0
\(121\) 7.93261i 0.721147i
\(122\) −0.00556292 0.0207611i −0.000503644 0.00187962i
\(123\) 0 0
\(124\) −0.373424 1.39364i −0.0335345 0.125152i
\(125\) 4.51854 + 4.51854i 0.404150 + 0.404150i
\(126\) 0 0
\(127\) 8.56275 + 4.94371i 0.759822 + 0.438683i 0.829232 0.558905i \(-0.188778\pi\)
−0.0694101 + 0.997588i \(0.522112\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 11.4430 + 4.81497i 1.00362 + 0.422301i
\(131\) 15.6965 + 9.06236i 1.37141 + 0.791782i 0.991105 0.133081i \(-0.0424871\pi\)
0.380301 + 0.924863i \(0.375820\pi\)
\(132\) 0 0
\(133\) 0.0574102 0.00497810
\(134\) 0.472481 + 0.818361i 0.0408161 + 0.0706956i
\(135\) 0 0
\(136\) 1.73678 6.48176i 0.148928 0.555806i
\(137\) −16.1465 + 4.32643i −1.37948 + 0.369632i −0.870934 0.491400i \(-0.836485\pi\)
−0.508551 + 0.861032i \(0.669819\pi\)
\(138\) 0 0
\(139\) 5.08483 0.431289 0.215645 0.976472i \(-0.430815\pi\)
0.215645 + 0.976472i \(0.430815\pi\)
\(140\) 0.0490569 + 0.0849690i 0.00414606 + 0.00718119i
\(141\) 0 0
\(142\) −8.36477 + 4.82940i −0.701956 + 0.405275i
\(143\) 12.3928 + 9.61989i 1.03634 + 0.804456i
\(144\) 0 0
\(145\) −27.6282 + 7.40295i −2.29440 + 0.614782i
\(146\) 9.24490i 0.765113i
\(147\) 0 0
\(148\) −7.83198 + 2.09857i −0.643785 + 0.172502i
\(149\) −3.73867 + 3.73867i −0.306284 + 0.306284i −0.843466 0.537182i \(-0.819489\pi\)
0.537182 + 0.843466i \(0.319489\pi\)
\(150\) 0 0
\(151\) 9.40508 + 2.52008i 0.765375 + 0.205082i 0.620327 0.784343i \(-0.287000\pi\)
0.145047 + 0.989425i \(0.453667\pi\)
\(152\) 1.74484 1.00739i 0.141526 0.0817098i
\(153\) 0 0
\(154\) 0.0320896 + 0.119760i 0.00258586 + 0.00965055i
\(155\) −2.48395 4.30232i −0.199515 0.345571i
\(156\) 0 0
\(157\) 4.81339 8.33703i 0.384150 0.665368i −0.607501 0.794319i \(-0.707828\pi\)
0.991651 + 0.128952i \(0.0411612\pi\)
\(158\) 2.72294 + 0.729610i 0.216626 + 0.0580446i
\(159\) 0 0
\(160\) 2.98193 + 1.72162i 0.235742 + 0.136106i
\(161\) −0.0106414 + 0.0106414i −0.000838659 + 0.000838659i
\(162\) 0 0
\(163\) 10.7066 + 2.86883i 0.838607 + 0.224704i 0.652465 0.757819i \(-0.273735\pi\)
0.186142 + 0.982523i \(0.440402\pi\)
\(164\) −1.30050 + 4.85352i −0.101552 + 0.378996i
\(165\) 0 0
\(166\) 12.7221 7.34510i 0.987425 0.570090i
\(167\) −3.86269 + 14.4157i −0.298904 + 1.11552i 0.639164 + 0.769071i \(0.279281\pi\)
−0.938067 + 0.346453i \(0.887386\pi\)
\(168\) 0 0
\(169\) 12.5939 3.22404i 0.968759 0.248003i
\(170\) 23.1055i 1.77211i
\(171\) 0 0
\(172\) 4.38090 7.58793i 0.334040 0.578574i
\(173\) 9.53013 16.5067i 0.724562 1.25498i −0.234592 0.972094i \(-0.575375\pi\)
0.959154 0.282884i \(-0.0912913\pi\)
\(174\) 0 0
\(175\) 0.138137 + 0.138137i 0.0104422 + 0.0104422i
\(176\) 3.07674 + 3.07674i 0.231918 + 0.231918i
\(177\) 0 0
\(178\) 5.62650 9.74539i 0.421724 0.730448i
\(179\) −12.0533 + 20.8769i −0.900906 + 1.56041i −0.0745856 + 0.997215i \(0.523763\pi\)
−0.826320 + 0.563200i \(0.809570\pi\)
\(180\) 0 0
\(181\) 1.16505i 0.0865977i 0.999062 + 0.0432988i \(0.0137868\pi\)
−0.999062 + 0.0432988i \(0.986213\pi\)
\(182\) 0.0946971 + 0.0398465i 0.00701941 + 0.00295362i
\(183\) 0 0
\(184\) −0.136693 + 0.510146i −0.0100771 + 0.0376084i
\(185\) −24.1783 + 13.9593i −1.77762 + 1.02631i
\(186\) 0 0
\(187\) 7.55702 28.2032i 0.552624 2.06242i
\(188\) −0.775777 0.207869i −0.0565793 0.0151604i
\(189\) 0 0
\(190\) 4.90544 4.90544i 0.355878 0.355878i
\(191\) 10.0152 + 5.78229i 0.724676 + 0.418392i 0.816471 0.577386i \(-0.195927\pi\)
−0.0917955 + 0.995778i \(0.529261\pi\)
\(192\) 0 0
\(193\) 1.39097 + 0.372710i 0.100124 + 0.0268283i 0.308533 0.951214i \(-0.400162\pi\)
−0.208409 + 0.978042i \(0.566829\pi\)
\(194\) −0.236042 + 0.408837i −0.0169468 + 0.0293528i
\(195\) 0 0
\(196\) −3.49959 6.06147i −0.249971 0.432962i
\(197\) −1.07594 4.01546i −0.0766575 0.286090i 0.916947 0.399010i \(-0.130646\pi\)
−0.993604 + 0.112920i \(0.963980\pi\)
\(198\) 0 0
\(199\) 1.78437 1.03021i 0.126491 0.0730295i −0.435419 0.900228i \(-0.643400\pi\)
0.561910 + 0.827198i \(0.310067\pi\)
\(200\) 6.62226 + 1.77443i 0.468264 + 0.125471i
\(201\) 0 0
\(202\) 3.88263 3.88263i 0.273181 0.273181i
\(203\) −0.228638 + 0.0612635i −0.0160473 + 0.00429985i
\(204\) 0 0
\(205\) 17.3013i 1.20838i
\(206\) −4.04193 + 1.08303i −0.281615 + 0.0754585i
\(207\) 0 0
\(208\) 3.57728 0.450627i 0.248040 0.0312453i
\(209\) 7.59210 4.38330i 0.525157 0.303199i
\(210\) 0 0
\(211\) −9.57481 16.5841i −0.659157 1.14169i −0.980834 0.194844i \(-0.937580\pi\)
0.321677 0.946849i \(-0.395753\pi\)
\(212\) −5.06566 −0.347911
\(213\) 0 0
\(214\) −3.18137 + 0.852446i −0.217474 + 0.0582720i
\(215\) 7.80829 29.1409i 0.532521 1.98739i
\(216\) 0 0
\(217\) −0.0205560 0.0356041i −0.00139543 0.00241696i
\(218\) −7.64122 −0.517529
\(219\) 0 0
\(220\) 12.9749 + 7.49104i 0.874765 + 0.505046i
\(221\) −14.6213 19.2770i −0.983534 1.29671i
\(222\) 0 0
\(223\) 18.6817 + 18.6817i 1.25102 + 1.25102i 0.955264 + 0.295754i \(0.0955710\pi\)
0.295754 + 0.955264i \(0.404429\pi\)
\(224\) 0.0246771 + 0.0142473i 0.00164881 + 0.000951939i
\(225\) 0 0
\(226\) −0.411467 0.411467i −0.0273704 0.0273704i
\(227\) −1.32881 4.95918i −0.0881962 0.329153i 0.907704 0.419611i \(-0.137833\pi\)
