Properties

Label 702.2.bb.a.449.10
Level $702$
Weight $2$
Character 702.449
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(71,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.71"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([10, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 449.10
Character \(\chi\) \(=\) 702.449
Dual form 702.2.bb.a.197.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} -1.00000i q^{4} +(-0.517281 - 1.93052i) q^{5} +(0.686666 + 2.56267i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-1.73086 - 0.999310i) q^{10} +(-3.08472 - 3.08472i) q^{11} +(1.90819 - 3.05922i) q^{13} +(2.29763 + 1.32654i) q^{14} -1.00000 q^{16} +(-1.21062 - 2.09686i) q^{17} +(1.64767 - 6.14918i) q^{19} +(-1.93052 + 0.517281i) q^{20} -4.36245 q^{22} +(0.610766 + 1.05788i) q^{23} +(0.870804 - 0.502759i) q^{25} +(-0.813901 - 3.51249i) q^{26} +(2.56267 - 0.686666i) q^{28} -4.47591i q^{29} +(-8.14531 + 2.18253i) q^{31} +(-0.707107 + 0.707107i) q^{32} +(-2.33874 - 0.626664i) q^{34} +(4.59209 - 2.65124i) q^{35} +(2.49571 + 9.31410i) q^{37} +(-3.18305 - 5.51321i) q^{38} +(-0.999310 + 1.73086i) q^{40} +(6.63068 + 1.77669i) q^{41} +(-8.90622 - 5.14201i) q^{43} +(-3.08472 + 3.08472i) q^{44} +(1.17991 + 0.316156i) q^{46} +(-1.40065 + 5.22728i) q^{47} +(-0.0335972 + 0.0193974i) q^{49} +(0.260247 - 0.971255i) q^{50} +(-3.05922 - 1.90819i) q^{52} +0.142416i q^{53} +(-4.35944 + 7.55077i) q^{55} +(1.32654 - 2.29763i) q^{56} +(-3.16495 - 3.16495i) q^{58} +(2.84098 + 2.84098i) q^{59} +(5.02738 - 8.70767i) q^{61} +(-4.21632 + 7.30289i) q^{62} +1.00000i q^{64} +(-6.89295 - 2.10132i) q^{65} +(0.654683 - 2.44331i) q^{67} +(-2.09686 + 1.21062i) q^{68} +(1.37238 - 5.12181i) q^{70} +(7.11876 + 1.90747i) q^{71} +(-4.15800 + 4.15800i) q^{73} +(8.35079 + 4.82133i) q^{74} +(-6.14918 - 1.64767i) q^{76} +(5.78695 - 10.0233i) q^{77} +(-0.161842 - 0.280319i) q^{79} +(0.517281 + 1.93052i) q^{80} +(5.94491 - 3.43230i) q^{82} +(3.79971 + 1.01813i) q^{83} +(-3.42179 + 3.42179i) q^{85} +(-9.93360 + 2.66170i) q^{86} +4.36245i q^{88} +(14.2994 - 3.83151i) q^{89} +(9.15006 + 2.78940i) q^{91} +(1.05788 - 0.610766i) q^{92} +(2.70584 + 4.68665i) q^{94} -12.7234 q^{95} +(8.47838 - 2.27178i) q^{97} +(-0.0100408 + 0.0374729i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7} - 56 q^{16} - 8 q^{19} - 4 q^{28} + 8 q^{31} - 24 q^{35} - 4 q^{37} + 36 q^{38} + 48 q^{41} + 12 q^{43} - 60 q^{47} + 24 q^{50} - 4 q^{52} + 120 q^{65} - 56 q^{67} - 24 q^{71} + 28 q^{73}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −0.517281 1.93052i −0.231335 0.863354i −0.979767 0.200142i \(-0.935860\pi\)
0.748432 0.663212i \(-0.230807\pi\)
\(6\) 0 0
\(7\) 0.686666 + 2.56267i 0.259535 + 0.968599i 0.965511 + 0.260363i \(0.0838421\pi\)
−0.705976 + 0.708236i \(0.749491\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 0 0
\(10\) −1.73086 0.999310i −0.547345 0.316010i
\(11\) −3.08472 3.08472i −0.930078 0.930078i 0.0676326 0.997710i \(-0.478455\pi\)
−0.997710 + 0.0676326i \(0.978455\pi\)
\(12\) 0 0
\(13\) 1.90819 3.05922i 0.529236 0.848475i
\(14\) 2.29763 + 1.32654i 0.614067 + 0.354532i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −1.21062 2.09686i −0.293619 0.508563i 0.681044 0.732243i \(-0.261526\pi\)
−0.974663 + 0.223680i \(0.928193\pi\)
\(18\) 0 0
\(19\) 1.64767 6.14918i 0.378001 1.41072i −0.470909 0.882182i \(-0.656074\pi\)
0.848910 0.528538i \(-0.177259\pi\)
\(20\) −1.93052 + 0.517281i −0.431677 + 0.115668i
\(21\) 0 0
\(22\) −4.36245 −0.930078
\(23\) 0.610766 + 1.05788i 0.127353 + 0.220583i 0.922650 0.385637i \(-0.126018\pi\)
−0.795297 + 0.606220i \(0.792685\pi\)
\(24\) 0 0
\(25\) 0.870804 0.502759i 0.174161 0.100552i
\(26\) −0.813901 3.51249i −0.159619 0.688855i
\(27\) 0 0
\(28\) 2.56267 0.686666i 0.484299 0.129768i
\(29\) 4.47591i 0.831156i −0.909557 0.415578i \(-0.863579\pi\)
0.909557 0.415578i \(-0.136421\pi\)
\(30\) 0 0
\(31\) −8.14531 + 2.18253i −1.46294 + 0.391994i −0.900505 0.434847i \(-0.856803\pi\)
−0.562437 + 0.826840i \(0.690136\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) −2.33874 0.626664i −0.401091 0.107472i
\(35\) 4.59209 2.65124i 0.776204 0.448142i
\(36\) 0 0
\(37\) 2.49571 + 9.31410i 0.410291 + 1.53123i 0.794083 + 0.607809i \(0.207951\pi\)
−0.383792 + 0.923420i \(0.625382\pi\)
\(38\) −3.18305 5.51321i −0.516359 0.894360i
\(39\) 0 0
\(40\) −0.999310 + 1.73086i −0.158005 + 0.273672i
\(41\) 6.63068 + 1.77669i 1.03554 + 0.277472i 0.736264 0.676695i \(-0.236588\pi\)
