Properties

Label 702.2.bb.a.449.2
Level $702$
Weight $2$
Character 702.449
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(71,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.71"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([10, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 449.2
Character \(\chi\) \(=\) 702.449
Dual form 702.2.bb.a.197.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(-0.398313 - 1.48652i) q^{5} +(0.370254 + 1.38181i) q^{7} +(0.707107 + 0.707107i) q^{8} +(1.33278 + 0.769482i) q^{10} +(0.350901 + 0.350901i) q^{11} +(0.183180 - 3.60090i) q^{13} +(-1.23890 - 0.715277i) q^{14} -1.00000 q^{16} +(1.10510 + 1.91408i) q^{17} +(0.805124 - 3.00476i) q^{19} +(-1.48652 + 0.398313i) q^{20} -0.496250 q^{22} +(0.887787 + 1.53769i) q^{23} +(2.27902 - 1.31580i) q^{25} +(2.41669 + 2.67575i) q^{26} +(1.38181 - 0.370254i) q^{28} -4.71069i q^{29} +(0.303918 - 0.0814346i) q^{31} +(0.707107 - 0.707107i) q^{32} +(-2.13488 - 0.572040i) q^{34} +(1.90661 - 1.10078i) q^{35} +(-2.95350 - 11.0226i) q^{37} +(1.55538 + 2.69400i) q^{38} +(0.769482 - 1.33278i) q^{40} +(7.77966 + 2.08455i) q^{41} +(1.40486 + 0.811094i) q^{43} +(0.350901 - 0.350901i) q^{44} +(-1.71507 - 0.459552i) q^{46} +(3.17219 - 11.8388i) q^{47} +(4.28987 - 2.47676i) q^{49} +(-0.681106 + 2.54192i) q^{50} +(-3.60090 - 0.183180i) q^{52} -2.02719i q^{53} +(0.381855 - 0.661392i) q^{55} +(-0.715277 + 1.23890i) q^{56} +(3.33096 + 3.33096i) q^{58} +(1.98083 + 1.98083i) q^{59} +(-3.39659 + 5.88306i) q^{61} +(-0.157320 + 0.272485i) q^{62} +1.00000i q^{64} +(-5.42578 + 1.16198i) q^{65} +(-2.05043 + 7.65232i) q^{67} +(1.91408 - 1.10510i) q^{68} +(-0.569808 + 2.12655i) q^{70} +(10.8566 + 2.90902i) q^{71} +(4.45270 - 4.45270i) q^{73} +(9.88261 + 5.70573i) q^{74} +(-3.00476 - 0.805124i) q^{76} +(-0.354956 + 0.614801i) q^{77} +(4.77307 + 8.26720i) q^{79} +(0.398313 + 1.48652i) q^{80} +(-6.97505 + 4.02705i) q^{82} +(-8.13149 - 2.17883i) q^{83} +(2.40516 - 2.40516i) q^{85} +(-1.56691 + 0.419853i) q^{86} +0.496250i q^{88} +(3.41203 - 0.914251i) q^{89} +(5.04357 - 1.08013i) q^{91} +(1.53769 - 0.887787i) q^{92} +(6.12820 + 10.6144i) q^{94} -4.78735 q^{95} +(-7.11700 + 1.90700i) q^{97} +(-1.28206 + 4.78473i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7} - 56 q^{16} - 8 q^{19} - 4 q^{28} + 8 q^{31} - 24 q^{35} - 4 q^{37} + 36 q^{38} + 48 q^{41} + 12 q^{43} - 60 q^{47} + 24 q^{50} - 4 q^{52} + 120 q^{65} - 56 q^{67} - 24 q^{71} + 28 q^{73}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −0.398313 1.48652i −0.178131 0.664794i −0.995997 0.0893855i \(-0.971510\pi\)
0.817866 0.575409i \(-0.195157\pi\)
\(6\) 0 0
\(7\) 0.370254 + 1.38181i 0.139943 + 0.522274i 0.999929 + 0.0119560i \(0.00380579\pi\)
−0.859986 + 0.510318i \(0.829528\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 1.33278 + 0.769482i 0.421463 + 0.243332i
\(11\) 0.350901 + 0.350901i 0.105801 + 0.105801i 0.758026 0.652225i \(-0.226164\pi\)
−0.652225 + 0.758026i \(0.726164\pi\)
\(12\) 0 0
\(13\) 0.183180 3.60090i 0.0508050 0.998709i
\(14\) −1.23890 0.715277i −0.331109 0.191166i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 1.10510 + 1.91408i 0.268025 + 0.464233i 0.968352 0.249589i \(-0.0802956\pi\)
−0.700327 + 0.713823i \(0.746962\pi\)
\(18\) 0 0
\(19\) 0.805124 3.00476i 0.184708 0.689340i −0.809985 0.586451i \(-0.800525\pi\)
0.994693 0.102889i \(-0.0328086\pi\)
\(20\) −1.48652 + 0.398313i −0.332397 + 0.0890655i
\(21\) 0 0
\(22\) −0.496250 −0.105801
\(23\) 0.887787 + 1.53769i 0.185116 + 0.320631i 0.943616 0.331043i \(-0.107400\pi\)
−0.758499 + 0.651674i \(0.774067\pi\)
\(24\) 0 0
\(25\) 2.27902 1.31580i 0.455805 0.263159i
\(26\) 2.41669 + 2.67575i 0.473952 + 0.524757i
\(27\) 0 0
\(28\) 1.38181 0.370254i 0.261137 0.0699715i
\(29\) 4.71069i 0.874754i −0.899278 0.437377i \(-0.855908\pi\)
0.899278 0.437377i \(-0.144092\pi\)
\(30\) 0 0
\(31\) 0.303918 0.0814346i 0.0545853 0.0146261i −0.231423 0.972853i \(-0.574338\pi\)
0.286008 + 0.958227i \(0.407671\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) −2.13488 0.572040i −0.366129 0.0981040i
\(35\) 1.90661 1.10078i 0.322277 0.186067i
\(36\) 0 0
\(37\) −2.95350 11.0226i −0.485553 1.81211i −0.577559 0.816349i \(-0.695995\pi\)
0.0920063 0.995758i \(-0.470672\pi\)
\(38\) 1.55538 + 2.69400i 0.252316 + 0.437024i
\(39\) 0 0
\(40\) 0.769482 1.33278i 0.121666 0.210731i
\(41\) 7.77966 + 2.08455i 1.21498 + 0.325553i 0.808714 0.588202i \(-0.200164\pi\)
0.406265 + 0.913755i \(0.366831\pi\)
\(42\) 0 0
\(43\) 1.40486 + 0.811094i 0.214239 + 0.123691i 0.603280 0.797530i \(-0.293860\pi\)
−0.389041 + 0.921220i \(0.627194\pi\)
\(44\) 0.350901 0.350901i 0.0529004 0.0529004i
\(45\) 0 0
\(46\) −1.71507 0.459552i −0.252874 0.0677573i
\(47\) 3.17219 11.8388i 0.462711 1.72686i −0.201656 0.979456i \(-0.564632\pi\)
0.664368 0.747406i \(-0.268701\pi\)
\(48\) 0 0
\(49\) 4.28987 2.47676i 0.612839 0.353823i
\(50\) −0.681106 + 2.54192i −0.0963229 + 0.359482i
\(51\) 0 0
\(52\) −3.60090 0.183180i −0.499354 0.0254025i
\(53\) 2.02719i 0.278456i −0.990260 0.139228i \(-0.955538\pi\)
0.990260 0.139228i \(-0.0444621\pi\)
\(54\) 0 0
\(55\) 0.381855 0.661392i 0.0514893 0.0891821i
\(56\) −0.715277 + 1.23890i −0.0955828 + 0.165554i
\(57\) 0 0
\(58\) 3.33096 + 3.33096i 0.437377 + 0.437377i
\(59\) 1.98083 + 1.98083i 0.257882 + 0.257882i 0.824192 0.566310i \(-0.191630\pi\)
−0.566310 + 0.824192i \(0.691630\pi\)
\(60\) 0 0
\(61\) −3.39659 + 5.88306i −0.434888 + 0.753249i −0.997287 0.0736177i \(-0.976546\pi\)
0.562398 + 0.826867i \(0.309879\pi\)
\(62\) −0.157320 + 0.272485i −0.0199796 + 0.0346057i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −5.42578 + 1.16198i −0.672986 + 0.144126i
\(66\) 0 0
\(67\) −2.05043 + 7.65232i −0.250500 + 0.934880i 0.720038 + 0.693934i \(0.244124\pi\)
−0.970539 + 0.240945i \(0.922542\pi\)
\(68\) 1.91408 1.10510i 0.232117 0.134013i
\(69\) 0 0
\(70\) −0.569808 + 2.12655i −0.0681051 + 0.254172i
\(71\) 10.8566 + 2.90902i 1.28844 + 0.345237i 0.837069 0.547097i \(-0.184267\pi\)
0.451374 + 0.892335i \(0.350934\pi\)
\(72\) 0 0
\(73\) 4.45270 4.45270i 0.521149 0.521149i −0.396769 0.917918i \(-0.629869\pi\)