−0.995900 + 0.0904584i \(0.971167\pi\)
\(228\) 0 0
\(229\) 2.05522 + 7.67020i 0.135813 + 0.506861i 0.999993 + 0.00367870i \(0.00117097\pi\)
−0.864180 + 0.503182i \(0.832162\pi\)
\(230\) 1.81852i 0.119909i
\(231\) 0 0
\(232\) −5.87391 + 5.87391i −0.385641 + 0.385641i
\(233\) −0.240333 −0.0157448 −0.00787238 0.999969i \(-0.502506\pi\)
−0.00787238 + 0.999969i \(0.502506\pi\)
\(234\) 0 0
\(235\) −2.76541 −0.180395
\(236\) −10.1180 + 10.1180i −0.658623 + 0.658623i
\(237\) 0 0
\(238\) 0.191211i 0.0123944i
\(239\) 1.74060 + 6.49603i 0.112590 + 0.420193i 0.999095 0.0425261i \(-0.0135406\pi\)
−0.886505 + 0.462719i \(0.846874\pi\)
\(240\) 0 0
\(241\) −6.71652 25.0664i −0.432649 1.61467i −0.746630 0.665240i \(-0.768329\pi\)
0.313980 0.949430i \(-0.398337\pi\)
\(242\) 5.60920 + 5.60920i 0.360573 + 0.360573i
\(243\) 0 0
\(244\) −0.0186139 0.0107467i −0.00119163 0.000687990i
\(245\) −17.0412 17.0412i −1.08872 1.08872i
\(246\) 0 0
\(247\) 0.988441 7.19681i 0.0628930 0.457922i
\(248\) −1.24950 0.721399i −0.0793434 0.0458089i
\(249\) 0 0
\(250\) 6.39018 0.404150
\(251\) 10.2804 + 17.8061i 0.648892 + 1.12391i 0.983388 + 0.181517i \(0.0581007\pi\)
−0.334496 + 0.942397i \(0.608566\pi\)
\(252\) 0 0
\(253\) −0.594774 + 2.21973i −0.0373931 + 0.139553i
\(254\) 9.55051 2.55905i 0.599252 0.160569i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −7.71905 13.3698i −0.481501 0.833984i 0.518274 0.855215i \(-0.326575\pi\)
−0.999775 + 0.0212306i \(0.993242\pi\)
\(258\) 0 0
\(259\) −0.200088 + 0.115521i −0.0124329 + 0.00717813i
\(260\) 11.4961 4.68673i 0.712959 0.290658i
\(261\) 0 0
\(262\) 17.5071 4.69102i 1.08159 0.289812i
\(263\) 12.6233i 0.778388i −0.921156 0.389194i \(-0.872754\pi\)
0.921156 0.389194i \(-0.127246\pi\)
\(264\) 0 0
\(265\) −16.8479 + 4.51439i −1.03496 + 0.277317i
\(266\) 0.0405952 0.0405952i 0.00248905 0.00248905i
\(267\) 0 0
\(268\) 0.912763 + 0.244574i 0.0557559 + 0.0149397i
\(269\) −13.5676 + 7.83325i −0.827230 + 0.477602i −0.852903 0.522069i \(-0.825160\pi\)
0.0256732 + 0.999670i \(0.491827\pi\)
\(270\) 0 0
\(271\) −4.43051 16.5349i −0.269134 1.00442i −0.959671 0.281126i \(-0.909292\pi\)
0.690537 0.723297i \(-0.257374\pi\)
\(272\) −3.35521 5.81139i −0.203439 0.352367i
\(273\) 0 0
\(274\) −8.35802 + 14.4765i −0.504926 + 0.874558i
\(275\) 28.8145 + 7.72083i 1.73758 + 0.465583i
\(276\) 0 0
\(277\) −16.9335 9.77658i −1.01744 0.587418i −0.104077 0.994569i \(-0.533189\pi\)
−0.913361 + 0.407151i \(0.866522\pi\)
\(278\) 3.59552 3.59552i 0.215645 0.215645i
\(279\) 0 0
\(280\) 0.0947706 + 0.0253937i 0.00566363 + 0.00151756i
\(281\) −7.92083 + 29.5609i −0.472517 + 1.76346i 0.158162 + 0.987413i \(0.449443\pi\)
−0.630679 + 0.776044i \(0.717223\pi\)
\(282\) 0 0
\(283\) −20.4545 + 11.8094i −1.21589 + 0.701995i −0.964036 0.265770i \(-0.914374\pi\)
−0.251855 + 0.967765i \(0.581041\pi\)
\(284\) −2.49988 + 9.32969i −0.148341 + 0.553615i
\(285\) 0 0
\(286\) 15.5653 1.96075i 0.920397 0.115942i
\(287\) 0.143178i 0.00845153i
\(288\) 0 0
\(289\) −14.0148 + 24.2744i −0.824401 + 1.42790i
\(290\) −14.3014 + 24.7708i −0.839808 + 1.45459i
\(291\) 0 0
\(292\) −6.53713 6.53713i −0.382557 0.382557i
\(293\) 15.6173 + 15.6173i 0.912375 + 0.912375i 0.996459 0.0840837i \(-0.0267963\pi\)
−0.0840837 + 0.996459i \(0.526796\pi\)
\(294\) 0 0
\(295\) −24.6345 + 42.6683i −1.43428 + 2.48424i
\(296\) −4.05413 + 7.02196i −0.235642 + 0.408143i
\(297\) 0 0
\(298\) 5.28728i 0.306284i
\(299\) 1.15076 + 1.51719i 0.0665504 + 0.0877416i
\(300\) 0 0
\(301\) 0.0646178 0.241157i 0.00372451 0.0139001i
\(302\) 8.43236 4.86843i 0.485228 0.280147i
\(303\) 0 0
\(304\) 0.521462 1.94612i 0.0299079 0.111618i
\(305\) −0.0714854 0.0191545i −0.00409324 0.00109678i
\(306\) 0 0
\(307\) 2.99786 2.99786i 0.171097 0.171097i −0.616364 0.787461i \(-0.711395\pi\)
0.787461 + 0.616364i \(0.211395\pi\)
\(308\) 0.107374 + 0.0619924i 0.00611820 + 0.00353234i
\(309\) 0 0
\(310\) −4.79862 1.28579i −0.272543 0.0730277i
\(311\) 15.1300 26.2059i 0.857943 1.48600i −0.0159450 0.999873i \(-0.505076\pi\)
0.873888 0.486128i \(-0.161591\pi\)
\(312\) 0 0
\(313\) −16.7332 28.9828i −0.945817 1.63820i −0.754107 0.656751i \(-0.771930\pi\)
−0.191710 0.981452i \(-0.561403\pi\)
\(314\) −2.49159 9.29875i −0.140609 0.524759i
\(315\) 0 0
\(316\) 2.44132 1.40950i 0.137335 0.0792905i
\(317\) −10.7787 2.88814i −0.605392 0.162214i −0.0569135 0.998379i \(-0.518126\pi\)
−0.548478 + 0.836165i \(0.684793\pi\)
\(318\) 0 0
\(319\) −25.5583 + 25.5583i −1.43099 + 1.43099i
\(320\) 3.32591 0.891175i 0.185924 0.0498182i
\(321\) 0 0
\(322\) 0.0150492i 0.000838659i
\(323\) −13.0593 + 3.49922i −0.726638 + 0.194702i
\(324\) 0 0
\(325\) 19.6949 14.9382i 1.09247 0.828623i
\(326\) 9.59929 5.54215i 0.531655 0.306951i
\(327\) 0 0
\(328\) 2.51237 + 4.35155i 0.138722 + 0.240274i
\(329\) −0.0228853 −0.00126171
\(330\) 0 0
\(331\) −3.99853 + 1.07140i −0.219779 + 0.0588897i −0.367028 0.930210i \(-0.619625\pi\)
0.147249 + 0.989099i \(0.452958\pi\)
\(332\) 3.80210 14.1896i 0.208668 0.778758i
\(333\) 0 0
\(334\) 7.46214 + 12.9248i 0.408310 + 0.707213i
\(335\) 3.25372 0.177770
\(336\) 0 0
\(337\) 14.3966 + 8.31187i 0.784232 + 0.452777i 0.837928 0.545781i \(-0.183767\pi\)