0.299275 + 0.954167i \(0.403255\pi\)
\(42\) 0 0
\(43\) −8.90622 5.14201i −1.35819 0.784149i −0.368807 0.929506i \(-0.620234\pi\)
−0.989379 + 0.145357i \(0.953567\pi\)
\(44\) −3.08472 + 3.08472i −0.465039 + 0.465039i
\(45\) 0 0
\(46\) 1.17991 + 0.316156i 0.173968 + 0.0466146i
\(47\) −1.40065 + 5.22728i −0.204305 + 0.762477i 0.785355 + 0.619046i \(0.212480\pi\)
−0.989660 + 0.143432i \(0.954186\pi\)
\(48\) 0 0
\(49\) −0.0335972 + 0.0193974i −0.00479961 + 0.00277105i
\(50\) 0.260247 0.971255i 0.0368045 0.137356i
\(51\) 0 0
\(52\) −3.05922 1.90819i −0.424237 0.264618i
\(53\) 0.142416i 0.0195624i 0.999952 + 0.00978119i \(0.00311350\pi\)
−0.999952 + 0.00978119i \(0.996887\pi\)
\(54\) 0 0
\(55\) −4.35944 + 7.55077i −0.587827 + 1.01815i
\(56\) 1.32654 2.29763i 0.177266 0.307034i
\(57\) 0 0
\(58\) −3.16495 3.16495i −0.415578 0.415578i
\(59\) 2.84098 + 2.84098i 0.369865 + 0.369865i 0.867428 0.497563i \(-0.165772\pi\)
−0.497563 + 0.867428i \(0.665772\pi\)
\(60\) 0 0
\(61\) 5.02738 8.70767i 0.643689 1.11490i −0.340913 0.940095i \(-0.610736\pi\)
0.984603 0.174808i \(-0.0559305\pi\)
\(62\) −4.21632 + 7.30289i −0.535474 + 0.927467i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −6.89295 2.10132i −0.854965 0.260636i
\(66\) 0 0
\(67\) 0.654683 2.44331i 0.0799823 0.298498i −0.914335 0.404960i \(-0.867286\pi\)
0.994317 + 0.106462i \(0.0339522\pi\)
\(68\) −2.09686 + 1.21062i −0.254281 + 0.146809i
\(69\) 0 0
\(70\) 1.37238 5.12181i 0.164031 0.612173i
\(71\) 7.11876 + 1.90747i 0.844841 + 0.226375i 0.655178 0.755475i \(-0.272594\pi\)
0.189663 + 0.981849i \(0.439260\pi\)
\(72\) 0 0
\(73\) −4.15800 + 4.15800i −0.486657 + 0.486657i −0.907250 0.420592i \(-0.861822\pi\)
0.420592 + 0.907250i \(0.361822\pi\)
\(74\) 8.35079 + 4.82133i 0.970760 + 0.560469i
\(75\) 0 0
\(76\) −6.14918 1.64767i −0.705360 0.189001i
\(77\) 5.78695 10.0233i 0.659484 1.14226i
\(78\) 0 0
\(79\) −0.161842 0.280319i −0.0182087 0.0315383i 0.856777 0.515686i \(-0.172463\pi\)
−0.874986 + 0.484148i \(0.839130\pi\)
\(80\) 0.517281 + 1.93052i 0.0578338 + 0.215839i
\(81\) 0 0
\(82\) 5.94491 3.43230i 0.656505 0.379034i
\(83\) 3.79971 + 1.01813i 0.417072 + 0.111754i 0.461252 0.887269i \(-0.347401\pi\)
−0.0441792 + 0.999024i \(0.514067\pi\)
\(84\) 0 0
\(85\) −3.42179 + 3.42179i −0.371145 + 0.371145i
\(86\) −9.93360 + 2.66170i −1.07117 + 0.287018i
\(87\) 0 0
\(88\) 4.36245i 0.465039i
\(89\) 14.2994 3.83151i 1.51573 0.406140i 0.597399 0.801944i \(-0.296201\pi\)
0.918335 + 0.395805i \(0.129534\pi\)
\(90\) 0 0
\(91\) 9.15006 + 2.78940i 0.959187 + 0.292408i
\(92\) 1.05788 0.610766i 0.110291 0.0636767i
\(93\) 0 0
\(94\) 2.70584 + 4.68665i 0.279086 + 0.483391i
\(95\) −12.7234 −1.30540
\(96\) 0 0
\(97\) 8.47838 2.27178i 0.860849 0.230664i 0.198723 0.980056i \(-0.436321\pi\)
0.662127 + 0.749392i \(0.269654\pi\)
\(98\) −0.0100408 + 0.0374729i −0.00101428 + 0.00378533i
\(99\) 0 0
\(100\) −0.502759 0.870804i −0.0502759 0.0870804i
\(101\) 3.53374 0.351620 0.175810 0.984424i \(-0.443746\pi\)
0.175810 + 0.984424i \(0.443746\pi\)
\(102\) 0 0
\(103\) 12.1415 + 7.00991i 1.19634 + 0.690707i 0.959737 0.280899i \(-0.0906326\pi\)
0.236603 + 0.971606i \(0.423966\pi\)
\(104\) −3.51249 + 0.813901i −0.344428 + 0.0798096i
\(105\) 0 0
\(106\) 0.100703 + 0.100703i 0.00978119 + 0.00978119i
\(107\) 8.57787 + 4.95244i 0.829254 + 0.478770i 0.853597 0.520933i \(-0.174416\pi\)
−0.0243429 + 0.999704i \(0.507749\pi\)
\(108\) 0 0
\(109\) 5.54653 + 5.54653i 0.531261 + 0.531261i 0.920948 0.389687i \(-0.127417\pi\)
−0.389687 + 0.920948i \(0.627417\pi\)
\(110\) 2.25661 + 8.42179i 0.215160 + 0.802987i
\(111\) 0 0
\(112\) −0.686666 2.56267i −0.0648838 0.242150i
\(113\) 13.4714i 1.26728i 0.773628 + 0.633640i \(0.218440\pi\)
−0.773628 + 0.633640i \(0.781560\pi\)
\(114\) 0 0
\(115\) 1.72631 1.72631i 0.160980 0.160980i
\(116\) −4.47591 −0.415578
\(117\) 0 0
\(118\) 4.01776 0.369865
\(119\) 4.54226 4.54226i 0.416389 0.416389i
\(120\) 0 0
\(121\) 8.03098i 0.730089i
\(122\) −2.60236 9.71214i −0.235607 0.879296i
\(123\) 0 0
\(124\) 2.18253 + 8.14531i 0.195997 + 0.731471i
\(125\) −8.48722 8.48722i −0.759120 0.759120i
\(126\) 0 0
\(127\) −2.38546 1.37724i −0.211675 0.122211i 0.390415 0.920639i \(-0.372332\pi\)
−0.602090 + 0.798429i \(0.705665\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) −6.35991 + 3.38819i −0.557801 + 0.297164i
\(131\) 0.591828 + 0.341692i 0.0517083 + 0.0298538i 0.525631 0.850713i \(-0.323829\pi\)
−0.473923 + 0.880566i \(0.657163\pi\)
\(132\) 0 0
\(133\) 16.8897 1.46453