0.917918 + 0.396769i \(0.129869\pi\)
\(74\) 9.88261 + 5.70573i 1.14883 + 0.663277i
\(75\) 0 0
\(76\) −3.00476 0.805124i −0.344670 0.0923540i
\(77\) −0.354956 + 0.614801i −0.0404510 + 0.0700631i
\(78\) 0 0
\(79\) 4.77307 + 8.26720i 0.537012 + 0.930133i 0.999063 + 0.0432790i \(0.0137805\pi\)
−0.462051 + 0.886853i \(0.652886\pi\)
\(80\) 0.398313 + 1.48652i 0.0445328 + 0.166199i
\(81\) 0 0
\(82\) −6.97505 + 4.02705i −0.770266 + 0.444713i
\(83\) −8.13149 2.17883i −0.892547 0.239157i −0.216734 0.976231i \(-0.569540\pi\)
−0.675813 + 0.737073i \(0.736207\pi\)
\(84\) 0 0
\(85\) 2.40516 2.40516i 0.260876 0.260876i
\(86\) −1.56691 + 0.419853i −0.168965 + 0.0452739i
\(87\) 0 0
\(88\) 0.496250i 0.0529004i
\(89\) 3.41203 0.914251i 0.361674 0.0969104i −0.0734055 0.997302i \(-0.523387\pi\)
0.435080 + 0.900392i \(0.356720\pi\)
\(90\) 0 0
\(91\) 5.04357 1.08013i 0.528710 0.113228i
\(92\) 1.53769 0.887787i 0.160315 0.0925582i
\(93\) 0 0
\(94\) 6.12820 + 10.6144i 0.632075 + 1.09479i
\(95\) −4.78735 −0.491171
\(96\) 0 0
\(97\) −7.11700 + 1.90700i −0.722622 + 0.193626i −0.601341 0.798992i \(-0.705367\pi\)
−0.121281 + 0.992618i \(0.538700\pi\)
\(98\) −1.28206 + 4.78473i −0.129508 + 0.483331i
\(99\) 0 0
\(100\) −1.31580 2.27902i −0.131580 0.227902i
\(101\) −5.51878 −0.549139 −0.274569 0.961567i \(-0.588535\pi\)
−0.274569 + 0.961567i \(0.588535\pi\)
\(102\) 0 0
\(103\) 13.0560 + 7.53787i 1.28644 + 0.742729i 0.978018 0.208520i \(-0.0668646\pi\)
0.308426 + 0.951248i \(0.400198\pi\)
\(104\) 2.67575 2.41669i 0.262378 0.236976i
\(105\) 0 0
\(106\) 1.43344 + 1.43344i 0.139228 + 0.139228i
\(107\) −10.8647 6.27276i −1.05033 0.606411i −0.127591 0.991827i \(-0.540724\pi\)
−0.922743 + 0.385416i \(0.874058\pi\)
\(108\) 0 0
\(109\) −6.92733 6.92733i −0.663518 0.663518i 0.292690 0.956208i \(-0.405450\pi\)
−0.956208 + 0.292690i \(0.905450\pi\)
\(110\) 0.197663 + 0.737687i 0.0188464 + 0.0703357i
\(111\) 0 0
\(112\) −0.370254 1.38181i −0.0349858 0.130569i
\(113\) 14.3065i 1.34585i 0.739713 + 0.672923i \(0.234961\pi\)
−0.739713 + 0.672923i \(0.765039\pi\)
\(114\) 0 0
\(115\) 1.93220 1.93220i 0.180179 0.180179i
\(116\) −4.71069 −0.437377
\(117\) 0 0
\(118\) −2.80131 −0.257882
\(119\) −2.23573 + 2.23573i −0.204949 + 0.204949i
\(120\) 0 0
\(121\) 10.7537i 0.977612i
\(122\) −1.75820 6.56170i −0.159180 0.594069i
\(123\) 0 0
\(124\) −0.0814346 0.303918i −0.00731304 0.0272926i
\(125\) −8.30479 8.30479i −0.742803 0.742803i
\(126\) 0 0
\(127\) 2.50743 + 1.44766i 0.222498 + 0.128459i 0.607106 0.794621i \(-0.292330\pi\)
−0.384608 + 0.923080i \(0.625663\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) 3.01496 4.65825i 0.264430 0.408556i
\(131\) −11.3218 6.53662i −0.989186 0.571107i −0.0841553 0.996453i \(-0.526819\pi\)
−0.905031 + 0.425346i \(0.860153\pi\)
\(132\) 0 0
\(133\) 4.45011 0.385873
\(134\) −3.96113 6.86088i −0.342190 0.592690i
\(135\) 0 0
\(136\) −0.572040 + 2.13488i −0.0490520 + 0.183065i
\(137\) −6.29012 + 1.68543i −0.537401 + 0.143996i −0.517304 0.855802i \(-0.673064\pi\)
−0.0200975 + 0.999798i \(0.506398\pi\)
\(138\) 0 0
\(139\) 16.6819 1.41494 0.707470 0.706743i \(-0.249836\pi\)
0.707470 + 0.706743i \(0.249836\pi\)
\(140\) −1.10078 1.90661i −0.0930333 0.161138i
\(141\) 0 0
\(142\) −9.73378 + 5.61980i −0.816840 + 0.471603i
\(143\) 1.32784 1.19928i 0.111039 0.100289i
\(144\) 0 0
\(145\) −7.00256 + 1.87633i −0.581531 + 0.155821i
\(146\) 6.29707i 0.521149i
\(147\) 0 0
\(148\) −11.0226 + 2.95350i −0.906054 + 0.242776i
\(149\) −7.43995 + 7.43995i −0.609505 + 0.609505i −0.942817 0.333312i \(-0.891834\pi\)
0.333312 + 0.942817i \(0.391834\pi\)
\(150\) 0 0
\(151\) −16.6015 4.44836i −1.35101 0.362002i −0.490503 0.871440i \(-0.663187\pi\)
−0.860508 + 0.509437i \(0.829854\pi\)
\(152\) 2.69400 1.55538i 0.218512 0.126158i
\(153\) 0 0
\(154\) −0.183739 0.685722i −0.0148061 0.0552570i
\(155\) −0.242109 0.419345i −0.0194467 0.0336826i
\(156\) 0 0
\(157\) −10.9518 + 18.9690i −0.874046 + 1.51389i −0.0162709 + 0.999868i \(0.505179\pi\)
−0.857775 + 0.514025i \(0.828154\pi\)
\(158\) −9.22086 2.47072i −0.733572 0.196560i
\(159\) 0 0
\(160\) −1.33278 0.769482i −0.105366 0.0608329i
\(161\) −1.79609 + 1.79609i −0.141552 + 0.141552i
\(162\) 0 0
\(163\) 5.13664 + 1.37636i 0.402333 + 0.107805i 0.454310 0.890844i \(-0.349886\pi\)
−0.0519776 + 0.998648i \(0.516552\pi\)
\(164\) 2.08455 7.77966i 0.162776 0.607490i
\(165\) 0 0
\(166\) 7.29049 4.20917i 0.565852 0.326695i
\(167\) 2.80800 10.4796i 0.217290 0.810937i −0.768058 0.640380i \(-0.778777\pi\)
0.985348 0.170557i \(-0.0545566\pi\)
\(168\) 0 0
\(169\) −12.9329 1.31923i −0.994838 0.101479i
\(170\) 3.40141i 0.260876i
\(171\) 0 0
\(172\) 0.811094 1.40486i 0.0618453 0.107119i
\(173\) −0.802919 + 1.39070i −0.0610448 + 0.105733i −0.894933 0.446201i \(-0.852777\pi\)
0.833888 + 0.551934i \(0.186110\pi\)
\(174\) 0 0
\(175\) 2.66200 + 2.66200i 0.201228 + 0.201228i
\(176\) −0.350901 0.350901i −0.0264502 0.0264502i
\(177\) 0 0
\(178\) −1.76620 + 3.05914i −0.132382 + 0.229292i
\(179\) 5.02903 8.71053i 0.375887 0.651056i −0.614572 0.788861i \(-0.710671\pi\)
0.990459 + 0.137805i \(0.0440047\pi\)
\(180\) 0 0
\(181\) 11.9484i 0.888116i 0.895998 + 0.444058i \(0.146462\pi\)
−0.895998 + 0.444058i \(0.853538\pi\)
\(182\) −2.80258 + 4.33011i −0.207741 + 0.320969i
\(183\) 0 0
\(184\) −0.459552 + 1.71507i −0.0338786 + 0.126437i
\(185\) −15.2090 + 8.78091i −1.11819 + 0.645585i
\(186\) 0 0
\(187\) −0.283875 + 1.05943i −0.0207590 + 0.0774735i
\(188\) −11.8388 3.17219i −0.863431 0.231356i
\(189\) 0 0
\(190\) 3.38516 3.38516i 0.245586 0.245586i
\(191\) 18.9189 + 10.9228i 1.36892 + 0.790347i 0.990790 0.135405i \(-0.0432335\pi\)
0.378131 + 0.925752i \(0.376567\pi\)
\(192\) 0 0
\(193\) −12.6457 3.38840i −0.910257 0.243903i −0.226841 0.973932i \(-0.572840\pi\)
−0.683416 + 0.730029i \(0.739506\pi\)
\(194\) 3.68403 6.38093i 0.264498 0.458124i
\(195\) 0 0
\(196\) −2.47676 4.28987i −0.176911 0.306419i
\(197\) −0.638138 2.38157i −0.0454655 0.169680i 0.939460 0.342659i \(-0.111327\pi\)
−0.984926 + 0.172979i \(0.944661\pi\)
\(198\) 0 0
\(199\) −18.1467 + 10.4770i −1.28639 + 0.742697i −0.978008 0.208567i \(-0.933120\pi\)
−0.308380 + 0.951263i \(0.599787\pi\)