−0.0536959 + 0.998557i \(0.517100\pi\)
\(338\) 6.62547 11.1849i 0.360378 0.608381i
\(339\) 0 0
\(340\) −16.3381 16.3381i −0.886056 0.886056i
\(341\) −5.43678 3.13893i −0.294418 0.169982i
\(342\) 0 0
\(343\) −0.282066 0.282066i −0.0152301 0.0152301i
\(344\) −2.26772 8.46324i −0.122267 0.456307i
\(345\) 0 0
\(346\) −4.93316 18.4108i −0.265208 0.989770i
\(347\) 20.3538i 1.09265i 0.837574 + 0.546324i \(0.183973\pi\)
−0.837574 + 0.546324i \(0.816027\pi\)
\(348\) 0 0
\(349\) −13.8299 + 13.8299i −0.740298 + 0.740298i −0.972635 0.232337i \(-0.925363\pi\)
0.232337 + 0.972635i \(0.425363\pi\)
\(350\) 0.195355 0.0104422
\(351\) 0 0
\(352\) 4.35116 0.231918
\(353\) 7.15642 7.15642i 0.380898 0.380898i −0.490528 0.871426i \(-0.663196\pi\)
0.871426 + 0.490528i \(0.163196\pi\)
\(354\) 0 0
\(355\) 33.2575i 1.76513i
\(356\) −2.91249 10.8696i −0.154362 0.576086i
\(357\) 0 0
\(358\) 6.23925 + 23.2852i 0.329754 + 1.23066i
\(359\) −1.10596 1.10596i −0.0583705 0.0583705i 0.677319 0.735689i \(-0.263142\pi\)
−0.735689 + 0.677319i \(0.763142\pi\)
\(360\) 0 0
\(361\) 12.9390 + 7.47034i 0.681001 + 0.393176i
\(362\) 0.823817 + 0.823817i 0.0432988 + 0.0432988i
\(363\) 0 0
\(364\) 0.0951367 0.0387852i 0.00498652 0.00203290i
\(365\) −27.5676 15.9162i −1.44296 0.833091i
\(366\) 0 0
\(367\) −6.23361 −0.325392 −0.162696 0.986676i \(-0.552019\pi\)
−0.162696 + 0.986676i \(0.552019\pi\)
\(368\) 0.264071 + 0.457384i 0.0137656 + 0.0238428i
\(369\) 0 0
\(370\) −7.22588 + 26.9673i −0.375656 + 1.40197i
\(371\) −0.139426 + 0.0373590i −0.00723863 + 0.00193958i
\(372\) 0 0
\(373\) −21.1091 −1.09299 −0.546493 0.837463i \(-0.684038\pi\)
−0.546493 + 0.837463i \(0.684038\pi\)
\(374\) −14.5990 25.2863i −0.754899 1.30752i
\(375\) 0 0
\(376\) −0.695542 + 0.401572i −0.0358699 + 0.0207095i
\(377\) 3.74334 + 29.7163i 0.192792 + 1.53047i
\(378\) 0 0
\(379\) 1.28885 0.345346i 0.0662038 0.0177393i −0.225565 0.974228i \(-0.572423\pi\)
0.291769 + 0.956489i \(0.405756\pi\)
\(380\) 6.93734i 0.355878i
\(381\) 0 0
\(382\) 11.1705 2.99313i 0.571534 0.153142i
\(383\) 18.2839 18.2839i 0.934261 0.934261i −0.0637072 0.997969i \(-0.520292\pi\)
0.997969 + 0.0637072i \(0.0202924\pi\)
\(384\) 0 0
\(385\) 0.412362 + 0.110492i 0.0210159 + 0.00563120i
\(386\) 1.24711 0.720021i 0.0634764 0.0366481i
\(387\) 0 0
\(388\) 0.122184 + 0.455998i 0.00620297 + 0.0231498i
\(389\) 7.30331 + 12.6497i 0.370292 + 0.641365i 0.989610 0.143775i \(-0.0459242\pi\)
−0.619318 + 0.785140i \(0.712591\pi\)
\(390\) 0 0
\(391\) 1.77202 3.06924i 0.0896151 0.155218i
\(392\) −6.76070 1.81152i −0.341467 0.0914957i
\(393\) 0 0
\(394\) −3.60016 2.07856i −0.181374 0.104716i
\(395\) 6.86351 6.86351i 0.345341 0.345341i
\(396\) 0 0
\(397\) 2.88194 + 0.772213i 0.144640 + 0.0387563i 0.330413 0.943837i \(-0.392812\pi\)
−0.185772 + 0.982593i \(0.559479\pi\)
\(398\) 0.533275 1.99021i 0.0267307 0.0997601i
\(399\) 0 0
\(400\) 5.93735 3.42793i 0.296868 0.171397i
\(401\) −2.86637 + 10.6974i −0.143140 + 0.534205i 0.856691 + 0.515829i \(0.172516\pi\)
−0.999831 + 0.0183755i \(0.994151\pi\)
\(402\) 0 0
\(403\) −4.81715 + 1.96385i −0.239960 + 0.0978264i
\(404\) 5.49087i 0.273181i
\(405\) 0 0
\(406\) −0.118352 + 0.204992i −0.00587371 + 0.0101736i
\(407\) −17.6402 + 30.5537i −0.874391 + 1.51449i
\(408\) 0 0
\(409\) 10.3795 + 10.3795i 0.513233 + 0.513233i 0.915515 0.402283i \(-0.131783\pi\)
−0.402283 + 0.915515i \(0.631783\pi\)
\(410\) 12.2339 + 12.2339i 0.604189 + 0.604189i
\(411\) 0 0
\(412\) −2.09226 + 3.62390i −0.103078 + 0.178537i
\(413\) −0.203864 + 0.353103i −0.0100315 + 0.0173751i
\(414\) 0 0
\(415\) 50.5818i 2.48296i
\(416\) 2.21088 2.84816i 0.108397 0.139643i
\(417\) 0 0
\(418\) 2.26896 8.46789i 0.110979 0.414178i
\(419\) −24.3908 + 14.0820i −1.19157 + 0.687953i −0.958662 0.284546i \(-0.908157\pi\)
−0.232907 + 0.972499i \(0.574824\pi\)
\(420\) 0 0
\(421\) −1.88397 + 7.03106i −0.0918189 + 0.342673i −0.996518 0.0833784i \(-0.973429\pi\)
0.904699 + 0.426051i \(0.140096\pi\)
\(422\) −18.4971 4.95629i −0.900425 0.241268i
\(423\) 0 0
\(424\) −3.58197 + 3.58197i −0.173956 + 0.173956i
\(425\) −39.8421 23.0028i −1.93262 1.11580i
\(426\) 0 0
\(427\) −0.000591581 0 0.000158514i −2.86286e−5 0 7.67101e-6i
\(428\) −1.64680 + 2.85234i −0.0796011 + 0.137873i
\(429\) 0 0
\(430\) −15.0845 26.1270i −0.727437 1.25996i
\(431\) −4.90556 18.3078i −0.236292 0.881855i −0.977562 0.210648i \(-0.932443\pi\)
0.741270 0.671207i \(-0.234224\pi\)
\(432\) 0 0
\(433\) 27.2951 15.7588i 1.31172 0.757322i 0.329339 0.944212i \(-0.393174\pi\)
0.982381 + 0.186890i \(0.0598407\pi\)
\(434\) −0.0397112 0.0106406i −0.00190620 0.000510764i
\(435\) 0 0
\(436\) −5.40316 + 5.40316i −0.258764 + 0.258764i
\(437\) 1.02783 0.275406i 0.0491677 0.0131744i
\(438\) 0 0
\(439\) 12.8872i 0.615072i 0.951536 + 0.307536i \(0.0995045\pi\)
−0.951536 + 0.307536i \(0.900495\pi\)
\(440\) 14.4716 3.87765i 0.689905 0.184860i
\(441\) 0 0
\(442\) −23.9697 3.29210i −1.14012 0.156589i
\(443\) 10.9018 6.29415i 0.517959 0.299044i −0.218140 0.975917i \(-0.569999\pi\)
0.736099 + 0.676874i \(0.236666\pi\)
\(444\) 0 0
\(445\) −19.3734 33.5557i −0.918386 1.59069i
\(446\) 26.4199 1.25102