\(134\) −1.26475 2.19061i −0.109258 0.189240i
\(135\) 0 0
\(136\) −0.626664 + 2.33874i −0.0537360 + 0.200545i
\(137\) −21.7576 + 5.82993i −1.85888 + 0.498085i −0.999903 0.0139339i \(-0.995565\pi\)
−0.858974 + 0.512019i \(0.828898\pi\)
\(138\) 0 0
\(139\) −19.5490 −1.65812 −0.829062 0.559157i \(-0.811125\pi\)
−0.829062 + 0.559157i \(0.811125\pi\)
\(140\) −2.65124 4.59209i −0.224071 0.388102i
\(141\) 0 0
\(142\) 6.38250 3.68494i 0.535608 0.309233i
\(143\) −15.3231 + 3.55060i −1.28138 + 0.296916i
\(144\) 0 0
\(145\) −8.64084 + 2.31531i −0.717582 + 0.192276i
\(146\) 5.88030i 0.486657i
\(147\) 0 0
\(148\) 9.31410 2.49571i 0.765614 0.205146i
\(149\) −3.47487 + 3.47487i −0.284672 + 0.284672i −0.834969 0.550297i \(-0.814515\pi\)
0.550297 + 0.834969i \(0.314515\pi\)
\(150\) 0 0
\(151\) −3.87030 1.03704i −0.314961 0.0843934i 0.0978758 0.995199i \(-0.468795\pi\)
−0.412836 + 0.910805i \(0.635462\pi\)
\(152\) −5.51321 + 3.18305i −0.447180 + 0.258180i
\(153\) 0 0
\(154\) −2.99555 11.1795i −0.241388 0.900872i
\(155\) 8.42683 + 14.5957i 0.676859 + 1.17235i
\(156\) 0 0
\(157\) 0.0374157 0.0648059i 0.00298610 0.00517207i −0.864528 0.502584i \(-0.832383\pi\)
0.867515 + 0.497412i \(0.165716\pi\)
\(158\) −0.312655 0.0837756i −0.0248735 0.00666483i
\(159\) 0 0
\(160\) 1.73086 + 0.999310i 0.136836 + 0.0790024i
\(161\) −2.29160 + 2.29160i −0.180603 + 0.180603i
\(162\) 0 0
\(163\) 18.0329 + 4.83191i 1.41245 + 0.378464i 0.882798 0.469752i \(-0.155657\pi\)
0.529649 + 0.848217i \(0.322324\pi\)
\(164\) 1.77669 6.63068i 0.138736 0.517769i
\(165\) 0 0
\(166\) 3.40673 1.96687i 0.264413 0.152659i
\(167\) −4.71072 + 17.5806i −0.364526 + 1.36043i 0.503535 + 0.863975i \(0.332032\pi\)
−0.868062 + 0.496456i \(0.834634\pi\)
\(168\) 0 0
\(169\) −5.71764 11.6751i −0.439818 0.898087i
\(170\) 4.83914i 0.371145i
\(171\) 0 0
\(172\) −5.14201 + 8.90622i −0.392075 + 0.679093i
\(173\) 2.19773 3.80657i 0.167090 0.289408i −0.770305 0.637675i \(-0.779896\pi\)
0.937396 + 0.348267i \(0.113230\pi\)
\(174\) 0 0
\(175\) 1.88636 + 1.88636i 0.142595 + 0.142595i
\(176\) 3.08472 + 3.08472i 0.232519 + 0.232519i
\(177\) 0 0
\(178\) 7.40192 12.8205i 0.554797 0.960937i
\(179\) 5.44340 9.42824i 0.406859 0.704700i −0.587677 0.809095i \(-0.699958\pi\)
0.994536 + 0.104396i \(0.0332909\pi\)
\(180\) 0 0
\(181\) 3.13809i 0.233253i −0.993176 0.116626i \(-0.962792\pi\)
0.993176 0.116626i \(-0.0372080\pi\)
\(182\) 8.44247 4.49767i 0.625798 0.333389i
\(183\) 0 0
\(184\) 0.316156 1.17991i 0.0233073 0.0869840i
\(185\) 16.6901 9.63601i 1.22708 0.708454i
\(186\) 0 0
\(187\) −2.73379 + 10.2026i −0.199914 + 0.746091i
\(188\) 5.22728 + 1.40065i 0.381239 + 0.102153i
\(189\) 0 0
\(190\) −8.99682 + 8.99682i −0.652698 + 0.652698i
\(191\) 14.4072 + 8.31799i 1.04247 + 0.601869i 0.920531 0.390669i \(-0.127756\pi\)
0.121936 + 0.992538i \(0.461090\pi\)
\(192\) 0 0
\(193\) 14.7796 + 3.96019i 1.06386 + 0.285060i 0.747968 0.663735i \(-0.231030\pi\)
0.315892 + 0.948795i \(0.397696\pi\)
\(194\) 4.38873 7.60151i 0.315093 0.545757i
\(195\) 0 0
\(196\) 0.0193974 + 0.0335972i 0.00138553 + 0.00239980i
\(197\) −5.36725 20.0309i −0.382401 1.42714i −0.842223 0.539129i \(-0.818753\pi\)
0.459822 0.888011i \(-0.347913\pi\)
\(198\) 0 0
\(199\) 5.37244 3.10178i 0.380842 0.219879i −0.297342 0.954771i \(-0.596100\pi\)
0.678185 + 0.734892i \(0.262767\pi\)
\(200\) −0.971255 0.260247i −0.0686781 0.0184022i
\(201\) 0 0
\(202\) 2.49873 2.49873i 0.175810 0.175810i
\(203\) 11.4703 3.07346i 0.805057 0.215714i
\(204\) 0 0
\(205\) 13.7197i 0.958226i
\(206\) 13.5421 3.62860i 0.943524 0.252816i
\(207\) 0 0
\(208\) −1.90819 + 3.05922i −0.132309 + 0.212119i
\(209\) −24.0511 + 13.8859i −1.66365 + 0.960508i
\(210\) 0 0
\(211\) 4.22550 + 7.31878i 0.290895 + 0.503845i 0.974022 0.226455i \(-0.0727136\pi\)
−0.683126 + 0.730300i \(0.739380\pi\)
\(212\) 0.142416 0.00978119
\(213\) 0 0
\(214\) 9.56738 2.56357i 0.654012 0.175242i
\(215\) −5.31973 + 19.8535i −0.362802 + 1.35400i
\(216\) 0 0
\(217\) −11.1862 19.3751i −0.759370 1.31527i
\(218\) 7.84397 0.531261
\(219\) 0 0
\(220\) 7.55077 + 4.35944i 0.509073 + 0.293913i
\(221\) −8.72484 0.297644i −0.586896 0.0200217i
\(222\) 0 0
\(223\) 7.78077 + 7.78077i 0.521039 + 0.521039i 0.917885 0.396846i \(-0.129895\pi\)
−0.396846 + 0.917885i \(0.629895\pi\)
\(224\) −2.29763 1.32654i −0.153517 0.0886329i
\(225\) 0 0
\(226\) 9.52570 + 9.52570i 0.633640 + 0.633640i
\(227\) 2.04965 + 7.64941i 0.136040 + 0.507709i 0.999991 + 0.00413376i \(0.00131582\pi\)
−0.863951 + 0.503576i \(0.832018\pi\)