\(200\) 2.54192 + 0.681106i 0.179741 + 0.0481615i
\(201\) 0 0
\(202\) 3.90236 3.90236i 0.274569 0.274569i
\(203\) 6.50928 1.74416i 0.456862 0.122416i
\(204\) 0 0
\(205\) 12.3950i 0.865702i
\(206\) −14.5621 + 3.90189i −1.01459 + 0.271858i
\(207\) 0 0
\(208\) −0.183180 + 3.60090i −0.0127013 + 0.249677i
\(209\) 1.33689 0.771857i 0.0924750 0.0533904i
\(210\) 0 0
\(211\) 7.06391 + 12.2350i 0.486299 + 0.842295i 0.999876 0.0157485i \(-0.00501311\pi\)
−0.513577 + 0.858044i \(0.671680\pi\)
\(212\) −2.02719 −0.139228
\(213\) 0 0
\(214\) 12.1180 3.24702i 0.828372 0.221962i
\(215\) 0.646139 2.41142i 0.0440663 0.164458i
\(216\) 0 0
\(217\) 0.225054 + 0.389805i 0.0152777 + 0.0264617i
\(218\) 9.79673 0.663518
\(219\) 0 0
\(220\) −0.661392 0.381855i −0.0445911 0.0257447i
\(221\) 7.09484 3.62871i 0.477251 0.244094i
\(222\) 0 0
\(223\) −6.48118 6.48118i −0.434012 0.434012i 0.455979 0.889991i \(-0.349289\pi\)
−0.889991 + 0.455979i \(0.849289\pi\)
\(224\) 1.23890 + 0.715277i 0.0827772 + 0.0477914i
\(225\) 0 0
\(226\) −10.1162 10.1162i −0.672923 0.672923i
\(227\) 6.83510 + 25.5089i 0.453661 + 1.69309i 0.691994 + 0.721903i \(0.256733\pi\)
−0.238333 + 0.971184i \(0.576601\pi\)
\(228\) 0 0
\(229\) −3.68017 13.7346i −0.243193 0.907607i −0.974283 0.225327i \(-0.927655\pi\)
0.731091 0.682280i \(-0.239012\pi\)
\(230\) 2.73254i 0.180179i
\(231\) 0 0
\(232\) 3.33096 3.33096i 0.218688 0.218688i
\(233\) −21.4490 −1.40517 −0.702586 0.711599i \(-0.747971\pi\)
−0.702586 + 0.711599i \(0.747971\pi\)
\(234\) 0 0
\(235\) −18.8622 −1.23043
\(236\) 1.98083 1.98083i 0.128941 0.128941i
\(237\) 0 0
\(238\) 3.16180i 0.204949i
\(239\) −2.03511 7.59513i −0.131640 0.491288i 0.868349 0.495954i \(-0.165181\pi\)
−0.999989 + 0.00466587i \(0.998515\pi\)
\(240\) 0 0
\(241\) 4.79042 + 17.8781i 0.308578 + 1.15163i 0.929821 + 0.368011i \(0.119961\pi\)
−0.621243 + 0.783618i \(0.713372\pi\)
\(242\) 7.60404 + 7.60404i 0.488806 + 0.488806i
\(243\) 0 0
\(244\) 5.88306 + 3.39659i 0.376624 + 0.217444i
\(245\) −5.39048 5.39048i −0.344385 0.344385i
\(246\) 0 0
\(247\) −10.6724 3.44958i −0.679066 0.219491i
\(248\) 0.272485 + 0.157320i 0.0173028 + 0.00998980i
\(249\) 0 0
\(250\) 11.7447 0.742803
\(251\) 11.0446 + 19.1298i 0.697127 + 1.20746i 0.969458 + 0.245256i \(0.0788722\pi\)
−0.272331 + 0.962204i \(0.587795\pi\)
\(252\) 0 0
\(253\) −0.228053 + 0.851104i −0.0143375 + 0.0535084i
\(254\) −2.79667 + 0.749366i −0.175479 + 0.0470194i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 15.1040 + 26.1609i 0.942162 + 1.63187i 0.761336 + 0.648357i \(0.224544\pi\)
0.180825 + 0.983515i \(0.442123\pi\)
\(258\) 0 0
\(259\) 14.1376 8.16235i 0.878468 0.507183i
\(260\) 1.16198 + 5.42578i 0.0720631 + 0.336493i
\(261\) 0 0
\(262\) 12.6278 3.38360i 0.780147 0.209040i
\(263\) 5.51204i 0.339887i −0.985454 0.169943i \(-0.945641\pi\)
0.985454 0.169943i \(-0.0543585\pi\)
\(264\) 0 0
\(265\) −3.01347 + 0.807457i −0.185116 + 0.0496017i
\(266\) −3.14670 + 3.14670i −0.192937 + 0.192937i
\(267\) 0 0
\(268\) 7.65232 + 2.05043i 0.467440 + 0.125250i
\(269\) 16.8180 9.70985i 1.02541 0.592020i 0.109743 0.993960i \(-0.464997\pi\)
0.915666 + 0.401940i \(0.131664\pi\)
\(270\) 0 0
\(271\) 5.79813 + 21.6389i 0.352212 + 1.31447i 0.883957 + 0.467567i \(0.154869\pi\)
−0.531746 + 0.846904i \(0.678464\pi\)
\(272\) −1.10510 1.91408i −0.0670063 0.116058i
\(273\) 0 0
\(274\) 3.25601 5.63957i 0.196703 0.340699i
\(275\) 1.26143 + 0.337999i 0.0760669 + 0.0203821i
\(276\) 0 0
\(277\) −7.64138 4.41176i −0.459126 0.265077i 0.252551 0.967584i \(-0.418731\pi\)
−0.711677 + 0.702507i \(0.752064\pi\)
\(278\) −11.7959 + 11.7959i −0.707470 + 0.707470i
\(279\) 0 0
\(280\) 2.12655 + 0.569808i 0.127086 + 0.0340525i
\(281\) 4.63444 17.2960i 0.276467 1.03179i −0.678384 0.734707i \(-0.737320\pi\)
0.954852 0.297083i \(-0.0960138\pi\)
\(282\) 0 0
\(283\) −6.33288 + 3.65629i −0.376451 + 0.217344i −0.676273 0.736651i \(-0.736406\pi\)
0.299822 + 0.953995i \(0.403073\pi\)
\(284\) 2.90902 10.8566i 0.172619 0.644222i
\(285\) 0 0
\(286\) −0.0909031 + 1.78694i −0.00537521 + 0.105664i
\(287\) 11.5218i 0.680111i
\(288\) 0 0
\(289\) 6.05752 10.4919i 0.356325 0.617173i
\(290\) 3.62479 6.27833i 0.212855 0.368676i
\(291\) 0 0
\(292\) −4.45270 4.45270i −0.260575 0.260575i
\(293\) −10.0863 10.0863i −0.589246 0.589246i 0.348181 0.937427i \(-0.386799\pi\)
−0.937427 + 0.348181i \(0.886799\pi\)
\(294\) 0 0
\(295\) 2.15556 3.73354i 0.125502 0.217375i
\(296\) 5.70573 9.88261i 0.331639 0.574415i
\(297\) 0 0
\(298\) 10.5217i 0.609505i
\(299\) 5.69969 2.91515i 0.329622 0.168588i
\(300\) 0 0
\(301\) −0.600622 + 2.24155i −0.0346193 + 0.129201i
\(302\) 14.8845 8.59357i 0.856506 0.494504i
\(303\) 0 0
\(304\) −0.805124 + 3.00476i −0.0461770 + 0.172335i
\(305\) 10.0982 + 2.70581i 0.578223 + 0.154934i
\(306\) 0 0
\(307\) 15.5883 15.5883i 0.889669 0.889669i −0.104822 0.994491i \(-0.533427\pi\)
0.994491 + 0.104822i \(0.0334273\pi\)
\(308\) 0.614801 + 0.354956i 0.0350316 + 0.0202255i
\(309\) 0 0
\(310\) 0.467719 + 0.125325i 0.0265646 + 0.00711798i
\(311\) 12.3786 21.4403i 0.701923 1.21577i −0.265867 0.964010i \(-0.585658\pi\)
0.967790 0.251757i \(-0.0810084\pi\)
\(312\) 0 0
\(313\) 16.0705 + 27.8349i 0.908359 + 1.57332i 0.816344 + 0.577566i \(0.195997\pi\)
0.0920148 + 0.995758i \(0.470669\pi\)
\(314\) −5.66905 21.1572i −0.319923 1.19397i
\(315\) 0 0
\(316\) 8.26720 4.77307i 0.465066 0.268506i
\(317\) −28.9067 7.74554i −1.62356 0.435033i −0.671518 0.740988i \(-0.734357\pi\)
−0.952046 + 0.305956i \(0.901024\pi\)
\(318\) 0 0
\(319\) 1.65299 1.65299i 0.0925496 0.0925496i
\(320\) 1.48652 0.398313i 0.0830993 0.0222664i
\(321\) 0 0
\(322\) 2.54005i 0.141552i
\(323\) 6.64110 1.77948i 0.369521 0.0990128i
\(324\) 0 0
\(325\) −4.32057 8.44756i −0.239662 0.468586i
\(326\) −4.60538 + 2.65892i −0.255069 + 0.147264i
\(327\) 0 0
\(328\) 4.02705 + 6.97505i 0.222357 + 0.385133i
\(329\) 17.5334 0.966649
\(330\) 0 0
\(331\) −6.40799 + 1.71702i −0.352215 + 0.0943758i −0.430589 0.902548i \(-0.641694\pi\)
0.0783735 + 0.996924i \(0.475027\pi\)
\(332\) −2.17883 + 8.13149i −0.119579 + 0.446273i
\(333\) 0 0
\(334\) 5.42465 + 9.39577i 0.296824 + 0.514113i