\(447\) 0 0
\(448\) 0.0275237 0.00737496i 0.00130037 0.000348434i
\(449\) −1.16977 + 4.36565i −0.0552050 + 0.206028i −0.988020 0.154329i \(-0.950678\pi\)
0.932814 + 0.360357i \(0.117345\pi\)
\(450\) 0 0
\(451\) 10.9317 + 18.9343i 0.514754 + 0.891581i
\(452\) −0.581902 −0.0273704
\(453\) 0 0
\(454\) −4.44628 2.56706i −0.208674 0.120478i
\(455\) 0.281852 0.213779i 0.0132134 0.0100221i
\(456\) 0 0
\(457\) 7.19189 + 7.19189i 0.336422 + 0.336422i 0.855019 0.518597i \(-0.173545\pi\)
−0.518597 + 0.855019i \(0.673545\pi\)
\(458\) 6.87691 + 3.97039i 0.321337 + 0.185524i
\(459\) 0 0
\(460\) 1.28588 + 1.28588i 0.0599547 + 0.0599547i
\(461\) −7.04174 26.2801i −0.327966 1.22399i −0.911296 0.411752i \(-0.864917\pi\)
0.583330 0.812236i \(-0.301750\pi\)
\(462\) 0 0
\(463\) −3.06727 11.4472i −0.142548 0.531996i −0.999852 0.0171864i \(-0.994529\pi\)
0.857304 0.514810i \(-0.172138\pi\)
\(464\) 8.30696i 0.385641i
\(465\) 0 0
\(466\) −0.169941 + 0.169941i −0.00787238 + 0.00787238i
\(467\) −0.615879 −0.0284995 −0.0142497 0.999898i \(-0.504536\pi\)
−0.0142497 + 0.999898i \(0.504536\pi\)
\(468\) 0 0
\(469\) 0.0269263 0.00124334
\(470\) −1.95544 + 1.95544i −0.0901977 + 0.0901977i
\(471\) 0 0
\(472\) 14.3089i 0.658623i
\(473\) −9.86721 36.8249i −0.453695 1.69321i
\(474\) 0 0
\(475\) −3.57507 13.3423i −0.164036 0.612189i
\(476\) −0.135206 0.135206i −0.00619718 0.00619718i
\(477\) 0 0
\(478\) 5.82418 + 3.36259i 0.266392 + 0.153801i
\(479\) 14.1707 + 14.1707i 0.647474 + 0.647474i 0.952382 0.304908i \(-0.0986257\pi\)
−0.304908 + 0.952382i \(0.598626\pi\)
\(480\) 0 0
\(481\) 11.0365 + 27.0715i 0.503220 + 1.23436i
\(482\) −22.4739 12.9753i −1.02366 0.591010i
\(483\) 0 0
\(484\) 7.93261 0.360573
\(485\) 0.812748 + 1.40772i 0.0369050 + 0.0639213i
\(486\) 0 0
\(487\) −5.47316 + 20.4261i −0.248012 + 0.925595i 0.723833 + 0.689975i \(0.242379\pi\)
−0.971845 + 0.235620i \(0.924288\pi\)
\(488\) −0.0207611 + 0.00556292i −0.000939812 + 0.000251822i
\(489\) 0 0
\(490\) −24.0998 −1.08872
\(491\) 9.87564 + 17.1051i 0.445681 + 0.771943i 0.998099 0.0616246i \(-0.0196282\pi\)
−0.552418 + 0.833567i \(0.686295\pi\)
\(492\) 0 0
\(493\) 48.2750 27.8716i 2.17420 1.25527i
\(494\) −4.38998 5.78784i −0.197514 0.260407i
\(495\) 0 0
\(496\) −1.39364 + 0.373424i −0.0625761 + 0.0167672i
\(497\) 0.275224i 0.0123455i
\(498\) 0 0
\(499\) 5.12859 1.37420i 0.229587 0.0615177i −0.142191 0.989839i \(-0.545415\pi\)
0.371778 + 0.928321i \(0.378748\pi\)
\(500\) 4.51854 4.51854i 0.202075 0.202075i
\(501\) 0 0
\(502\) 19.8602 + 5.32152i 0.886403 + 0.237511i
\(503\) −16.2322 + 9.37164i −0.723756 + 0.417861i −0.816134 0.577863i \(-0.803887\pi\)
0.0923776 + 0.995724i \(0.470553\pi\)
\(504\) 0 0
\(505\) −4.89333 18.2621i −0.217750 0.812654i
\(506\) 1.14901 + 1.99015i 0.0510799 + 0.0884731i
\(507\) 0 0
\(508\) 4.94371 8.56275i 0.219342 0.379911i
\(509\) 16.5036 + 4.42212i 0.731509 + 0.196007i 0.605301 0.795997i \(-0.293053\pi\)
0.126208 + 0.992004i \(0.459719\pi\)
\(510\) 0 0
\(511\) −0.228137 0.131715i −0.0100922 0.00582673i
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) −14.9121 3.99567i −0.657743 0.176242i
\(515\) −3.72914 + 13.9173i −0.164325 + 0.613271i
\(516\) 0 0
\(517\) −3.02642 + 1.74730i −0.133102 + 0.0768463i
\(518\) −0.0597981 + 0.223169i −0.00262738 + 0.00980550i
\(519\) 0 0
\(520\) 4.81497 11.4430i 0.211150 0.501809i
\(521\) 6.18564i 0.270998i 0.990777 + 0.135499i \(0.0432637\pi\)
−0.990777 + 0.135499i \(0.956736\pi\)
\(522\) 0 0
\(523\) 3.32093 5.75201i 0.145214 0.251518i −0.784239 0.620459i \(-0.786946\pi\)
0.929453 + 0.368941i \(0.120280\pi\)
\(524\) 9.06236 15.6965i 0.395891 0.685703i
\(525\) 0 0
\(526\) −8.92605 8.92605i −0.389194 0.389194i
\(527\) 6.84605 + 6.84605i 0.298219 + 0.298219i
\(528\) 0 0
\(529\) 11.3605 19.6770i 0.493936 0.855523i
\(530\) −8.72113 + 15.1054i −0.378822 + 0.656139i
\(531\) 0 0
\(532\) 0.0574102i 0.00248905i
\(533\) 17.9484 + 2.46512i 0.777433 + 0.106776i
\(534\) 0 0
\(535\) −2.93517 + 10.9542i −0.126899 + 0.473592i
\(536\) 0.818361 0.472481i 0.0353478 0.0204081i
\(537\) 0 0
\(538\) −4.05479 + 15.1327i −0.174814 + 0.652416i
\(539\) −29.4169 7.88223i −1.26708 0.339512i
\(540\) 0 0
\(541\) 4.34283 4.34283i 0.186713 0.186713i −0.607561 0.794273i \(-0.707852\pi\)
0.794273 + 0.607561i \(0.207852\pi\)
\(542\) −14.8248 8.55909i −0.636779 0.367644i
\(543\) 0 0
\(544\) −6.48176 1.73678i −0.277903 0.0744639i
\(545\) −13.1553 + 22.7856i −0.563509 + 0.976027i
\(546\) 0 0
\(547\) −16.4189 28.4384i −0.702022 1.21594i −0.967755 0.251892i \(-0.918947\pi\)
0.265733 0.964047i \(-0.414386\pi\)
\(548\) 4.32643 + 16.1465i 0.184816 + 0.689742i
\(549\) 0 0
\(550\) 25.8344 14.9155i 1.10158 0.635999i
\(551\) 16.1664 + 4.33176i 0.688710 + 0.184539i
\(552\) 0 0
\(553\) 0.0567993 0.0567993i 0.00241535 0.00241535i
\(554\) −18.8869 + 5.06073i −0.802428 + 0.215010i
\(555\) 0 0
\(556\) 5.08483i 0.215645i
\(557\) −7.73861 + 2.07355i −0.327895 + 0.0878593i −0.419011 0.907981i \(-0.637623\pi\)
0.0911160 + 0.995840i \(0.470957\pi\)
\(558\) 0 0
\(559\) −29.1183 12.2524i −1.23157 0.518220i
\(560\) 0.0849690 0.0490569i 0.00359059 0.00207303i
\(561\) 0 0