\(228\) 0 0
\(229\) 0.377414 + 1.40853i 0.0249402 + 0.0930780i 0.977274 0.211979i \(-0.0679910\pi\)
−0.952334 + 0.305057i \(0.901324\pi\)
\(230\) 2.44138i 0.160980i
\(231\) 0 0
\(232\) −3.16495 + 3.16495i −0.207789 + 0.207789i
\(233\) −4.39305 −0.287799 −0.143899 0.989592i \(-0.545964\pi\)
−0.143899 + 0.989592i \(0.545964\pi\)
\(234\) 0 0
\(235\) 10.8159 0.705551
\(236\) 2.84098 2.84098i 0.184932 0.184932i
\(237\) 0 0
\(238\) 6.42373i 0.416389i
\(239\) 2.40851 + 8.98867i 0.155793 + 0.581429i 0.999036 + 0.0438958i \(0.0139770\pi\)
−0.843243 + 0.537533i \(0.819356\pi\)
\(240\) 0 0
\(241\) 0.431507 + 1.61040i 0.0277958 + 0.103735i 0.978430 0.206578i \(-0.0662327\pi\)
−0.950634 + 0.310313i \(0.899566\pi\)
\(242\) 5.67876 + 5.67876i 0.365044 + 0.365044i
\(243\) 0 0
\(244\) −8.70767 5.02738i −0.557451 0.321845i
\(245\) 0.0548262 + 0.0548262i 0.00350272 + 0.00350272i
\(246\) 0 0
\(247\) −15.6676 16.7744i −0.996908 1.06733i
\(248\) 7.30289 + 4.21632i 0.463734 + 0.267737i
\(249\) 0 0
\(250\) −12.0027 −0.759120
\(251\) −3.88661 6.73180i −0.245321 0.424908i 0.716901 0.697175i \(-0.245560\pi\)
−0.962222 + 0.272267i \(0.912227\pi\)
\(252\) 0 0
\(253\) 1.37921 5.14729i 0.0867104 0.323608i
\(254\) −2.66063 + 0.712914i −0.166943 + 0.0447322i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −12.8935 22.3322i −0.804274 1.39304i −0.916780 0.399392i \(-0.869221\pi\)
0.112507 0.993651i \(-0.464112\pi\)
\(258\) 0 0
\(259\) −22.1553 + 12.7913i −1.37666 + 0.794816i
\(260\) −2.10132 + 6.89295i −0.130318 + 0.427483i
\(261\) 0 0
\(262\) 0.660098 0.176873i 0.0407810 0.0109272i
\(263\) 26.7629i 1.65027i −0.564934 0.825136i \(-0.691098\pi\)
0.564934 0.825136i \(-0.308902\pi\)
\(264\) 0 0
\(265\) 0.274937 0.0736692i 0.0168893 0.00452546i
\(266\) 11.9428 11.9428i 0.732263 0.732263i
\(267\) 0 0
\(268\) −2.44331 0.654683i −0.149249 0.0399911i
\(269\) 17.6997 10.2189i 1.07917 0.623058i 0.148496 0.988913i \(-0.452557\pi\)
0.930672 + 0.365855i \(0.119223\pi\)
\(270\) 0 0
\(271\) −5.01971 18.7338i −0.304926 1.13800i −0.933009 0.359853i \(-0.882827\pi\)
0.628083 0.778146i \(-0.283840\pi\)
\(272\) 1.21062 + 2.09686i 0.0734047 + 0.127141i
\(273\) 0 0
\(274\) −11.2626 + 19.5073i −0.680396 + 1.17848i
\(275\) −4.23705 1.13531i −0.255504 0.0684621i
\(276\) 0 0
\(277\) −9.25169 5.34146i −0.555880 0.320937i 0.195610 0.980682i \(-0.437331\pi\)
−0.751490 + 0.659744i \(0.770665\pi\)
\(278\) −13.8232 + 13.8232i −0.829062 + 0.829062i
\(279\) 0 0
\(280\) −5.12181 1.37238i −0.306087 0.0820156i
\(281\) 5.89140 21.9870i 0.351451 1.31163i −0.533440 0.845838i \(-0.679101\pi\)
0.884892 0.465797i \(-0.154232\pi\)
\(282\) 0 0
\(283\) 0.440515 0.254332i 0.0261859 0.0151184i −0.486850 0.873486i \(-0.661854\pi\)
0.513036 + 0.858367i \(0.328521\pi\)
\(284\) 1.90747 7.11876i 0.113187 0.422421i
\(285\) 0 0
\(286\) −8.32438 + 13.3457i −0.492231 + 0.789147i
\(287\) 18.2123i 1.07504i
\(288\) 0 0
\(289\) 5.56879 9.64543i 0.327576 0.567378i
\(290\) −4.47283 + 7.74716i −0.262653 + 0.454929i
\(291\) 0 0
\(292\) 4.15800 + 4.15800i 0.243329 + 0.243329i
\(293\) 15.1811 + 15.1811i 0.886888 + 0.886888i 0.994223 0.107335i \(-0.0342316\pi\)
−0.107335 + 0.994223i \(0.534232\pi\)
\(294\) 0 0
\(295\) 4.01499 6.95416i 0.233762 0.404887i
\(296\) 4.82133 8.35079i 0.280234 0.485380i
\(297\) 0 0
\(298\) 4.91420i 0.284672i
\(299\) 4.40173 + 0.150163i 0.254559 + 0.00868415i
\(300\) 0 0
\(301\) 7.06168 26.3546i 0.407029 1.51905i
\(302\) −3.47002 + 2.00341i −0.199677 + 0.115284i
\(303\) 0 0
\(304\) −1.64767 + 6.14918i −0.0945003 + 0.352680i
\(305\) −19.4109 5.20113i −1.11146 0.297816i
\(306\) 0 0
\(307\) −16.9627 + 16.9627i −0.968112 + 0.968112i −0.999507 0.0313952i \(-0.990005\pi\)
0.0313952 + 0.999507i \(0.490005\pi\)
\(308\) −10.0233 5.78695i −0.571130 0.329742i
\(309\) 0 0
\(310\) 16.2794 + 4.36205i 0.924607 + 0.247748i
\(311\) −16.5307 + 28.6320i −0.937370 + 1.62357i −0.167017 + 0.985954i \(0.553413\pi\)
−0.770353 + 0.637618i \(0.779920\pi\)
\(312\) 0 0
\(313\) 7.32210 + 12.6823i 0.413870 + 0.716843i 0.995309 0.0967464i \(-0.0308436\pi\)
−0.581439 + 0.813590i \(0.697510\pi\)
\(314\) −0.0193678 0.0722816i −0.00109299 0.00407908i
\(315\) 0 0
\(316\) −0.280319 + 0.161842i −0.0157692 + 0.00910433i
\(317\) 1.34890 + 0.361436i 0.0757616 + 0.0203003i 0.296501 0.955033i \(-0.404180\pi\)
−0.220739 + 0.975333i \(0.570847\pi\)
\(318\) 0 0
\(319\) −13.8069 + 13.8069i −0.773040 + 0.773040i
\(320\) 1.93052 0.517281i 0.107919 0.0289169i
\(321\) 0 0