\(335\) 12.1921 0.666124
\(336\) 0 0
\(337\) −20.1675 11.6437i −1.09859 0.634274i −0.162743 0.986669i \(-0.552034\pi\)
−0.935851 + 0.352395i \(0.885367\pi\)
\(338\) 10.0778 8.21210i 0.548158 0.446679i
\(339\) 0 0
\(340\) −2.40516 2.40516i −0.130438 0.130438i
\(341\) 0.135221 + 0.0780698i 0.00732262 + 0.00422772i
\(342\) 0 0
\(343\) 12.0916 + 12.0916i 0.652886 + 0.652886i
\(344\) 0.419853 + 1.56691i 0.0226370 + 0.0844823i
\(345\) 0 0
\(346\) −0.415621 1.55112i −0.0223439 0.0833887i
\(347\) 20.1798i 1.08331i 0.840601 + 0.541655i \(0.182202\pi\)
−0.840601 + 0.541655i \(0.817798\pi\)
\(348\) 0 0
\(349\) 17.7481 17.7481i 0.950033 0.950033i −0.0487771 0.998810i \(-0.515532\pi\)
0.998810 + 0.0487771i \(0.0155324\pi\)
\(350\) −3.76463 −0.201228
\(351\) 0 0
\(352\) 0.496250 0.0264502
\(353\) −18.4478 + 18.4478i −0.981880 + 0.981880i −0.999839 0.0179591i \(-0.994283\pi\)
0.0179591 + 0.999839i \(0.494283\pi\)
\(354\) 0 0
\(355\) 17.2973i 0.918047i
\(356\) −0.914251 3.41203i −0.0484552 0.180837i
\(357\) 0 0
\(358\) 2.60322 + 9.71534i 0.137584 + 0.513471i
\(359\) 23.1726 + 23.1726i 1.22300 + 1.22300i 0.966559 + 0.256444i \(0.0825509\pi\)
0.256444 + 0.966559i \(0.417449\pi\)
\(360\) 0 0
\(361\) 8.07411 + 4.66159i 0.424953 + 0.245347i
\(362\) −8.44878 8.44878i −0.444058 0.444058i
\(363\) 0 0
\(364\) −1.08013 5.04357i −0.0566141 0.264355i
\(365\) −8.39262 4.84548i −0.439290 0.253624i
\(366\) 0 0
\(367\) 0.585320 0.0305535 0.0152767 0.999883i \(-0.495137\pi\)
0.0152767 + 0.999883i \(0.495137\pi\)
\(368\) −0.887787 1.53769i −0.0462791 0.0801577i
\(369\) 0 0
\(370\) 4.54533 16.9634i 0.236301 0.881886i
\(371\) 2.80119 0.750577i 0.145431 0.0389680i
\(372\) 0 0
\(373\) 27.3780 1.41758 0.708790 0.705420i \(-0.249242\pi\)
0.708790 + 0.705420i \(0.249242\pi\)
\(374\) −0.548404 0.949863i −0.0283573 0.0491162i
\(375\) 0 0
\(376\) 10.6144 6.12820i 0.547393 0.316038i
\(377\) −16.9627 0.862906i −0.873624 0.0444419i
\(378\) 0 0
\(379\) 3.11912 0.835766i 0.160219 0.0429304i −0.177818 0.984063i \(-0.556904\pi\)
0.338037 + 0.941133i \(0.390237\pi\)
\(380\) 4.78735i 0.245586i
\(381\) 0 0
\(382\) −21.1013 + 5.65407i −1.07963 + 0.289287i
\(383\) 9.97127 9.97127i 0.509508 0.509508i −0.404867 0.914375i \(-0.632682\pi\)
0.914375 + 0.404867i \(0.132682\pi\)
\(384\) 0 0
\(385\) 1.05530 + 0.282767i 0.0537831 + 0.0144111i
\(386\) 11.3378 6.54589i 0.577080 0.333177i
\(387\) 0 0
\(388\) 1.90700 + 7.11700i 0.0968130 + 0.361311i
\(389\) 9.97462 + 17.2765i 0.505733 + 0.875956i 0.999978 + 0.00663286i \(0.00211132\pi\)
−0.494245 + 0.869323i \(0.664555\pi\)
\(390\) 0 0
\(391\) −1.96218 + 3.39859i −0.0992317 + 0.171874i
\(392\) 4.78473 + 1.28206i 0.241665 + 0.0647540i
\(393\) 0 0
\(394\) 2.13525 + 1.23279i 0.107572 + 0.0621070i
\(395\) 10.3882 10.3882i 0.522688 0.522688i
\(396\) 0 0
\(397\) 17.9027 + 4.79700i 0.898509 + 0.240755i 0.678376 0.734715i \(-0.262684\pi\)
0.220133 + 0.975470i \(0.429351\pi\)
\(398\) 5.42331 20.2401i 0.271846 1.01454i
\(399\) 0 0
\(400\) −2.27902 + 1.31580i −0.113951 + 0.0657898i
\(401\) −4.08357 + 15.2401i −0.203924 + 0.761055i 0.785851 + 0.618416i \(0.212225\pi\)
−0.989775 + 0.142639i \(0.954441\pi\)
\(402\) 0 0
\(403\) −0.237566 1.10929i −0.0118340 0.0552579i
\(404\) 5.51878i 0.274569i
\(405\) 0 0
\(406\) −3.36945 + 5.83606i −0.167223 + 0.289639i
\(407\) 2.83147 4.90424i 0.140351 0.243094i
\(408\) 0 0
\(409\) 7.86755 + 7.86755i 0.389025 + 0.389025i 0.874340 0.485314i \(-0.161295\pi\)
−0.485314 + 0.874340i \(0.661295\pi\)
\(410\) 8.76456 + 8.76456i 0.432851 + 0.432851i
\(411\) 0 0
\(412\) 7.53787 13.0560i 0.371364 0.643222i
\(413\) −2.00371 + 3.47053i −0.0985963 + 0.170774i
\(414\) 0 0
\(415\) 12.9555i 0.635961i
\(416\) −2.41669 2.67575i −0.118488 0.131189i
\(417\) 0 0
\(418\) −0.399542 + 1.49111i −0.0195423 + 0.0729327i
\(419\) −0.396684 + 0.229025i −0.0193793 + 0.0111886i −0.509658 0.860377i \(-0.670228\pi\)
0.490279 + 0.871566i \(0.336895\pi\)
\(420\) 0 0
\(421\) −1.17205 + 4.37413i −0.0571220 + 0.213182i −0.988588 0.150647i \(-0.951864\pi\)
0.931466 + 0.363829i \(0.118531\pi\)
\(422\) −13.6464 3.65655i −0.664297 0.177998i
\(423\) 0 0
\(424\) 1.43344 1.43344i 0.0696140 0.0696140i
\(425\) 5.03708 + 2.90816i 0.244334 + 0.141067i
\(426\) 0 0
\(427\) −9.38686 2.51520i −0.454262 0.121719i
\(428\) −6.27276 + 10.8647i −0.303205 + 0.525167i
\(429\) 0 0
\(430\) 1.24824 + 2.16202i 0.0601957 + 0.104262i
\(431\) 3.86478 + 14.4235i 0.186160 + 0.694758i 0.994379 + 0.105876i \(0.0337648\pi\)
−0.808220 + 0.588881i \(0.799569\pi\)
\(432\) 0 0
\(433\) −3.91621 + 2.26103i −0.188201 + 0.108658i −0.591140 0.806569i \(-0.701322\pi\)
0.402939 + 0.915227i \(0.367989\pi\)
\(434\) −0.434771 0.116497i −0.0208697 0.00559201i
\(435\) 0 0
\(436\) −6.92733 + 6.92733i −0.331759 + 0.331759i
\(437\) 5.33518 1.42956i 0.255216 0.0683850i
\(438\) 0 0
\(439\) 13.3562i 0.637455i −0.947846 0.318728i \(-0.896744\pi\)
0.947846 0.318728i \(-0.103256\pi\)
\(440\) 0.737687 0.197663i 0.0351679 0.00942320i
\(441\) 0 0
\(442\) −2.45092 + 7.58270i −0.116579 + 0.360672i
\(443\) −26.7016 + 15.4162i −1.26863 + 0.732445i −0.974729 0.223390i \(-0.928288\pi\)
−0.293903 + 0.955835i \(0.594954\pi\)
\(444\) 0 0
\(445\) −2.71811 4.70791i −0.128851 0.223176i
\(446\) 9.16578 0.434012
\(447\) 0 0
\(448\) −1.38181 + 0.370254i −0.0652843 + 0.0174929i
\(449\) 10.3894 38.7738i 0.490306 1.82985i −0.0645682 0.997913i \(-0.520567\pi\)
0.554874 0.831934i \(-0.312766\pi\)
\(450\) 0 0
\(451\) 1.99842 + 3.46137i 0.0941020 + 0.162989i
\(452\) 14.3065 0.672923
\(453\) 0 0
\(454\) −22.8707 13.2044i −1.07337 0.619713i
\(455\) −3.61456 7.06716i −0.169453 0.331314i
\(456\) 0 0
\(457\) −11.6746 11.6746i −0.546115 0.546115i 0.379199 0.925315i \(-0.376199\pi\)
−0.925315 + 0.379199i \(0.876199\pi\)
\(458\) 12.3141 + 7.10955i 0.575400 + 0.332207i
\(459\) 0 0
\(460\) −1.93220 1.93220i −0.0900893 0.0900893i
\(461\) −3.57300 13.3346i −0.166411 0.621055i −0.997856 0.0654474i \(-0.979153\pi\)
0.831445 0.555607i \(-0.187514\pi\)
\(462\) 0 0
\(463\) −9.96318 37.1831i −0.463028 1.72805i −0.663345 0.748314i \(-0.730864\pi\)
0.200316 0.979731i \(-0.435803\pi\)
\(464\) 4.71069i 0.218688i
\(465\) 0 0