\(562\) 15.3019 + 26.5036i 0.645470 + 1.11799i
\(563\) −14.8846 −0.627313 −0.313656 0.949537i \(-0.601554\pi\)
−0.313656 + 0.949537i \(0.601554\pi\)
\(564\) 0 0
\(565\) −1.93535 + 0.518576i −0.0814209 + 0.0218167i
\(566\) −6.11299 + 22.8140i −0.256948 + 0.958943i
\(567\) 0 0
\(568\) 4.82940 + 8.36477i 0.202637 + 0.350978i
\(569\) 8.90454 0.373298 0.186649 0.982427i \(-0.440237\pi\)
0.186649 + 0.982427i \(0.440237\pi\)
\(570\) 0 0
\(571\) −0.862884 0.498186i −0.0361106 0.0208484i 0.481836 0.876261i \(-0.339970\pi\)
−0.517947 + 0.855413i \(0.673303\pi\)
\(572\) 9.61989 12.3928i 0.402228 0.518169i
\(573\) 0 0
\(574\) 0.101242 + 0.101242i 0.00422576 + 0.00422576i
\(575\) 3.13576 + 1.81043i 0.130770 + 0.0755003i
\(576\) 0 0
\(577\) −15.1503 15.1503i −0.630713 0.630713i 0.317534 0.948247i \(-0.397145\pi\)
−0.948247 + 0.317534i \(0.897145\pi\)
\(578\) 7.25460 + 27.0745i 0.301752 + 1.12615i
\(579\) 0 0
\(580\) 7.40295 + 27.6282i 0.307391 + 1.14720i
\(581\) 0.418592i 0.0173661i
\(582\) 0 0
\(583\) −15.5857 + 15.5857i −0.645494 + 0.645494i
\(584\) −9.24490 −0.382557
\(585\) 0 0
\(586\) 22.0863 0.912375
\(587\) 4.52599 4.52599i 0.186808 0.186808i −0.607507 0.794314i \(-0.707830\pi\)
0.794314 + 0.607507i \(0.207830\pi\)
\(588\) 0 0
\(589\) 2.90691i 0.119777i
\(590\) 12.7518 + 47.5903i 0.524982 + 1.95926i
\(591\) 0 0
\(592\) 2.09857 + 7.83198i 0.0862508 + 0.321892i
\(593\) 24.4287 + 24.4287i 1.00317 + 1.00317i 0.999995 + 0.00317304i \(0.00101001\pi\)
0.00317304 + 0.999995i \(0.498990\pi\)
\(594\) 0 0
\(595\) −0.570177 0.329192i −0.0233750 0.0134955i
\(596\) 3.73867 + 3.73867i 0.153142 + 0.153142i
\(597\) 0 0
\(598\) 1.88653 + 0.259104i 0.0771460 + 0.0105956i
\(599\) −36.9806 21.3507i −1.51099 0.872368i −0.999918 0.0128274i \(-0.995917\pi\)
−0.511068 0.859540i \(-0.670750\pi\)
\(600\) 0 0
\(601\) −27.0330 −1.10270 −0.551349 0.834275i \(-0.685887\pi\)
−0.551349 + 0.834275i \(0.685887\pi\)
\(602\) −0.124832 0.216215i −0.00508777 0.00881228i
\(603\) 0 0
\(604\) 2.52008 9.40508i 0.102541 0.382687i
\(605\) 26.3831 7.06934i 1.07263 0.287410i
\(606\) 0 0
\(607\) 47.0756 1.91074 0.955370 0.295412i \(-0.0954569\pi\)
0.955370 + 0.295412i \(0.0954569\pi\)
\(608\) −1.00739 1.74484i −0.0408549 0.0707628i
\(609\) 0 0
\(610\) −0.0640921 + 0.0370036i −0.00259501 + 0.00149823i
\(611\) −0.394019 + 2.86884i −0.0159403 + 0.116061i
\(612\) 0 0
\(613\) 22.7568 6.09767i 0.919139 0.246283i 0.231922 0.972734i \(-0.425499\pi\)
0.687217 + 0.726452i \(0.258832\pi\)
\(614\) 4.23961i 0.171097i
\(615\) 0 0
\(616\) 0.119760 0.0320896i 0.00482527 0.00129293i
\(617\) 3.43163 3.43163i 0.138152 0.138152i −0.634649 0.772801i \(-0.718855\pi\)
0.772801 + 0.634649i \(0.218855\pi\)
\(618\) 0 0
\(619\) 24.6854 + 6.61442i 0.992188 + 0.265856i 0.718170 0.695868i \(-0.244980\pi\)
0.274019 + 0.961724i \(0.411647\pi\)
\(620\) −4.30232 + 2.48395i −0.172785 + 0.0997577i
\(621\) 0 0
\(622\) −7.83186 29.2289i −0.314029 1.17197i
\(623\) −0.160325 0.277691i −0.00642329 0.0111255i
\(624\) 0 0
\(625\) −6.13822 + 10.6317i −0.245529 + 0.425268i
\(626\) −32.3261 8.66175i −1.29201 0.346193i
\(627\) 0 0
\(628\) −8.33703 4.81339i −0.332684 0.192075i
\(629\) 38.4735 38.4735i 1.53404 1.53404i
\(630\) 0 0
\(631\) 18.8379 + 5.04759i 0.749924 + 0.200942i 0.613484 0.789707i \(-0.289767\pi\)
0.136440 + 0.990648i \(0.456434\pi\)
\(632\) 0.729610 2.72294i 0.0290223 0.108313i
\(633\) 0 0
\(634\) −9.66391 + 5.57946i −0.383803 + 0.221589i
\(635\) 8.81142 32.8847i 0.349670 1.30499i
\(636\) 0 0
\(637\) −20.1066 + 15.2505i −0.796652 + 0.604246i
\(638\) 36.1449i 1.43099i
\(639\) 0 0
\(640\) 1.72162 2.98193i 0.0680529 0.117871i
\(641\) 11.4390 19.8130i 0.451814 0.782566i −0.546684 0.837339i \(-0.684110\pi\)
0.998499 + 0.0547731i \(0.0174436\pi\)
\(642\) 0 0
\(643\) 9.35496 + 9.35496i 0.368924 + 0.368924i 0.867085 0.498161i \(-0.165991\pi\)
−0.498161 + 0.867085i \(0.665991\pi\)
\(644\) 0.0106414 + 0.0106414i 0.000419330 + 0.000419330i
\(645\) 0 0
\(646\) −6.75998 + 11.7086i −0.265968 + 0.460670i
\(647\) 5.87399 10.1741i 0.230930 0.399983i −0.727152 0.686477i \(-0.759156\pi\)
0.958082 + 0.286493i \(0.0924897\pi\)
\(648\) 0 0
\(649\) 62.2606i 2.44394i
\(650\) 3.36346 24.4893i 0.131926 0.960548i
\(651\) 0 0
\(652\) 2.86883 10.7066i 0.112352 0.419303i
\(653\) 7.98654 4.61103i 0.312537 0.180444i −0.335524 0.942032i \(-0.608913\pi\)
0.648061 + 0.761588i \(0.275580\pi\)
\(654\) 0 0
\(655\) 16.1523 60.2811i 0.631122 2.35538i
\(656\) 4.85352 + 1.30050i 0.189498 + 0.0507759i
\(657\) 0 0
\(658\) −0.0161823 + 0.0161823i −0.000630853 + 0.000630853i
\(659\) −3.69702 2.13448i −0.144015 0.0831474i 0.426261 0.904600i \(-0.359831\pi\)
−0.570276 + 0.821453i \(0.693164\pi\)
\(660\) 0 0
\(661\) 43.1340 + 11.5577i 1.67772 + 0.449543i 0.967175 0.254110i \(-0.0817827\pi\)
0.710543 + 0.703654i \(0.248449\pi\)
\(662\) −2.06979 + 3.58499i −0.0804448 + 0.139335i
\(663\) 0 0
\(664\) −7.34510 12.7221i −0.285045 0.493713i
\(665\) −0.0511626 0.190941i −0.00198400 0.00740438i
\(666\) 0 0
\(667\) −3.79947 + 2.19363i −0.147116 + 0.0849375i
\(668\) 14.4157 + 3.86269i 0.557762 + 0.149452i
\(669\) 0 0
\(670\) 2.30073 2.30073i 0.0888850 0.0888850i