\(322\) 3.24081i 0.180603i
\(323\) −14.8887 + 3.98941i −0.828427 + 0.221976i
\(324\) 0 0
\(325\) 0.123608 3.62334i 0.00685656 0.200987i
\(326\) 16.1679 9.33453i 0.895456 0.516992i
\(327\) 0 0
\(328\) −3.43230 5.94491i −0.189517 0.328253i
\(329\) −14.3576 −0.791559
\(330\) 0 0
\(331\) −16.9267 + 4.53549i −0.930374 + 0.249293i −0.692014 0.721884i \(-0.743276\pi\)
−0.238360 + 0.971177i \(0.576610\pi\)
\(332\) 1.01813 3.79971i 0.0558771 0.208536i
\(333\) 0 0
\(334\) 9.10041 + 15.7624i 0.497952 + 0.862479i
\(335\) −5.05551 −0.276212
\(336\) 0 0
\(337\) −22.3033 12.8768i −1.21494 0.701445i −0.251108 0.967959i \(-0.580795\pi\)
−0.963831 + 0.266514i \(0.914128\pi\)
\(338\) −12.2985 4.21258i −0.668953 0.229134i
\(339\) 0 0
\(340\) 3.42179 + 3.42179i 0.185573 + 0.185573i
\(341\) 31.8585 + 18.3935i 1.72523 + 0.996064i
\(342\) 0 0
\(343\) 13.0593 + 13.0593i 0.705134 + 0.705134i
\(344\) 2.66170 + 9.93360i 0.143509 + 0.535584i
\(345\) 0 0
\(346\) −1.13763 4.24568i −0.0611592 0.228249i
\(347\) 22.4935i 1.20752i −0.797168 0.603758i \(-0.793669\pi\)
0.797168 0.603758i \(-0.206331\pi\)
\(348\) 0 0
\(349\) −11.7660 + 11.7660i −0.629819 + 0.629819i −0.948022 0.318204i \(-0.896920\pi\)
0.318204 + 0.948022i \(0.396920\pi\)
\(350\) 2.66771 0.142595
\(351\) 0 0
\(352\) 4.36245 0.232519
\(353\) −23.7758 + 23.7758i −1.26546 + 1.26546i −0.317049 + 0.948409i \(0.602692\pi\)
−0.948409 + 0.317049i \(0.897308\pi\)
\(354\) 0 0
\(355\) 14.7296i 0.781766i
\(356\) −3.83151 14.2994i −0.203070 0.757867i
\(357\) 0 0
\(358\) −2.81771 10.5158i −0.148921 0.555779i
\(359\) −18.7010 18.7010i −0.987001 0.987001i 0.0129158 0.999917i \(-0.495889\pi\)
−0.999917 + 0.0129158i \(0.995889\pi\)
\(360\) 0 0
\(361\) −18.6432 10.7636i −0.981220 0.566507i
\(362\) −2.21897 2.21897i −0.116626 0.116626i
\(363\) 0 0
\(364\) 2.78940 9.15006i 0.146204 0.479593i
\(365\) 10.1780 + 5.87625i 0.532739 + 0.307577i
\(366\) 0 0
\(367\) 35.0360 1.82886 0.914432 0.404739i \(-0.132638\pi\)
0.914432 + 0.404739i \(0.132638\pi\)
\(368\) −0.610766 1.05788i −0.0318384 0.0551457i
\(369\) 0 0
\(370\) 4.98797 18.6153i 0.259312 0.967766i
\(371\) −0.364966 + 0.0977923i −0.0189481 + 0.00507713i
\(372\) 0 0
\(373\) 6.34158 0.328355 0.164177 0.986431i \(-0.447503\pi\)
0.164177 + 0.986431i \(0.447503\pi\)
\(374\) 5.28127 + 9.14744i 0.273088 + 0.473003i
\(375\) 0 0
\(376\) 4.68665 2.70584i 0.241696 0.139543i
\(377\) −13.6928 8.54089i −0.705215 0.439878i
\(378\) 0 0
\(379\) −33.0310 + 8.85063i −1.69669 + 0.454626i −0.972102 0.234557i \(-0.924636\pi\)
−0.724587 + 0.689184i \(0.757969\pi\)
\(380\) 12.7234i 0.652698i
\(381\) 0 0
\(382\) 16.0691 4.30571i 0.822168 0.220299i
\(383\) 11.8444 11.8444i 0.605221 0.605221i −0.336473 0.941693i \(-0.609234\pi\)
0.941693 + 0.336473i \(0.109234\pi\)
\(384\) 0 0
\(385\) −22.3436 5.98696i −1.13874 0.305124i
\(386\) 13.2510 7.65049i 0.674460 0.389400i
\(387\) 0 0
\(388\) −2.27178 8.47838i −0.115332 0.430425i
\(389\) −5.63377 9.75798i −0.285644 0.494749i 0.687121 0.726543i \(-0.258874\pi\)
−0.972765 + 0.231793i \(0.925541\pi\)
\(390\) 0 0
\(391\) 1.47881 2.56138i 0.0747867 0.129534i
\(392\) 0.0374729 + 0.0100408i 0.00189267 + 0.000507138i
\(393\) 0 0
\(394\) −17.9592 10.3687i −0.904771 0.522370i
\(395\) −0.457443 + 0.457443i −0.0230164 + 0.0230164i
\(396\) 0 0
\(397\) 5.64532 + 1.51266i 0.283331 + 0.0759182i 0.397686 0.917522i \(-0.369813\pi\)
−0.114355 + 0.993440i \(0.536480\pi\)
\(398\) 1.60560 5.99218i 0.0804814 0.300361i
\(399\) 0 0
\(400\) −0.870804 + 0.502759i −0.0435402 + 0.0251379i
\(401\) 7.17726 26.7859i 0.358415 1.33762i −0.517717 0.855552i \(-0.673218\pi\)
0.876132 0.482071i \(-0.160115\pi\)
\(402\) 0 0
\(403\) −8.86595 + 29.0830i −0.441644 + 1.44873i
\(404\) 3.53374i 0.175810i
\(405\) 0 0
\(406\) 5.93746 10.2840i 0.294671 0.510386i
\(407\) 21.0328 36.4299i 1.04256 1.80576i
\(408\) 0 0
\(409\) 2.88906 + 2.88906i 0.142855 + 0.142855i 0.774917 0.632062i \(-0.217791\pi\)
−0.632062 + 0.774917i \(0.717791\pi\)
\(410\) −9.70130 9.70130i −0.479113 0.479113i
\(411\) 0 0
\(412\) 7.00991 12.1415i 0.345354 0.598170i
\(413\) −5.32970 + 9.23132i −0.262258 + 0.454243i
\(414\) 0 0
\(415\) 7.86207i 0.385934i
\(416\) 0.813901 + 3.51249i 0.0399048 + 0.172214i
\(417\) 0 0
\(418\) −7.18788 + 26.8255i −0.351570 + 1.31208i
\(419\) −15.9626 + 9.21604i −0.779826 + 0.450233i −0.836369 0.548167i \(-0.815326\pi\)
0.0565426 + 0.998400i \(0.481992\pi\)
\(420\) 0 0
\(421\) −8.34557 + 31.1461i −0.406738 + 1.51797i 0.394090 + 0.919072i \(0.371060\pi\)