\(466\) 15.1667 15.1667i 0.702586 0.702586i
\(467\) 8.54433 0.395385 0.197692 0.980264i \(-0.436655\pi\)
0.197692 + 0.980264i \(0.436655\pi\)
\(468\) 0 0
\(469\) −11.3332 −0.523319
\(470\) 13.3376 13.3376i 0.615216 0.615216i
\(471\) 0 0
\(472\) 2.80131i 0.128941i
\(473\) 0.208352 + 0.777580i 0.00958003 + 0.0357532i
\(474\) 0 0
\(475\) −2.11876 7.90731i −0.0972152 0.362812i
\(476\) 2.23573 + 2.23573i 0.102474 + 0.102474i
\(477\) 0 0
\(478\) 6.80960 + 3.93153i 0.311464 + 0.179824i
\(479\) 6.26732 + 6.26732i 0.286361 + 0.286361i 0.835640 0.549278i \(-0.185097\pi\)
−0.549278 + 0.835640i \(0.685097\pi\)
\(480\) 0 0
\(481\) −40.2323 + 8.61612i −1.83444 + 0.392861i
\(482\) −16.0291 9.25438i −0.730104 0.421526i
\(483\) 0 0
\(484\) −10.7537 −0.488806
\(485\) 5.66959 + 9.82002i 0.257443 + 0.445904i
\(486\) 0 0
\(487\) −2.81256 + 10.4966i −0.127449 + 0.475648i −0.999915 0.0130276i \(-0.995853\pi\)
0.872466 + 0.488675i \(0.162520\pi\)
\(488\) −6.56170 + 1.75820i −0.297034 + 0.0795901i
\(489\) 0 0
\(490\) 7.62328 0.344385
\(491\) 8.67309 + 15.0222i 0.391411 + 0.677944i 0.992636 0.121136i \(-0.0386537\pi\)
−0.601225 + 0.799080i \(0.705320\pi\)
\(492\) 0 0
\(493\) 9.01666 5.20577i 0.406090 0.234456i
\(494\) 9.98571 5.10727i 0.449279 0.229787i
\(495\) 0 0
\(496\) −0.303918 + 0.0814346i −0.0136463 + 0.00365652i
\(497\) 16.0788i 0.721235i
\(498\) 0 0
\(499\) 11.4069 3.05648i 0.510644 0.136827i 0.00570844 0.999984i \(-0.498183\pi\)
0.504936 + 0.863157i \(0.331516\pi\)
\(500\) −8.30479 + 8.30479i −0.371401 + 0.371401i
\(501\) 0 0
\(502\) −21.3365 5.71709i −0.952294 0.255166i
\(503\) −20.1247 + 11.6190i −0.897316 + 0.518066i −0.876329 0.481714i \(-0.840014\pi\)
−0.0209877 + 0.999780i \(0.506681\pi\)
\(504\) 0 0
\(505\) 2.19820 + 8.20380i 0.0978186 + 0.365064i
\(506\) −0.440564 0.763079i −0.0195855 0.0339230i
\(507\) 0 0
\(508\) 1.44766 2.50743i 0.0642297 0.111249i
\(509\) 3.45775 + 0.926500i 0.153262 + 0.0410664i 0.334634 0.942348i \(-0.391387\pi\)
−0.181372 + 0.983415i \(0.558054\pi\)
\(510\) 0 0
\(511\) 7.80141 + 4.50415i 0.345114 + 0.199252i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −29.1787 7.81841i −1.28702 0.344855i
\(515\) 6.00487 22.4105i 0.264606 0.987523i
\(516\) 0 0
\(517\) 5.26737 3.04112i 0.231659 0.133748i
\(518\) −4.22514 + 15.7684i −0.185642 + 0.692826i
\(519\) 0 0
\(520\) −4.65825 3.01496i −0.204278 0.132215i
\(521\) 4.89726i 0.214553i 0.994229 + 0.107277i \(0.0342130\pi\)
−0.994229 + 0.107277i \(0.965787\pi\)
\(522\) 0 0
\(523\) 0.745466 1.29119i 0.0325970 0.0564596i −0.849267 0.527964i \(-0.822956\pi\)
0.881864 + 0.471504i \(0.156289\pi\)
\(524\) −6.53662 + 11.3218i −0.285553 + 0.494593i
\(525\) 0 0
\(526\) 3.89760 + 3.89760i 0.169943 + 0.169943i
\(527\) 0.491731 + 0.491731i 0.0214202 + 0.0214202i
\(528\) 0 0
\(529\) 9.92367 17.1883i 0.431464 0.747317i
\(530\) 1.55989 2.70180i 0.0677572 0.117359i
\(531\) 0 0
\(532\) 4.45011i 0.192937i
\(533\) 8.93134 27.6319i 0.386859 1.19687i
\(534\) 0 0
\(535\) −4.99704 + 18.6492i −0.216041 + 0.806276i
\(536\) −6.86088 + 3.96113i −0.296345 + 0.171095i
\(537\) 0 0
\(538\) −5.02619 + 18.7580i −0.216694 + 0.808714i
\(539\) 2.37442 + 0.636224i 0.102274 + 0.0274041i
\(540\) 0 0
\(541\) −1.70268 + 1.70268i −0.0732039 + 0.0732039i −0.742761 0.669557i \(-0.766484\pi\)
0.669557 + 0.742761i \(0.266484\pi\)
\(542\) −19.4009 11.2011i −0.833341 0.481130i
\(543\) 0 0
\(544\) 2.13488 + 0.572040i 0.0915323 + 0.0245260i
\(545\) −7.53840 + 13.0569i −0.322910 + 0.559296i
\(546\) 0 0
\(547\) 6.38104 + 11.0523i 0.272833 + 0.472561i 0.969586 0.244750i \(-0.0787059\pi\)
−0.696753 + 0.717311i \(0.745373\pi\)
\(548\) 1.68543 + 6.29012i 0.0719981 + 0.268701i
\(549\) 0 0
\(550\) −1.13097 + 0.652963i −0.0482245 + 0.0278424i
\(551\) −14.1545 3.79269i −0.603003 0.161574i
\(552\) 0 0
\(553\) −9.65643 + 9.65643i −0.410633 + 0.410633i
\(554\) 8.52286 2.28369i 0.362102 0.0970248i
\(555\) 0 0
\(556\) 16.6819i 0.707470i
\(557\) −11.2158 + 3.00527i −0.475229 + 0.127337i −0.488480 0.872575i \(-0.662449\pi\)
0.0132513 + 0.999912i \(0.495782\pi\)
\(558\) 0 0
\(559\) 3.17801 4.91016i 0.134415 0.207678i
\(560\) −1.90661 + 1.10078i −0.0805692 + 0.0465166i
\(561\) 0 0
\(562\) 8.95305 + 15.5071i 0.377661 + 0.654129i
\(563\) −40.8646 −1.72224 −0.861119 0.508403i \(-0.830236\pi\)
−0.861119 + 0.508403i \(0.830236\pi\)
\(564\) 0 0
\(565\) 21.2670 5.69848i 0.894710 0.239737i
\(566\) 1.89264 7.06341i 0.0795534 0.296897i
\(567\) 0 0
\(568\) 5.61980 + 9.73378i 0.235802 + 0.408420i
\(569\) 6.41366 0.268875 0.134437 0.990922i \(-0.457077\pi\)
0.134437 + 0.990922i \(0.457077\pi\)
\(570\) 0 0
\(571\) −11.8701 6.85319i −0.496747 0.286797i 0.230622 0.973043i \(-0.425924\pi\)
−0.727369 + 0.686246i \(0.759257\pi\)
\(572\) −1.19928 1.32784i −0.0501445 0.0555197i
\(573\) 0 0
\(574\) −8.14715 8.14715i −0.340056 0.340056i
\(575\) 4.04658 + 2.33629i 0.168754 + 0.0974301i
\(576\) 0 0
\(577\) −10.8626 10.8626i −0.452214 0.452214i 0.443875 0.896089i \(-0.353604\pi\)
−0.896089 + 0.443875i \(0.853604\pi\)
\(578\) 3.13561 + 11.7022i 0.130424 + 0.486749i
\(579\) 0 0
\(580\) 1.87633 + 7.00256i 0.0779104 + 0.290766i
\(581\) 12.0429i 0.499623i
\(582\) 0 0
\(583\) 0.711344 0.711344i 0.0294609 0.0294609i
\(584\) 6.29707 0.260575
\(585\) 0 0
\(586\) 14.2641 0.589246
\(587\) −1.80828 + 1.80828i −0.0746357 + 0.0746357i −0.743439 0.668804i \(-0.766807\pi\)
0.668804 + 0.743439i \(0.266807\pi\)
\(588\) 0 0
\(589\) 0.978767i 0.0403294i
\(590\) 1.11580 + 4.16422i 0.0459368 + 0.171438i
\(591\) 0 0
\(592\) 2.95350 + 11.0226i 0.121388 + 0.453027i
\(593\) −15.9796 15.9796i −0.656204 0.656204i 0.298276 0.954480i \(-0.403588\pi\)
−0.954480 + 0.298276i \(0.903588\pi\)
\(594\) 0 0
\(595\) 4.21399 + 2.43295i 0.172757 + 0.0997411i
\(596\) 7.43995 + 7.43995i 0.304752 + 0.304752i
\(597\) 0 0
\(598\) −1.96897 + 6.09161i −0.0805170 + 0.249105i
\(599\) −20.6867 11.9435i −0.845237 0.487998i 0.0138036 0.999905i \(-0.495606\pi\)
−0.859041 + 0.511907i \(0.828939\pi\)
\(600\) 0 0
\(601\) −25.4119 −1.03657 −0.518287 0.855207i \(-0.673430\pi\)
−0.518287 + 0.855207i \(0.673430\pi\)
\(602\) −1.16031 2.00972i −0.0472908 0.0819101i
\(603\) 0 0