\(671\) −0.0903350 + 0.0242052i −0.00348734 + 0.000934431i
\(672\) 0 0
\(673\) 5.63994i 0.217404i −0.994074 0.108702i \(-0.965331\pi\)
0.994074 0.108702i \(-0.0346694\pi\)
\(674\) 16.0573 4.30254i 0.618504 0.165728i
\(675\) 0 0
\(676\) −3.22404 12.5939i −0.124001 0.484380i
\(677\) 21.2676 12.2789i 0.817381 0.471915i −0.0321318 0.999484i \(-0.510230\pi\)
0.849512 + 0.527569i \(0.176896\pi\)
\(678\) 0 0
\(679\) 0.00672593 + 0.0116497i 0.000258118 + 0.000447073i
\(680\) −23.1055 −0.886056
\(681\) 0 0
\(682\) −6.06394 + 1.62483i −0.232200 + 0.0622179i
\(683\) 7.16139 26.7267i 0.274023 1.02267i −0.682470 0.730913i \(-0.739094\pi\)
0.956493 0.291755i \(-0.0942391\pi\)
\(684\) 0 0
\(685\) 28.7786 + 49.8460i 1.09957 + 1.90452i
\(686\) −0.398902 −0.0152301
\(687\) 0 0
\(688\) −7.58793 4.38090i −0.289287 0.167020i
\(689\) 2.28272 + 18.1213i 0.0869648 + 0.690367i
\(690\) 0 0
\(691\) −5.58645 5.58645i −0.212518 0.212518i 0.592818 0.805336i \(-0.298015\pi\)
−0.805336 + 0.592818i \(0.798015\pi\)
\(692\) −16.5067 9.53013i −0.627489 0.362281i
\(693\) 0 0
\(694\) 14.3923 + 14.3923i 0.546324 + 0.546324i
\(695\) −4.53147 16.9117i −0.171888 0.641496i
\(696\) 0 0
\(697\) −8.72687 32.5691i −0.330554 1.23364i
\(698\) 19.5584i 0.740298i
\(699\) 0 0
\(700\) 0.138137 0.138137i 0.00522109 0.00522109i
\(701\) 39.9569 1.50915 0.754575 0.656214i \(-0.227843\pi\)
0.754575 + 0.656214i \(0.227843\pi\)
\(702\) 0 0
\(703\) 16.3363 0.616136
\(704\) 3.07674 3.07674i 0.115959 0.115959i
\(705\) 0 0
\(706\) 10.1207i 0.380898i
\(707\) −0.0404949 0.151129i −0.00152297 0.00568380i
\(708\) 0 0
\(709\) −13.1727 49.1613i −0.494712 1.84629i −0.531638 0.846972i \(-0.678423\pi\)
0.0369258 0.999318i \(-0.488243\pi\)
\(710\) 23.5166 + 23.5166i 0.882564 + 0.882564i
\(711\) 0 0
\(712\) −9.74539 5.62650i −0.365224 0.210862i
\(713\) −0.538817 0.538817i −0.0201789 0.0201789i
\(714\) 0 0
\(715\) 20.9507 49.7904i 0.783513 1.86205i
\(716\) 20.8769 + 12.0533i 0.780207 + 0.450453i
\(717\) 0 0
\(718\) −1.56407 −0.0583705
\(719\) −0.750575 1.30003i −0.0279917 0.0484831i 0.851690 0.524046i \(-0.175578\pi\)
−0.879682 + 0.475563i \(0.842245\pi\)
\(720\) 0 0
\(721\) −0.0308606 + 0.115173i −0.00114931 + 0.00428928i
\(722\) 14.4316 3.86693i 0.537088 0.143912i
\(723\) 0 0
\(724\) 1.16505 0.0432988
\(725\) 28.4757 + 49.3214i 1.05756 + 1.83175i
\(726\) 0 0
\(727\) −41.9032 + 24.1928i −1.55410 + 0.897261i −0.556301 + 0.830981i \(0.687780\pi\)
−0.997801 + 0.0662809i \(0.978887\pi\)
\(728\) 0.0398465 0.0946971i 0.00147681 0.00350971i
\(729\) 0 0
\(730\) −30.7477 + 8.23882i −1.13802 + 0.304932i
\(731\) 58.7952i 2.17462i
\(732\) 0 0
\(733\) 22.9793 6.15729i 0.848761 0.227425i 0.191879 0.981419i \(-0.438542\pi\)
0.656882 + 0.753994i \(0.271875\pi\)
\(734\) −4.40783 + 4.40783i −0.162696 + 0.162696i
\(735\) 0 0
\(736\) 0.510146 + 0.136693i 0.0188042 + 0.00503857i
\(737\) 3.56082 2.05584i 0.131164 0.0757279i
\(738\) 0 0
\(739\) 12.0076 + 44.8128i 0.441705 + 1.64847i 0.724491 + 0.689284i \(0.242075\pi\)
−0.282786 + 0.959183i \(0.591259\pi\)
\(740\) 13.9593 + 24.1783i 0.513155 + 0.888811i
\(741\) 0 0
\(742\) −0.0721721 + 0.125006i −0.00264952 + 0.00458911i
\(743\) 34.8450 + 9.33669i 1.27834 + 0.342530i 0.833220 0.552941i \(-0.186495\pi\)
0.445119 + 0.895471i \(0.353161\pi\)
\(744\) 0 0
\(745\) 15.7663 + 9.10267i 0.577632 + 0.333496i
\(746\) −14.9264 + 14.9264i −0.546493 + 0.546493i
\(747\) 0 0
\(748\) −28.2032 7.55702i −1.03121 0.276312i
\(749\) −0.0242902 + 0.0906521i −0.000887543 + 0.00331236i
\(750\) 0 0
\(751\) −15.1601 + 8.75269i −0.553200 + 0.319390i −0.750412 0.660971i \(-0.770145\pi\)
0.197212 + 0.980361i \(0.436811\pi\)
\(752\) −0.207869 + 0.775777i −0.00758019 + 0.0282897i
\(753\) 0 0
\(754\) 23.6596 + 18.3657i 0.861630 + 0.668839i
\(755\) 33.5263i 1.22015i
\(756\) 0 0
\(757\) 0.816598 1.41439i 0.0296798 0.0514068i −0.850804 0.525483i \(-0.823885\pi\)
0.880484 + 0.474076i \(0.157218\pi\)
\(758\) 0.667158 1.15555i 0.0242323 0.0419715i
\(759\) 0 0
\(760\) −4.90544 4.90544i −0.177939 0.177939i
\(761\) −12.5216 12.5216i −0.453909 0.453909i 0.442741 0.896650i \(-0.354006\pi\)
−0.896650 + 0.442741i \(0.854006\pi\)
\(762\) 0 0
\(763\) −0.108867 + 0.188563i −0.00394125 + 0.00682644i
\(764\) 5.78229 10.0152i 0.209196 0.362338i
\(765\) 0 0
\(766\) 25.8573i 0.934261i
\(767\) 40.7542 + 31.6353i 1.47155 + 1.14229i
\(768\) 0 0
\(769\) 5.30157 19.7857i 0.191179 0.713492i −0.802043 0.597266i \(-0.796254\pi\)
0.993223 0.116226i \(-0.0370796\pi\)
\(770\) 0.369714 0.213454i 0.0133236 0.00769236i
\(771\) 0 0
\(772\) 0.372710 1.39097i 0.0134141 0.0500622i
\(773\) 8.74973 + 2.34448i 0.314706 + 0.0843252i 0.412715 0.910860i \(-0.364581\pi\)
−0.0980088 + 0.995186i \(0.531247\pi\)
\(774\) 0 0
\(775\) −6.99444 + 6.99444i −0.251248 + 0.251248i
\(776\) 0.408837 + 0.236042i 0.0146764 + 0.00847342i
\(777\) 0 0
\(778\) 14.1089 + 3.78047i 0.505829 + 0.135536i
\(779\) 5.06185 8.76738i 0.181360 0.314124i
\(780\) 0 0
\(781\) 21.0135 + 36.3965i 0.751923 + 1.30237i
\(782\) −0.917267 3.42329i −0.0328014 0.122416i
\(783\) 0 0
\(784\) −6.06147 + 3.49959i −0.216481 + 0.124986i