−0.800828 + 0.598895i \(0.795607\pi\)
\(422\) 8.16303 + 2.18728i 0.397370 + 0.106475i
\(423\) 0 0
\(424\) 0.100703 0.100703i 0.00489059 0.00489059i
\(425\) −2.10843 1.21730i −0.102274 0.0590477i
\(426\) 0 0
\(427\) 25.7670 + 6.90425i 1.24695 + 0.334120i
\(428\) 4.95244 8.57787i 0.239385 0.414627i
\(429\) 0 0
\(430\) 10.2769 + 17.8002i 0.495597 + 0.858400i
\(431\) 3.39947 + 12.6870i 0.163747 + 0.611112i 0.998197 + 0.0600279i \(0.0191190\pi\)
−0.834450 + 0.551084i \(0.814214\pi\)
\(432\) 0 0
\(433\) 4.72346 2.72709i 0.226995 0.131056i −0.382190 0.924084i \(-0.624830\pi\)
0.609185 + 0.793028i \(0.291497\pi\)
\(434\) −21.6101 5.79041i −1.03732 0.277949i
\(435\) 0 0
\(436\) 5.54653 5.54653i 0.265630 0.265630i
\(437\) 7.51142 2.01268i 0.359320 0.0962795i
\(438\) 0 0
\(439\) 3.02367i 0.144312i 0.997393 + 0.0721559i \(0.0229879\pi\)
−0.997393 + 0.0721559i \(0.977012\pi\)
\(440\) 8.42179 2.25661i 0.401493 0.107580i
\(441\) 0 0
\(442\) −6.37986 + 5.95893i −0.303459 + 0.283437i
\(443\) 3.45678 1.99577i 0.164237 0.0948221i −0.415629 0.909534i \(-0.636438\pi\)
0.579865 + 0.814712i \(0.303105\pi\)
\(444\) 0 0
\(445\) −14.7936 25.6233i −0.701285 1.21466i
\(446\) 11.0037 0.521039
\(447\) 0 0
\(448\) −2.56267 + 0.686666i −0.121075 + 0.0324419i
\(449\) 3.46480 12.9308i 0.163514 0.610242i −0.834711 0.550688i \(-0.814365\pi\)
0.998225 0.0595540i \(-0.0189679\pi\)
\(450\) 0 0
\(451\) −14.9732 25.9344i −0.705061 1.22120i
\(452\) 13.4714 0.633640
\(453\) 0 0
\(454\) 6.85828 + 3.95963i 0.321875 + 0.185835i
\(455\) 0.651835 19.1073i 0.0305585 0.895762i
\(456\) 0 0
\(457\) 0.947210 + 0.947210i 0.0443086 + 0.0443086i 0.728914 0.684605i \(-0.240025\pi\)
−0.684605 + 0.728914i \(0.740025\pi\)
\(458\) 1.26285 + 0.729107i 0.0590091 + 0.0340689i
\(459\) 0 0
\(460\) −1.72631 1.72631i −0.0804898 0.0804898i
\(461\) 1.31243 + 4.89805i 0.0611260 + 0.228125i 0.989731 0.142946i \(-0.0456574\pi\)
−0.928605 + 0.371071i \(0.878991\pi\)
\(462\) 0 0
\(463\) −2.00276 7.47439i −0.0930760 0.347364i 0.903645 0.428283i \(-0.140881\pi\)
−0.996721 + 0.0809185i \(0.974215\pi\)
\(464\) 4.47591i 0.207789i
\(465\) 0 0
\(466\) −3.10636 + 3.10636i −0.143899 + 0.143899i
\(467\) −10.4397 −0.483093 −0.241546 0.970389i \(-0.577655\pi\)
−0.241546 + 0.970389i \(0.577655\pi\)
\(468\) 0 0
\(469\) 6.71095 0.309883
\(470\) 7.64799 7.64799i 0.352776 0.352776i
\(471\) 0 0
\(472\) 4.01776i 0.184932i
\(473\) 11.6115 + 43.3348i 0.533899 + 1.99254i
\(474\) 0 0
\(475\) −1.65676 6.18311i −0.0760174 0.283701i
\(476\) −4.54226 4.54226i −0.208194 0.208194i
\(477\) 0 0
\(478\) 8.05902 + 4.65288i 0.368611 + 0.212818i
\(479\) −4.68529 4.68529i −0.214076 0.214076i 0.591920 0.805996i \(-0.298370\pi\)
−0.805996 + 0.591920i \(0.798370\pi\)
\(480\) 0 0
\(481\) 33.2561 + 10.1381i 1.51635 + 0.462260i
\(482\) 1.44385 + 0.833607i 0.0657655 + 0.0379697i
\(483\) 0 0
\(484\) 8.03098 0.365044
\(485\) −8.77141 15.1925i −0.398289 0.689857i
\(486\) 0 0
\(487\) −4.31888 + 16.1183i −0.195707 + 0.730390i 0.796375 + 0.604803i \(0.206748\pi\)
−0.992083 + 0.125587i \(0.959919\pi\)
\(488\) −9.71214 + 2.60236i −0.439648 + 0.117803i
\(489\) 0 0
\(490\) 0.0775360 0.00350272
\(491\) 7.68585 + 13.3123i 0.346858 + 0.600775i 0.985689 0.168571i \(-0.0539154\pi\)
−0.638832 + 0.769346i \(0.720582\pi\)
\(492\) 0 0
\(493\) −9.38535 + 5.41864i −0.422695 + 0.244043i
\(494\) −22.9400 0.782586i −1.03212 0.0352102i
\(495\) 0 0
\(496\) 8.14531 2.18253i 0.365735 0.0979985i
\(497\) 19.5528i 0.877064i
\(498\) 0 0
\(499\) −21.5745 + 5.78088i −0.965808 + 0.258788i −0.707057 0.707157i \(-0.749978\pi\)
−0.258751 + 0.965944i \(0.583311\pi\)
\(500\) −8.48722 + 8.48722i −0.379560 + 0.379560i
\(501\) 0 0
\(502\) −7.50835 2.01186i −0.335114 0.0897936i
\(503\) 20.4381 11.8000i 0.911291 0.526134i 0.0304450 0.999536i \(-0.490308\pi\)
0.880846 + 0.473402i \(0.156974\pi\)
\(504\) 0 0
\(505\) −1.82794 6.82195i −0.0813421 0.303573i
\(506\) −2.66444 4.61494i −0.118449 0.205159i
\(507\) 0 0
\(508\) −1.37724 + 2.38546i −0.0611053 + 0.105838i
\(509\) −4.87095 1.30517i −0.215901 0.0578506i 0.149247 0.988800i \(-0.452315\pi\)
−0.365148 + 0.930949i \(0.618982\pi\)
\(510\) 0 0
\(511\) −13.5108 7.80044i −0.597680 0.345071i
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) −24.9083 6.67416i −1.09866 0.294385i
\(515\) 7.25219 27.0655i 0.319570 1.19265i
\(516\) 0 0
\(517\) 20.4453 11.8041i 0.899183 0.519144i
\(518\) −6.62129 + 24.7110i −0.290923 + 1.08574i
\(519\) 0 0
\(520\) 3.38819 + 6.35991i 0.148582 + 0.278900i