\(604\) −4.44836 + 16.6015i −0.181001 + 0.675505i
\(605\) −15.9857 + 4.28335i −0.649911 + 0.174143i
\(606\) 0 0
\(607\) 20.6007 0.836156 0.418078 0.908411i \(-0.362704\pi\)
0.418078 + 0.908411i \(0.362704\pi\)
\(608\) −1.55538 2.69400i −0.0630790 0.109256i
\(609\) 0 0
\(610\) −9.05382 + 5.22722i −0.366578 + 0.211644i
\(611\) −42.0491 13.5913i −1.70112 0.549847i
\(612\) 0 0
\(613\) −6.32348 + 1.69437i −0.255403 + 0.0684350i −0.384249 0.923230i \(-0.625539\pi\)
0.128846 + 0.991665i \(0.458873\pi\)
\(614\) 22.0451i 0.889669i
\(615\) 0 0
\(616\) −0.685722 + 0.183739i −0.0276285 + 0.00740304i
\(617\) −11.2968 + 11.2968i −0.454794 + 0.454794i −0.896942 0.442148i \(-0.854216\pi\)
0.442148 + 0.896942i \(0.354216\pi\)
\(618\) 0 0
\(619\) −21.8012 5.84160i −0.876263 0.234794i −0.207469 0.978242i \(-0.566523\pi\)
−0.668794 + 0.743448i \(0.733189\pi\)
\(620\) −0.419345 + 0.242109i −0.0168413 + 0.00972334i
\(621\) 0 0
\(622\) 6.40761 + 23.9135i 0.256922 + 0.958845i
\(623\) 2.52664 + 4.37627i 0.101228 + 0.175331i
\(624\) 0 0
\(625\) −2.45839 + 4.25805i −0.0983355 + 0.170322i
\(626\) −31.0458 8.31871i −1.24084 0.332482i
\(627\) 0 0
\(628\) 18.9690 + 10.9518i 0.756946 + 0.437023i
\(629\) 17.8343 17.8343i 0.711100 0.711100i
\(630\) 0 0
\(631\) −16.8737 4.52128i −0.671730 0.179989i −0.0931960 0.995648i \(-0.529708\pi\)
−0.578534 + 0.815658i \(0.696375\pi\)
\(632\) −2.47072 + 9.22086i −0.0982801 + 0.366786i
\(633\) 0 0
\(634\) 25.9171 14.9632i 1.02930 0.594266i
\(635\) 1.15325 4.30397i 0.0457652 0.170798i
\(636\) 0 0
\(637\) −8.13273 15.9011i −0.322230 0.630023i
\(638\) 2.33768i 0.0925496i
\(639\) 0 0
\(640\) −0.769482 + 1.33278i −0.0304164 + 0.0526828i
\(641\) 18.2842 31.6691i 0.722182 1.25086i −0.237941 0.971280i \(-0.576473\pi\)
0.960123 0.279577i \(-0.0901941\pi\)
\(642\) 0 0
\(643\) 24.7378 + 24.7378i 0.975563 + 0.975563i 0.999708 0.0241455i \(-0.00768651\pi\)
−0.0241455 + 0.999708i \(0.507687\pi\)
\(644\) 1.79609 + 1.79609i 0.0707758 + 0.0707758i
\(645\) 0 0
\(646\) −3.43769 + 5.95425i −0.135254 + 0.234267i
\(647\) −9.58684 + 16.6049i −0.376897 + 0.652806i −0.990609 0.136725i \(-0.956342\pi\)
0.613712 + 0.789530i \(0.289676\pi\)
\(648\) 0 0
\(649\) 1.39015i 0.0545682i
\(650\) 9.02843 + 2.91822i 0.354124 + 0.114462i
\(651\) 0 0
\(652\) 1.37636 5.13664i 0.0539023 0.201166i
\(653\) −5.74222 + 3.31527i −0.224710 + 0.129737i −0.608129 0.793838i \(-0.708080\pi\)
0.383419 + 0.923574i \(0.374747\pi\)
\(654\) 0 0
\(655\) −5.20724 + 19.4337i −0.203464 + 0.759337i
\(656\) −7.77966 2.08455i −0.303745 0.0813882i
\(657\) 0 0
\(658\) −12.3980 + 12.3980i −0.483325 + 0.483325i
\(659\) 18.7561 + 10.8289i 0.730636 + 0.421833i 0.818655 0.574286i \(-0.194720\pi\)
−0.0880190 + 0.996119i \(0.528054\pi\)
\(660\) 0 0
\(661\) −9.98561 2.67564i −0.388395 0.104070i 0.0593368 0.998238i \(-0.481101\pi\)
−0.447732 + 0.894168i \(0.647768\pi\)
\(662\) 3.31702 5.74525i 0.128920 0.223295i
\(663\) 0 0
\(664\) −4.20917 7.29049i −0.163347 0.282926i
\(665\) −1.77254 6.61519i −0.0687360 0.256526i
\(666\) 0 0
\(667\) 7.24360 4.18209i 0.280473 0.161931i
\(668\) −10.4796 2.80800i −0.405469 0.108645i
\(669\) 0 0
\(670\) −8.62110 + 8.62110i −0.333062 + 0.333062i
\(671\) −3.25624 + 0.872508i −0.125706 + 0.0336828i
\(672\) 0 0
\(673\) 26.3007i 1.01382i 0.862000 + 0.506908i \(0.169212\pi\)
−0.862000 + 0.506908i \(0.830788\pi\)
\(674\) 22.4939 6.02723i 0.866434 0.232160i
\(675\) 0 0
\(676\) −1.31923 + 12.9329i −0.0507394 + 0.497419i
\(677\) 0.260338 0.150306i 0.0100056 0.00577673i −0.494989 0.868899i \(-0.664828\pi\)
0.504994 + 0.863123i \(0.331495\pi\)
\(678\) 0 0
\(679\) −5.27020 9.12826i −0.202252 0.350310i
\(680\) 3.40141 0.130438
\(681\) 0 0
\(682\) −0.150819 + 0.0404119i −0.00577517 + 0.00154745i
\(683\) 0.894421 3.33802i 0.0342241 0.127726i −0.946700 0.322116i \(-0.895606\pi\)
0.980924 + 0.194390i \(0.0622727\pi\)
\(684\) 0 0
\(685\) 5.01088 + 8.67909i 0.191456 + 0.331611i
\(686\) −17.1001 −0.652886
\(687\) 0 0
\(688\) −1.40486 0.811094i −0.0535596 0.0309227i
\(689\) −7.29970 0.371341i −0.278097 0.0141470i
\(690\) 0 0
\(691\) 23.6513 + 23.6513i 0.899738 + 0.899738i 0.995413 0.0956749i \(-0.0305009\pi\)
−0.0956749 + 0.995413i \(0.530501\pi\)
\(692\) 1.39070 + 0.802919i 0.0528663 + 0.0305224i
\(693\) 0 0
\(694\) −14.2693 14.2693i −0.541655 0.541655i
\(695\) −6.64462 24.7981i −0.252045 0.940644i
\(696\) 0 0
\(697\) 4.60727 + 17.1946i 0.174513 + 0.651290i
\(698\) 25.0996i 0.950033i
\(699\) 0 0
\(700\) 2.66200 2.66200i 0.100614 0.100614i
\(701\) 14.8908 0.562418 0.281209 0.959647i \(-0.409265\pi\)
0.281209 + 0.959647i \(0.409265\pi\)
\(702\) 0 0
\(703\) −35.4983 −1.33884
\(704\) −0.350901 + 0.350901i −0.0132251 + 0.0132251i
\(705\) 0 0
\(706\) 26.0892i 0.981880i
\(707\) −2.04335 7.62589i −0.0768481 0.286801i
\(708\) 0 0
\(709\) −6.37553 23.7938i −0.239438 0.893595i −0.976098 0.217332i \(-0.930265\pi\)
0.736660 0.676264i \(-0.236402\pi\)
\(710\) 12.2311 + 12.2311i 0.459024 + 0.459024i
\(711\) 0 0
\(712\) 3.05914 + 1.76620i 0.114646 + 0.0661910i
\(713\) 0.395036 + 0.395036i 0.0147942 + 0.0147942i
\(714\) 0 0
\(715\) −2.31166 1.49617i −0.0864510 0.0559537i
\(716\) −8.71053 5.02903i −0.325528 0.187944i
\(717\) 0 0
\(718\) −32.7710 −1.22300
\(719\) −17.8371 30.8948i −0.665213 1.15218i −0.979227 0.202765i \(-0.935007\pi\)
0.314014 0.949418i \(-0.398326\pi\)
\(720\) 0 0
\(721\) −5.58186 + 20.8318i −0.207879 + 0.775816i
\(722\) −9.00550 + 2.41302i −0.335150 + 0.0898031i
\(723\) 0 0
\(724\) 11.9484 0.444058
\(725\) −6.19831 10.7358i −0.230199 0.398717i
\(726\) 0 0
\(727\) 8.14708 4.70372i 0.302159 0.174451i −0.341254 0.939971i \(-0.610851\pi\)
0.643412 + 0.765520i \(0.277518\pi\)
\(728\) 4.33011 + 2.80258i 0.160484 + 0.103870i
\(729\) 0 0
\(730\) 9.36075 2.50821i 0.346457 0.0928328i
\(731\) 3.58535i 0.132609i
\(732\) 0 0
\(733\) 31.2706 8.37893i 1.15501 0.309483i 0.370037 0.929017i \(-0.379345\pi\)
0.784970 + 0.619534i \(0.212678\pi\)
\(734\) −0.413884 + 0.413884i −0.0152767 + 0.0152767i
\(735\) 0 0
\(736\) 1.71507 + 0.459552i 0.0632184 + 0.0169393i
\(737\) −3.40471 + 1.96571i −0.125414 + 0.0724079i
\(738\) 0 0