\(785\) −32.0178 8.57914i −1.14276 0.306203i
\(786\) 0 0
\(787\) −13.3787 + 13.3787i −0.476900 + 0.476900i −0.904139 0.427239i \(-0.859486\pi\)
0.427239 + 0.904139i \(0.359486\pi\)
\(788\) −4.01546 + 1.07594i −0.143045 + 0.0383288i
\(789\) 0 0
\(790\) 9.70646i 0.345341i
\(791\) −0.0160161 + 0.00429150i −0.000569467 + 0.000152588i
\(792\) 0 0
\(793\) −0.0300562 + 0.0714299i −0.00106733 + 0.00253655i
\(794\) 2.58388 1.49180i 0.0916983 0.0529421i
\(795\) 0 0
\(796\) −1.03021 1.78437i −0.0365147 0.0632454i
\(797\) −33.7072 −1.19397 −0.596986 0.802252i \(-0.703635\pi\)
−0.596986 + 0.802252i \(0.703635\pi\)
\(798\) 0 0
\(799\) 5.20578 1.39488i 0.184167 0.0493475i
\(800\) 1.77443 6.62226i 0.0627355 0.234132i
\(801\) 0 0
\(802\) 5.53740 + 9.59106i 0.195533 + 0.338672i
\(803\) −40.2260 −1.41955
\(804\) 0 0
\(805\) 0.0448757 + 0.0259090i 0.00158166 + 0.000913171i
\(806\) −2.01759 + 4.79490i −0.0710666 + 0.168893i
\(807\) 0 0
\(808\) −3.88263 3.88263i −0.136591 0.136591i
\(809\) −9.20764 5.31603i −0.323723 0.186902i 0.329328 0.944216i \(-0.393178\pi\)
−0.653051 + 0.757314i \(0.726511\pi\)
\(810\) 0 0
\(811\) 7.65216 + 7.65216i 0.268704 + 0.268704i 0.828578 0.559874i \(-0.189151\pi\)
−0.559874 + 0.828578i \(0.689151\pi\)
\(812\) 0.0612635 + 0.228638i 0.00214993 + 0.00802363i
\(813\) 0 0
\(814\) 9.13123 + 34.0782i 0.320049 + 1.19444i
\(815\) 38.1659i 1.33689i
\(816\) 0 0
\(817\) −12.4826 + 12.4826i −0.436710 + 0.436710i
\(818\) 14.6788 0.513233
\(819\) 0 0
\(820\) 17.3013 0.604189
\(821\) −10.8656 + 10.8656i −0.379212 + 0.379212i −0.870818 0.491606i \(-0.836410\pi\)
0.491606 + 0.870818i \(0.336410\pi\)
\(822\) 0 0
\(823\) 15.2209i 0.530567i −0.964170 0.265284i \(-0.914534\pi\)
0.964170 0.265284i \(-0.0854656\pi\)
\(824\) 1.08303 + 4.04193i 0.0377292 + 0.140807i
\(825\) 0 0
\(826\) 0.105528 + 0.393835i 0.00367178 + 0.0137033i
\(827\) 16.9790 + 16.9790i 0.590418 + 0.590418i 0.937744 0.347326i \(-0.112910\pi\)
−0.347326 + 0.937744i \(0.612910\pi\)
\(828\) 0 0
\(829\) −14.6492 8.45773i −0.508788 0.293749i 0.223547 0.974693i \(-0.428236\pi\)
−0.732335 + 0.680944i \(0.761570\pi\)
\(830\) −35.7667 35.7667i −1.24148 1.24148i
\(831\) 0 0
\(832\) −0.450627 3.57728i −0.0156227 0.124020i
\(833\) 40.6750 + 23.4837i 1.40930 + 0.813662i
\(834\) 0 0
\(835\) 51.3878 1.77835
\(836\) −4.38330 7.59210i −0.151600 0.262578i
\(837\) 0 0
\(838\) −7.28940 + 27.2044i −0.251808 + 0.939761i
\(839\) −22.8417 + 6.12041i −0.788583 + 0.211300i −0.630565 0.776136i \(-0.717177\pi\)
−0.158017 + 0.987436i \(0.550510\pi\)
\(840\) 0 0
\(841\) −40.0056 −1.37950
\(842\) 3.63954 + 6.30387i 0.125427 + 0.217246i
\(843\) 0 0
\(844\) −16.5841 + 9.57481i −0.570847 + 0.329579i
\(845\) −21.9462 39.0129i −0.754972 1.34208i
\(846\) 0 0
\(847\) 0.218335 0.0585027i 0.00750208 0.00201018i
\(848\) 5.06566i 0.173956i
\(849\) 0 0
\(850\) −44.4381 + 11.9071i −1.52421 + 0.408412i
\(851\) −3.02805 + 3.02805i −0.103800 + 0.103800i
\(852\) 0 0
\(853\) 55.3955 + 14.8432i 1.89671 + 0.508221i 0.997498 + 0.0706986i \(0.0225229\pi\)
0.899208 + 0.437522i \(0.144144\pi\)
\(854\) −0.000530397 0 0.000306225i −1.81498e−5 0 1.04788e-5i
\(855\) 0 0
\(856\) 0.852446 + 3.18137i 0.0291360 + 0.108737i
\(857\) 9.63613 + 16.6903i 0.329164 + 0.570129i 0.982346 0.187072i \(-0.0598998\pi\)
−0.653182 + 0.757201i \(0.726566\pi\)
\(858\) 0 0
\(859\) −21.1198 + 36.5805i −0.720597 + 1.24811i 0.240164 + 0.970732i \(0.422799\pi\)
−0.960761 + 0.277378i \(0.910534\pi\)
\(860\) −29.1409 7.80829i −0.993697 0.266260i
\(861\) 0 0
\(862\) −16.4143 9.47681i −0.559074 0.322781i
\(863\) 4.51248 4.51248i 0.153607 0.153607i −0.626120 0.779727i \(-0.715358\pi\)
0.779727 + 0.626120i \(0.215358\pi\)
\(864\) 0 0
\(865\) −63.3927 16.9860i −2.15542 0.577542i
\(866\) 8.15738 30.4438i 0.277199 1.03452i
\(867\) 0 0
\(868\) −0.0356041 + 0.0205560i −0.00120848 + 0.000697717i
\(869\) 3.17465 11.8480i 0.107693 0.401914i
\(870\) 0 0
\(871\) 0.463595 3.37542i 0.0157083 0.114372i
\(872\) 7.64122i 0.258764i
\(873\) 0 0
\(874\) 0.532043 0.921525i 0.0179966 0.0311711i
\(875\) 0.0910429 0.157691i 0.00307781 0.00533093i
\(876\) 0 0
\(877\) −8.53740 8.53740i −0.288288 0.288288i 0.548115 0.836403i \(-0.315346\pi\)
−0.836403 + 0.548115i \(0.815346\pi\)
\(878\) 9.11262 + 9.11262i 0.307536 + 0.307536i
\(879\) 0 0
\(880\) 7.49104 12.9749i 0.252523 0.437382i
\(881\) −23.1313 + 40.0646i −0.779314 + 1.34981i 0.153023 + 0.988223i \(0.451099\pi\)
−0.932337 + 0.361589i \(0.882234\pi\)
\(882\) 0 0
\(883\) 5.00836i 0.168545i −0.996443 0.0842723i \(-0.973143\pi\)
0.996443 0.0842723i \(-0.0268566\pi\)
\(884\) −19.2770 + 14.6213i −0.648356 + 0.491767i
\(885\) 0 0
\(886\) 3.25809 12.1594i 0.109458 0.408502i
\(887\) 18.7915 10.8493i 0.630958 0.364284i −0.150165 0.988661i \(-0.547981\pi\)
0.781123 + 0.624377i \(0.214647\pi\)
\(888\) 0 0
\(889\) 0.0729193 0.272138i 0.00244563 0.00912723i
\(890\) −37.4265 10.0284i −1.25454 0.336153i
\(891\) 0 0
\(892\) 18.6817 18.6817i 0.625509 0.625509i
\(893\) 1.40136 + 0.809076i 0.0468947 + 0.0270747i
\(894\) 0 0
\(895\) 80.1764 + 21.4832i 2.68000 + 0.718104i
\(896\) 0.0142473 0.0246771i 0.000475970 0.000824403i
\(897\) 0 0