\(521\) 42.7218i 1.87168i 0.352428 + 0.935839i \(0.385356\pi\)
−0.352428 + 0.935839i \(0.614644\pi\)
\(522\) 0 0
\(523\) 5.91448 10.2442i 0.258622 0.447946i −0.707251 0.706962i \(-0.750065\pi\)
0.965873 + 0.259016i \(0.0833983\pi\)
\(524\) 0.341692 0.591828i 0.0149269 0.0258541i
\(525\) 0 0
\(526\) −18.9242 18.9242i −0.825136 0.825136i
\(527\) 14.4373 + 14.4373i 0.628900 + 0.628900i
\(528\) 0 0
\(529\) 10.7539 18.6264i 0.467562 0.809841i
\(530\) 0.142318 0.246502i 0.00618190 0.0107074i
\(531\) 0 0
\(532\) 16.8897i 0.732263i
\(533\) 18.0879 16.8945i 0.783472 0.731780i
\(534\) 0 0
\(535\) 5.12360 19.1216i 0.221513 0.826697i
\(536\) −2.19061 + 1.26475i −0.0946201 + 0.0546289i
\(537\) 0 0
\(538\) 5.28970 19.7414i 0.228055 0.851113i
\(539\) 0.163474 + 0.0438026i 0.00704130 + 0.00188671i
\(540\) 0 0
\(541\) −1.16137 + 1.16137i −0.0499311 + 0.0499311i −0.731631 0.681700i \(-0.761241\pi\)
0.681700 + 0.731631i \(0.261241\pi\)
\(542\) −16.7963 9.69734i −0.721463 0.416537i
\(543\) 0 0
\(544\) 2.33874 + 0.626664i 0.100273 + 0.0268680i
\(545\) 7.83856 13.5768i 0.335767 0.581566i
\(546\) 0 0
\(547\) 0.539713 + 0.934811i 0.0230765 + 0.0399696i 0.877333 0.479882i \(-0.159321\pi\)
−0.854257 + 0.519852i \(0.825987\pi\)
\(548\) 5.82993 + 21.7576i 0.249042 + 0.929439i
\(549\) 0 0
\(550\) −3.79884 + 2.19326i −0.161983 + 0.0935209i
\(551\) −27.5232 7.37483i −1.17253 0.314178i
\(552\) 0 0
\(553\) 0.607233 0.607233i 0.0258222 0.0258222i
\(554\) −10.3189 + 2.76495i −0.438409 + 0.117471i
\(555\) 0 0
\(556\) 19.5490i 0.829062i
\(557\) 22.0126 5.89827i 0.932705 0.249918i 0.239697 0.970848i \(-0.422952\pi\)
0.693008 + 0.720930i \(0.256285\pi\)
\(558\) 0 0
\(559\) −32.7253 + 17.4342i −1.38413 + 0.737386i
\(560\) −4.59209 + 2.65124i −0.194051 + 0.112035i
\(561\) 0 0
\(562\) −11.3813 19.7130i −0.480092 0.831543i
\(563\) 12.7743 0.538373 0.269186 0.963088i \(-0.413245\pi\)
0.269186 + 0.963088i \(0.413245\pi\)
\(564\) 0 0
\(565\) 26.0067 6.96849i 1.09411 0.293166i
\(566\) 0.131652 0.491331i 0.00553374 0.0206522i
\(567\) 0 0
\(568\) −3.68494 6.38250i −0.154617 0.267804i
\(569\) 3.87917 0.162623 0.0813117 0.996689i \(-0.474089\pi\)
0.0813117 + 0.996689i \(0.474089\pi\)
\(570\) 0 0
\(571\) −4.28302 2.47280i −0.179239 0.103483i 0.407696 0.913118i \(-0.366332\pi\)
−0.586935 + 0.809634i \(0.699666\pi\)
\(572\) 3.55060 + 15.3231i 0.148458 + 0.640689i
\(573\) 0 0
\(574\) 12.8780 + 12.8780i 0.537518 + 0.537518i
\(575\) 1.06371 + 0.614136i 0.0443599 + 0.0256112i
\(576\) 0 0
\(577\) −9.91809 9.91809i −0.412896 0.412896i 0.469850 0.882746i \(-0.344308\pi\)
−0.882746 + 0.469850i \(0.844308\pi\)
\(578\) −2.88262 10.7581i −0.119901 0.447477i
\(579\) 0 0
\(580\) 2.31531 + 8.64084i 0.0961378 + 0.358791i
\(581\) 10.4365i 0.432980i
\(582\) 0 0
\(583\) 0.439314 0.439314i 0.0181945 0.0181945i
\(584\) 5.88030 0.243329
\(585\) 0 0
\(586\) 21.4693 0.886888
\(587\) −28.9809 + 28.9809i −1.19617 + 1.19617i −0.220863 + 0.975305i \(0.570887\pi\)
−0.975305 + 0.220863i \(0.929113\pi\)
\(588\) 0 0
\(589\) 53.6831i 2.21197i
\(590\) −2.07831 7.75636i −0.0855627 0.319324i
\(591\) 0 0
\(592\) −2.49571 9.31410i −0.102573 0.382807i
\(593\) 5.71700 + 5.71700i 0.234769 + 0.234769i 0.814680 0.579911i \(-0.196913\pi\)
−0.579911 + 0.814680i \(0.696913\pi\)
\(594\) 0 0
\(595\) −11.1186 6.41930i −0.455816 0.263166i
\(596\) 3.47487 + 3.47487i 0.142336 + 0.142336i
\(597\) 0 0
\(598\) 3.21868 3.00631i 0.131621 0.122937i
\(599\) −33.2498 19.1968i −1.35855 0.784359i −0.369121 0.929381i \(-0.620341\pi\)
−0.989428 + 0.145022i \(0.953675\pi\)
\(600\) 0 0
\(601\) 20.9115 0.853000 0.426500 0.904488i \(-0.359746\pi\)
0.426500 + 0.904488i \(0.359746\pi\)
\(602\) −13.6421 23.6289i −0.556011 0.963040i
\(603\) 0 0
\(604\) −1.03704 + 3.87030i −0.0421967 + 0.157480i
\(605\) 15.5040 4.15427i 0.630325 0.168895i
\(606\) 0 0
\(607\) 35.0835 1.42399 0.711997 0.702182i \(-0.247791\pi\)
0.711997 + 0.702182i \(0.247791\pi\)
\(608\) 3.18305 + 5.51321i 0.129090 + 0.223590i
\(609\) 0 0
\(610\) −17.4033 + 10.0478i −0.704640 + 0.406824i
\(611\) 13.3187 + 14.2595i 0.538817 + 0.576878i
\(612\) 0 0
\(613\) 37.3103 9.99725i 1.50695 0.403785i 0.591527 0.806285i \(-0.298525\pi\)
0.915420 + 0.402500i \(0.131859\pi\)
\(614\) 23.9889i 0.968112i
\(615\) 0 0
\(616\) −11.1795 + 2.99555i −0.450436 + 0.120694i
\(617\) 5.51931 5.51931i 0.222199 0.222199i −0.587225 0.809424i \(-0.699780\pi\)
0.809424 + 0.587225i \(0.199780\pi\)
\(618\) 0 0
\(619\) 27.6086 + 7.39770i 1.10968 + 0.297339i 0.766702 0.642003i \(-0.221896\pi\)