\(739\) 7.68766 + 28.6907i 0.282795 + 1.05541i 0.950436 + 0.310922i \(0.100638\pi\)
−0.667640 + 0.744484i \(0.732696\pi\)
\(740\) 8.78091 + 15.2090i 0.322793 + 0.559093i
\(741\) 0 0
\(742\) −1.45000 + 2.51148i −0.0532313 + 0.0921993i
\(743\) 23.8066 + 6.37897i 0.873381 + 0.234022i 0.667549 0.744566i \(-0.267343\pi\)
0.205832 + 0.978587i \(0.434010\pi\)
\(744\) 0 0
\(745\) 14.0231 + 8.09624i 0.513767 + 0.296623i
\(746\) −19.3592 + 19.3592i −0.708790 + 0.708790i
\(747\) 0 0
\(748\) 1.05943 + 0.283875i 0.0387368 + 0.0103795i
\(749\) 4.64503 17.3355i 0.169726 0.633425i
\(750\) 0 0
\(751\) −19.1669 + 11.0660i −0.699411 + 0.403805i −0.807128 0.590376i \(-0.798979\pi\)
0.107717 + 0.994182i \(0.465646\pi\)
\(752\) −3.17219 + 11.8388i −0.115678 + 0.431716i
\(753\) 0 0
\(754\) 12.6046 11.3843i 0.459033 0.414591i
\(755\) 26.4504i 0.962628i
\(756\) 0 0
\(757\) 25.1440 43.5507i 0.913875 1.58288i 0.105336 0.994437i \(-0.466408\pi\)
0.808540 0.588442i \(-0.200258\pi\)
\(758\) −1.61458 + 2.79653i −0.0586440 + 0.101574i
\(759\) 0 0
\(760\) −3.38516 3.38516i −0.122793 0.122793i
\(761\) −5.92790 5.92790i −0.214886 0.214886i 0.591453 0.806339i \(-0.298554\pi\)
−0.806339 + 0.591453i \(0.798554\pi\)
\(762\) 0 0
\(763\) 7.00737 12.1371i 0.253684 0.439393i
\(764\) 10.9228 18.9189i 0.395174 0.684461i
\(765\) 0 0
\(766\) 14.1015i 0.509508i
\(767\) 7.49560 6.76990i 0.270650 0.244447i
\(768\) 0 0
\(769\) −4.01166 + 14.9717i −0.144664 + 0.539894i 0.855106 + 0.518453i \(0.173492\pi\)
−0.999770 + 0.0214405i \(0.993175\pi\)
\(770\) −0.946157 + 0.546264i −0.0340971 + 0.0196860i
\(771\) 0 0
\(772\) −3.38840 + 12.6457i −0.121951 + 0.455128i
\(773\) −6.28210 1.68328i −0.225951 0.0605435i 0.144067 0.989568i \(-0.453982\pi\)
−0.370018 + 0.929024i \(0.620649\pi\)
\(774\) 0 0
\(775\) 0.585485 0.585485i 0.0210313 0.0210313i
\(776\) −6.38093 3.68403i −0.229062 0.132249i
\(777\) 0 0
\(778\) −19.2695 5.16324i −0.690844 0.185111i
\(779\) 12.5272 21.6977i 0.448833 0.777401i
\(780\) 0 0
\(781\) 2.78882 + 4.83038i 0.0997919 + 0.172845i
\(782\) −1.01570 3.79064i −0.0363213 0.135553i
\(783\) 0 0
\(784\) −4.28987 + 2.47676i −0.153210 + 0.0884557i
\(785\) 32.5601 + 8.72447i 1.16212 + 0.311390i
\(786\) 0 0
\(787\) −37.8815 + 37.8815i −1.35033 + 1.35033i −0.465040 + 0.885290i \(0.653960\pi\)
−0.885290 + 0.465040i \(0.846040\pi\)
\(788\) −2.38157 + 0.638138i −0.0848398 + 0.0227327i
\(789\) 0 0
\(790\) 14.6912i 0.522688i
\(791\) −19.7689 + 5.29706i −0.702901 + 0.188342i
\(792\) 0 0
\(793\) 20.5621 + 13.3084i 0.730182 + 0.472596i
\(794\) −16.0511 + 9.26710i −0.569632 + 0.328877i
\(795\) 0 0
\(796\) 10.4770 + 18.1467i 0.371348 + 0.643194i
\(797\) 46.6716 1.65319 0.826597 0.562794i \(-0.190274\pi\)
0.826597 + 0.562794i \(0.190274\pi\)
\(798\) 0 0
\(799\) 26.1660 7.01115i 0.925685 0.248037i
\(800\) 0.681106 2.54192i 0.0240807 0.0898705i
\(801\) 0 0
\(802\) −7.88886 13.6639i −0.278565 0.482489i
\(803\) 3.12492 0.110276
\(804\) 0 0
\(805\) 3.38533 + 1.95452i 0.119317 + 0.0688879i
\(806\) 0.952374 + 0.616405i 0.0335459 + 0.0217119i
\(807\) 0 0
\(808\) −3.90236 3.90236i −0.137285 0.137285i
\(809\) 3.13155 + 1.80800i 0.110099 + 0.0635659i 0.554039 0.832491i \(-0.313086\pi\)
−0.443939 + 0.896057i \(0.646419\pi\)
\(810\) 0 0
\(811\) 0.430194 + 0.430194i 0.0151062 + 0.0151062i 0.714620 0.699513i \(-0.246600\pi\)
−0.699513 + 0.714620i \(0.746600\pi\)
\(812\) −1.74416 6.50928i −0.0612078 0.228431i
\(813\) 0 0
\(814\) 1.46567 + 5.46997i 0.0513719 + 0.191722i
\(815\) 8.18396i 0.286672i
\(816\) 0 0
\(817\) 3.56823 3.56823i 0.124837 0.124837i
\(818\) −11.1264 −0.389025
\(819\) 0 0
\(820\) −12.3950 −0.432851
\(821\) −36.5520 + 36.5520i −1.27567 + 1.27567i −0.332608 + 0.943065i \(0.607929\pi\)
−0.943065 + 0.332608i \(0.892071\pi\)
\(822\) 0 0
\(823\) 18.6304i 0.649413i −0.945815 0.324707i \(-0.894734\pi\)
0.945815 0.324707i \(-0.105266\pi\)
\(824\) 3.90189 + 14.5621i 0.135929 + 0.507293i
\(825\) 0 0
\(826\) −1.03720 3.87088i −0.0360888 0.134685i
\(827\) −23.9908 23.9908i −0.834244 0.834244i 0.153851 0.988094i \(-0.450833\pi\)
−0.988094 + 0.153851i \(0.950833\pi\)
\(828\) 0 0
\(829\) −11.0843 6.39953i −0.384974 0.222265i 0.295006 0.955495i \(-0.404678\pi\)
−0.679980 + 0.733230i \(0.738012\pi\)
\(830\) −9.16093 9.16093i −0.317981 0.317981i
\(831\) 0 0
\(832\) 3.60090 + 0.183180i 0.124839 + 0.00635063i
\(833\) 9.48144 + 5.47411i 0.328513 + 0.189667i
\(834\) 0 0
\(835\) −16.6967 −0.577812
\(836\) −0.771857 1.33689i −0.0266952 0.0462375i
\(837\) 0 0
\(838\) 0.118552 0.442443i 0.00409532 0.0152839i
\(839\) 20.3835 5.46173i 0.703715 0.188560i 0.110821 0.993840i \(-0.464652\pi\)
0.592894 + 0.805280i \(0.297985\pi\)
\(840\) 0 0
\(841\) 6.80936 0.234806
\(842\) −2.26422 3.92174i −0.0780301 0.135152i
\(843\) 0 0
\(844\) 12.2350 7.06391i 0.421148 0.243150i
\(845\) 3.19028 + 19.7505i 0.109749 + 0.679439i
\(846\) 0 0
\(847\) 14.8596 3.98162i 0.510582 0.136810i
\(848\) 2.02719i 0.0696140i
\(849\) 0 0
\(850\) −5.61814 + 1.50537i −0.192700 + 0.0516339i
\(851\) 14.3273 14.3273i 0.491134 0.491134i
\(852\) 0 0
\(853\) 9.10083 + 2.43856i 0.311606 + 0.0834947i 0.411233 0.911530i \(-0.365098\pi\)
−0.0996268 + 0.995025i \(0.531765\pi\)
\(854\) 8.41603 4.85900i 0.287991 0.166272i
\(855\) 0 0
\(856\) −3.24702 12.1180i −0.110981 0.414186i
\(857\) 7.45337 + 12.9096i 0.254602 + 0.440984i 0.964787 0.263031i \(-0.0847221\pi\)
−0.710185 + 0.704015i \(0.751389\pi\)
\(858\) 0 0
\(859\) 17.7711 30.7804i 0.606341 1.05021i −0.385497 0.922709i \(-0.625970\pi\)
0.991838 0.127504i \(-0.0406967\pi\)
\(860\) −2.41142 0.646139i −0.0822288 0.0220331i
\(861\) 0 0
\(862\) −12.9318 7.46617i −0.440459 0.254299i
\(863\) −0.118264 + 0.118264i −0.00402577 + 0.00402577i −0.709117 0.705091i \(-0.750906\pi\)
0.705091 + 0.709117i \(0.250906\pi\)
\(864\) 0 0
\(865\) 2.38712 + 0.639626i 0.0811644 + 0.0217479i
\(866\) 1.17039 4.36797i 0.0397716 0.148430i
\(867\) 0 0
\(868\) 0.389805 0.225054i 0.0132308 0.00763883i
\(869\) −1.22610 + 4.57585i −0.0415924 + 0.155225i
\(870\) 0 0
\(871\) 27.1796 + 8.78515i 0.920946 + 0.297673i
\(872\) 9.79673i 0.331759i
\(873\) 0 0
\(874\) −2.76169 + 4.78339i −0.0934156 + 0.161801i
\(875\) 8.40074 14.5505i 0.283997 0.491897i