\(898\) 2.25983 + 3.91414i 0.0754115 + 0.130616i
\(899\) −3.10202 11.5769i −0.103458 0.386111i
\(900\) 0 0
\(901\) 29.4385 16.9963i 0.980740 0.566230i
\(902\) 21.1185 + 5.65867i 0.703167 + 0.188413i
\(903\) 0 0
\(904\) −0.411467 + 0.411467i −0.0136852 + 0.0136852i
\(905\) 3.87486 1.03827i 0.128805 0.0345131i
\(906\) 0 0
\(907\) 30.7861i 1.02224i 0.859511 + 0.511118i \(0.170768\pi\)
−0.859511 + 0.511118i \(0.829232\pi\)
\(908\) −4.95918 + 1.32881i −0.164576 + 0.0440981i
\(909\) 0 0
\(910\) 0.0481342 0.350464i 0.00159563 0.0116178i
\(911\) −13.1044 + 7.56582i −0.434168 + 0.250667i −0.701120 0.713043i \(-0.747316\pi\)
0.266953 + 0.963710i \(0.413983\pi\)
\(912\) 0 0
\(913\) −31.9597 55.3559i −1.05771 1.83201i
\(914\) 10.1709 0.336422
\(915\) 0 0
\(916\) 7.67020 2.05522i 0.253431 0.0679065i
\(917\) 0.133669 0.498859i 0.00441414 0.0164738i
\(918\) 0 0
\(919\) −26.7304 46.2985i −0.881755 1.52724i −0.849388 0.527769i \(-0.823029\pi\)
−0.0323673 0.999476i \(-0.510305\pi\)
\(920\) 1.81852 0.0599547
\(921\) 0 0
\(922\) −23.5621 13.6036i −0.775977 0.448011i
\(923\) 34.5014 + 4.73858i 1.13563 + 0.155972i
\(924\) 0 0
\(925\) 39.3075 + 39.3075i 1.29242 + 1.29242i
\(926\) −10.2633 5.92551i −0.337272 0.194724i
\(927\) 0 0
\(928\) 5.87391 + 5.87391i 0.192821 + 0.192821i
\(929\) 13.9078 + 51.9045i 0.456299 + 1.70293i 0.684239 + 0.729257i \(0.260134\pi\)
−0.227940 + 0.973675i \(0.573199\pi\)
\(930\) 0 0
\(931\) 3.64981 + 13.6213i 0.119618 + 0.446419i
\(932\) 0.240333i 0.00787238i
\(933\) 0 0
\(934\) −0.435492 + 0.435492i −0.0142497 + 0.0142497i
\(935\) −100.536 −3.28787
\(936\) 0 0
\(937\) −2.41921 −0.0790323 −0.0395162 0.999219i \(-0.512582\pi\)
−0.0395162 + 0.999219i \(0.512582\pi\)
\(938\) 0.0190398 0.0190398i 0.000621671 0.000621671i
\(939\) 0 0
\(940\) 2.76541i 0.0901977i
\(941\) 0.0115889 + 0.0432503i 0.000377786 + 0.00140992i 0.966114 0.258114i \(-0.0831010\pi\)
−0.965737 + 0.259524i \(0.916434\pi\)
\(942\) 0 0
\(943\) 0.686846 + 2.56335i 0.0223668 + 0.0834740i
\(944\) 10.1180 + 10.1180i 0.329311 + 0.329311i
\(945\) 0 0
\(946\) −33.0163 19.0620i −1.07345 0.619759i
\(947\) −16.6276 16.6276i −0.540323 0.540323i 0.383301 0.923624i \(-0.374787\pi\)
−0.923624 + 0.383301i \(0.874787\pi\)
\(948\) 0 0
\(949\) −20.4393 + 26.3309i −0.663489 + 0.854739i
\(950\) −11.9624 6.90651i −0.388112 0.224077i
\(951\) 0 0
\(952\) −0.191211 −0.00619718
\(953\) −13.8021 23.9060i −0.447095 0.774392i 0.551100 0.834439i \(-0.314208\pi\)
−0.998196 + 0.0600474i \(0.980875\pi\)
\(954\) 0 0
\(955\) 10.3061 38.4627i 0.333496 1.24462i
\(956\) 6.49603 1.74060i 0.210096 0.0562952i
\(957\) 0 0
\(958\) 20.0403 0.647474
\(959\) 0.238159 + 0.412503i 0.00769055 + 0.0133204i
\(960\) 0 0
\(961\) −25.0440 + 14.4592i −0.807871 + 0.466425i
\(962\) 26.9464 + 11.3385i 0.868788 + 0.365567i
\(963\) 0 0
\(964\) −25.0664 + 6.71652i −0.807335 + 0.216325i
\(965\) 4.95840i 0.159617i
\(966\) 0 0
\(967\) 31.0146 8.31034i 0.997363 0.267243i 0.277023 0.960863i \(-0.410652\pi\)
0.720340 + 0.693621i \(0.243986\pi\)
\(968\) 5.60920 5.60920i 0.180287 0.180287i
\(969\) 0 0
\(970\) 1.57011 + 0.420710i 0.0504132 + 0.0135082i
\(971\) 16.6187 9.59478i 0.533318 0.307911i −0.209049 0.977905i \(-0.567037\pi\)
0.742366 + 0.669994i \(0.233703\pi\)
\(972\) 0 0
\(973\) −0.0375004 0.139953i −0.00120221 0.00448670i
\(974\) 10.5733 + 18.3135i 0.338791 + 0.586804i
\(975\) 0 0
\(976\) −0.0107467 + 0.0186139i −0.000343995 + 0.000595817i
\(977\) −29.5657 7.92211i −0.945891 0.253451i −0.247273 0.968946i \(-0.579535\pi\)
−0.698618 + 0.715495i \(0.746201\pi\)
\(978\) 0 0
\(979\) −42.4038 24.4818i −1.35523 0.782443i
\(980\) −17.0412 + 17.0412i −0.544360 + 0.544360i
\(981\) 0 0
\(982\) 19.0783 + 5.11201i 0.608812 + 0.163131i
\(983\) 5.86347 21.8828i 0.187016 0.697952i −0.807175 0.590313i \(-0.799004\pi\)
0.994190 0.107639i \(-0.0343290\pi\)
\(984\) 0 0
\(985\) −12.3962 + 7.15696i −0.394976 + 0.228040i
\(986\) 14.4274 53.8437i 0.459462 1.71473i
\(987\) 0 0
\(988\) −7.19681 0.988441i −0.228961 0.0314465i
\(989\) 4.62747i 0.147145i
\(990\) 0 0
\(991\) −18.1139 + 31.3742i −0.575408 + 0.996636i 0.420589 + 0.907251i \(0.361823\pi\)
−0.995997 + 0.0893845i \(0.971510\pi\)
\(992\) −0.721399 + 1.24950i −0.0229045 + 0.0396717i
\(993\) 0 0
\(994\) 0.194613 + 0.194613i 0.00617275 + 0.00617275i
\(995\) −5.01657 5.01657i −0.159036 0.159036i
\(996\) 0 0
\(997\) 8.88423 15.3879i 0.281366 0.487341i −0.690355 0.723471i \(-0.742546\pi\)
0.971722 + 0.236130i \(0.0758790\pi\)
\(998\) 2.65476 4.59817i 0.0840348 0.145553i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.bb.a.449.8 56
3.2 odd 2 234.2.y.a.59.3 56
9.2 odd 6 702.2.bc.a.683.8 56
9.7 even 3 234.2.z.a.137.2 yes 56
13.2 odd 12 702.2.bc.a.665.8 56
39.2 even 12 234.2.z.a.41.2 yes 56
117.2 even 12 inner 702.2.bb.a.197.8 56
117.106 odd 12 234.2.y.a.119.3 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.y.a.59.3 56 3.2 odd 2
234.2.y.a.119.3 yes 56 117.106 odd 12
234.2.z.a.41.2 yes 56 39.2 even 12
234.2.z.a.137.2 yes 56 9.7 even 3
702.2.bb.a.197.8 56 117.2 even 12 inner
702.2.bb.a.449.8 56 1.1 even 1 trivial
702.2.bc.a.665.8 56 13.2 odd 12
702.2.bc.a.683.8 56 9.2 odd 6