\(876\) 0 0
\(877\) 30.2480 + 30.2480i 1.02140 + 1.02140i 0.999766 + 0.0216349i \(0.00688713\pi\)
0.0216349 + 0.999766i \(0.493113\pi\)
\(878\) 9.44424 + 9.44424i 0.318728 + 0.318728i
\(879\) 0 0
\(880\) −0.381855 + 0.661392i −0.0128723 + 0.0222955i
\(881\) −13.3432 + 23.1111i −0.449544 + 0.778633i −0.998356 0.0573124i \(-0.981747\pi\)
0.548812 + 0.835946i \(0.315080\pi\)
\(882\) 0 0
\(883\) 11.8585i 0.399071i −0.979891 0.199536i \(-0.936057\pi\)
0.979891 0.199536i \(-0.0639433\pi\)
\(884\) −3.62871 7.09484i −0.122047 0.238625i
\(885\) 0 0
\(886\) 7.98000 29.7818i 0.268093 1.00054i
\(887\) −45.7185 + 26.3956i −1.53508 + 0.886277i −0.535960 + 0.844243i \(0.680050\pi\)
−0.999116 + 0.0420331i \(0.986617\pi\)
\(888\) 0 0
\(889\) −1.07201 + 4.00079i −0.0359540 + 0.134182i
\(890\) 5.25099 + 1.40700i 0.176014 + 0.0471627i
\(891\) 0 0
\(892\) −6.48118 + 6.48118i −0.217006 + 0.217006i
\(893\) −33.0187 19.0634i −1.10493 0.637931i
\(894\) 0 0
\(895\) −14.9515 4.00626i −0.499775 0.133914i
\(896\) 0.715277 1.23890i 0.0238957 0.0413886i
\(897\) 0 0
\(898\) 20.0708 + 34.7636i 0.669771 + 1.16008i
\(899\) −0.383613 1.43167i −0.0127942 0.0477487i
\(900\) 0 0
\(901\) 3.88021 2.24024i 0.129269 0.0746333i
\(902\) −3.86065 1.03446i −0.128546 0.0344437i
\(903\) 0 0
\(904\) −10.1162 + 10.1162i −0.336461 + 0.336461i
\(905\) 17.7616 4.75920i 0.590414 0.158201i
\(906\) 0 0
\(907\) 18.4318i 0.612019i −0.952028 0.306009i \(-0.901006\pi\)
0.952028 0.306009i \(-0.0989939\pi\)
\(908\) 25.5089 6.83510i 0.846544 0.226831i
\(909\) 0 0
\(910\) 7.55312 + 2.44136i 0.250383 + 0.0809303i
\(911\) 37.3282 21.5514i 1.23674 0.714030i 0.268311 0.963332i \(-0.413534\pi\)
0.968426 + 0.249302i \(0.0802011\pi\)
\(912\) 0 0
\(913\) −2.08880 3.61790i −0.0691291 0.119735i
\(914\) 16.5104 0.546115
\(915\) 0 0
\(916\) −13.7346 + 3.68017i −0.453804 + 0.121596i
\(917\) 4.84042 18.0647i 0.159845 0.596549i
\(918\) 0 0
\(919\) −25.3781 43.9562i −0.837147 1.44998i −0.892270 0.451502i \(-0.850888\pi\)
0.0551224 0.998480i \(-0.482445\pi\)
\(920\) 2.73254 0.0900893
\(921\) 0 0
\(922\) 11.9555 + 6.90250i 0.393733 + 0.227322i
\(923\) 12.4638 38.5607i 0.410251 1.26924i
\(924\) 0 0
\(925\) −21.2346 21.2346i −0.698190 0.698190i
\(926\) 33.3375 + 19.2474i 1.09554 + 0.632508i
\(927\) 0 0
\(928\) −3.33096 3.33096i −0.109344 0.109344i
\(929\) 12.0290 + 44.8930i 0.394660 + 1.47289i 0.822358 + 0.568970i \(0.192658\pi\)
−0.427698 + 0.903922i \(0.640675\pi\)
\(930\) 0 0
\(931\) −3.98820 14.8841i −0.130708 0.487808i
\(932\) 21.4490i 0.702586i
\(933\) 0 0
\(934\) −6.04176 + 6.04176i −0.197692 + 0.197692i
\(935\) 1.68795 0.0552018
\(936\) 0 0
\(937\) −13.9838 −0.456832 −0.228416 0.973564i \(-0.573355\pi\)
−0.228416 + 0.973564i \(0.573355\pi\)
\(938\) 8.01380 8.01380i 0.261660 0.261660i
\(939\) 0 0
\(940\) 18.8622i 0.615216i
\(941\) −6.63944 24.7787i −0.216440 0.807764i −0.985655 0.168774i \(-0.946019\pi\)
0.769215 0.638990i \(-0.220647\pi\)
\(942\) 0 0
\(943\) 3.70128 + 13.8134i 0.120530 + 0.449825i
\(944\) −1.98083 1.98083i −0.0644704 0.0644704i
\(945\) 0 0
\(946\) −0.697159 0.402505i −0.0226666 0.0130866i
\(947\) 1.95156 + 1.95156i 0.0634171 + 0.0634171i 0.738104 0.674687i \(-0.235721\pi\)
−0.674687 + 0.738104i \(0.735721\pi\)
\(948\) 0 0
\(949\) −15.2181 16.8494i −0.493999 0.546953i
\(950\) 7.08950 + 4.09312i 0.230014 + 0.132798i
\(951\) 0 0
\(952\) −3.16180 −0.102474
\(953\) 14.2452 + 24.6735i 0.461448 + 0.799252i 0.999033 0.0439575i \(-0.0139966\pi\)
−0.537585 + 0.843210i \(0.680663\pi\)
\(954\) 0 0
\(955\) 8.70140 32.4741i 0.281571 1.05084i
\(956\) −7.59513 + 2.03511i −0.245644 + 0.0658201i
\(957\) 0 0
\(958\) −8.86333 −0.286361
\(959\) −4.65789 8.06770i −0.150411 0.260520i
\(960\) 0 0
\(961\) −26.7611 + 15.4505i −0.863260 + 0.498403i
\(962\) 22.3560 34.5411i 0.720787 1.11365i
\(963\) 0 0
\(964\) 17.8781 4.79042i 0.575815 0.154289i
\(965\) 20.1478i 0.648580i
\(966\) 0 0
\(967\) 10.1930 2.73120i 0.327783 0.0878293i −0.0911745 0.995835i \(-0.529062\pi\)
0.418958 + 0.908006i \(0.362395\pi\)
\(968\) 7.60404 7.60404i 0.244403 0.244403i
\(969\) 0 0
\(970\) −10.9528 2.93480i −0.351674 0.0942306i
\(971\) −36.5800 + 21.1195i −1.17391 + 0.677756i −0.954597 0.297899i \(-0.903714\pi\)
−0.219310 + 0.975655i \(0.570381\pi\)
\(972\) 0 0
\(973\) 6.17655 + 23.0512i 0.198011 + 0.738987i
\(974\) −5.43346 9.41102i −0.174099 0.301549i
\(975\) 0 0
\(976\) 3.39659 5.88306i 0.108722 0.188312i
\(977\) 50.9962 + 13.6644i 1.63151 + 0.437162i 0.954355 0.298676i \(-0.0965450\pi\)
0.677157 + 0.735838i \(0.263212\pi\)
\(978\) 0 0
\(979\) 1.51810 + 0.876475i 0.0485186 + 0.0280122i
\(980\) −5.39048 + 5.39048i −0.172192 + 0.172192i
\(981\) 0 0
\(982\) −16.7551 4.48952i −0.534678 0.143266i
\(983\) −8.76515 + 32.7120i −0.279565 + 1.04335i 0.673155 + 0.739501i \(0.264939\pi\)
−0.952720 + 0.303849i \(0.901728\pi\)
\(984\) 0 0
\(985\) −3.28608 + 1.89722i −0.104703 + 0.0604504i
\(986\) −2.69470 + 10.0568i −0.0858169 + 0.320273i
\(987\) 0 0
\(988\) −3.44958 + 10.6724i −0.109746 + 0.339533i
\(989\) 2.88031i 0.0915887i
\(990\) 0 0
\(991\) 20.3156 35.1877i 0.645347 1.11777i −0.338874 0.940832i \(-0.610046\pi\)
0.984221 0.176942i \(-0.0566205\pi\)
\(992\) 0.157320 0.272485i 0.00499490 0.00865142i
\(993\) 0 0
\(994\) −11.3695 11.3695i −0.360617 0.360617i
\(995\) 22.8024 + 22.8024i 0.722886 + 0.722886i
\(996\) 0 0
\(997\) −7.67103 + 13.2866i −0.242944 + 0.420791i −0.961552 0.274624i \(-0.911446\pi\)
0.718608 + 0.695416i \(0.244780\pi\)
\(998\) −5.90466 + 10.2272i −0.186909 + 0.323735i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.bb.a.449.2 56
3.2 odd 2 234.2.y.a.59.12 56
9.2 odd 6 702.2.bc.a.683.2 56
9.7 even 3 234.2.z.a.137.8 yes 56
13.2 odd 12 702.2.bc.a.665.2 56
39.2 even 12 234.2.z.a.41.8 yes 56
117.2 even 12 inner 702.2.bb.a.197.2 56
117.106 odd 12 234.2.y.a.119.12 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.y.a.59.12 56 3.2 odd 2
234.2.y.a.119.12 yes 56 117.106 odd 12
234.2.z.a.41.8 yes 56 39.2 even 12
234.2.z.a.137.8 yes 56 9.7 even 3
702.2.bb.a.197.2 56 117.2 even 12 inner
702.2.bb.a.449.2 56 1.1 even 1 trivial
702.2.bc.a.665.2 56 13.2 odd 12
702.2.bc.a.683.2 56 9.2 odd 6