0.342982 + 0.939342i \(0.388563\pi\)
\(620\) 14.5957 8.42683i 0.586177 0.338430i
\(621\) 0 0
\(622\) 8.55692 + 31.9348i 0.343101 + 1.28047i
\(623\) 19.6378 + 34.0137i 0.786773 + 1.36273i
\(624\) 0 0
\(625\) −9.48067 + 16.4210i −0.379227 + 0.656840i
\(626\) 14.1452 + 3.79020i 0.565356 + 0.151487i
\(627\) 0 0
\(628\) −0.0648059 0.0374157i −0.00258604 0.00149305i
\(629\) 16.5090 16.5090i 0.658256 0.658256i
\(630\) 0 0
\(631\) −2.02779 0.543345i −0.0807251 0.0216302i 0.218230 0.975897i \(-0.429972\pi\)
−0.298956 + 0.954267i \(0.596638\pi\)
\(632\) −0.0837756 + 0.312655i −0.00333242 + 0.0124367i
\(633\) 0 0
\(634\) 1.20939 0.698240i 0.0480309 0.0277307i
\(635\) −1.42484 + 5.31759i −0.0565432 + 0.211022i
\(636\) 0 0
\(637\) −0.00476905 + 0.139795i −0.000188956 + 0.00553889i
\(638\) 19.5260i 0.773040i
\(639\) 0 0
\(640\) 0.999310 1.73086i 0.0395012 0.0684181i
\(641\) −9.64616 + 16.7076i −0.381001 + 0.659912i −0.991206 0.132331i \(-0.957754\pi\)
0.610205 + 0.792244i \(0.291087\pi\)
\(642\) 0 0
\(643\) 11.7244 + 11.7244i 0.462364 + 0.462364i 0.899430 0.437066i \(-0.143982\pi\)
−0.437066 + 0.899430i \(0.643982\pi\)
\(644\) 2.29160 + 2.29160i 0.0903017 + 0.0903017i
\(645\) 0 0
\(646\) −7.70694 + 13.3488i −0.303225 + 0.525202i
\(647\) 19.1754 33.2127i 0.753861 1.30573i −0.192077 0.981380i \(-0.561522\pi\)
0.945939 0.324346i \(-0.105144\pi\)
\(648\) 0 0
\(649\) 17.5273i 0.688006i
\(650\) −2.47468 2.64949i −0.0970650 0.103922i
\(651\) 0 0
\(652\) 4.83191 18.0329i 0.189232 0.706224i
\(653\) −12.7867 + 7.38243i −0.500384 + 0.288897i −0.728872 0.684650i \(-0.759955\pi\)
0.228488 + 0.973547i \(0.426622\pi\)
\(654\) 0 0
\(655\) 0.353502 1.31929i 0.0138125 0.0515488i
\(656\) −6.63068 1.77669i −0.258885 0.0693680i
\(657\) 0 0
\(658\) −10.1523 + 10.1523i −0.395780 + 0.395780i
\(659\) −6.91954 3.99500i −0.269547 0.155623i 0.359135 0.933286i \(-0.383072\pi\)
−0.628682 + 0.777663i \(0.716405\pi\)
\(660\) 0 0
\(661\) 23.5969 + 6.32278i 0.917814 + 0.245928i 0.686651 0.726987i \(-0.259080\pi\)
0.231163 + 0.972915i \(0.425747\pi\)
\(662\) −8.76189 + 15.1760i −0.340540 + 0.589833i
\(663\) 0 0
\(664\) −1.96687 3.40673i −0.0763295 0.132207i
\(665\) −8.73674 32.6060i −0.338796 1.26440i
\(666\) 0 0
\(667\) 4.73497 2.73374i 0.183339 0.105851i
\(668\) 17.5806 + 4.71072i 0.680215 + 0.182263i
\(669\) 0 0
\(670\) −3.57479 + 3.57479i −0.138106 + 0.138106i
\(671\) −42.3687 + 11.3527i −1.63563 + 0.438265i
\(672\) 0 0
\(673\) 49.8526i 1.92168i −0.277112 0.960838i \(-0.589377\pi\)
0.277112 0.960838i \(-0.410623\pi\)
\(674\) −24.8761 + 6.66553i −0.958192 + 0.256747i
\(675\) 0 0
\(676\) −11.6751 + 5.71764i −0.449043 + 0.219909i
\(677\) −7.87586 + 4.54713i −0.302694 + 0.174760i −0.643652 0.765318i \(-0.722582\pi\)
0.340959 + 0.940078i \(0.389248\pi\)
\(678\) 0 0
\(679\) 11.6436 + 20.1674i 0.446841 + 0.773952i
\(680\) 4.83914 0.185573
\(681\) 0 0
\(682\) 35.5335 9.52118i 1.36065 0.364585i
\(683\) 7.08606 26.4455i 0.271141 1.01191i −0.687243 0.726427i \(-0.741179\pi\)
0.958384 0.285483i \(-0.0921540\pi\)
\(684\) 0 0
\(685\) 22.5096 + 38.9877i 0.860047 + 1.48965i
\(686\) 18.4686 0.705134
\(687\) 0 0
\(688\) 8.90622 + 5.14201i 0.339546 + 0.196037i
\(689\) 0.435682 + 0.271757i 0.0165982 + 0.0103531i
\(690\) 0 0
\(691\) −1.38167 1.38167i −0.0525614 0.0525614i 0.680338 0.732899i \(-0.261833\pi\)
−0.732899 + 0.680338i \(0.761833\pi\)
\(692\) −3.80657 2.19773i −0.144704 0.0835450i
\(693\) 0 0
\(694\) −15.9053 15.9053i −0.603758 0.603758i
\(695\) 10.1123 + 37.7397i 0.383582 + 1.43155i
\(696\) 0 0
\(697\) −4.30179 16.0545i −0.162942 0.608107i
\(698\) 16.6396i 0.629819i
\(699\) 0 0
\(700\) 1.88636 1.88636i 0.0712976 0.0712976i
\(701\) −8.14720 −0.307715 −0.153858 0.988093i \(-0.549170\pi\)
−0.153858 + 0.988093i \(0.549170\pi\)
\(702\) 0 0
\(703\) 61.3862 2.31522
\(704\) 3.08472 3.08472i 0.116260 0.116260i
\(705\) 0 0
\(706\) 33.6241i 1.26546i
\(707\) 2.42650 + 9.05582i 0.0912579 + 0.340579i
\(708\) 0 0
\(709\) 10.7024 + 39.9420i 0.401938 + 1.50005i 0.809634 + 0.586935i \(0.199666\pi\)
−0.407696 + 0.913118i \(0.633668\pi\)
\(710\) −10.4154 10.4154i −0.390883 0.390883i
\(711\) 0 0
\(712\) −12.8205 7.40192i −0.480468 0.277399i
\(713\) −7.28373 7.28373i −0.272778 0.272778i
\(714\) 0 0
\(715\) 14.7808 + 27.7448i 0.552772 + 1.03760i
\(716\) −9.42824 5.44340i −0.352350 0.203429i
\(717\) 0 0
\(718\) −26.4472 −0.987001
\(719\) 24.0105 + 41.5874i 0.895441 + 1.55095i 0.833258 + 0.552885i \(0.186473\pi\)
0.0621837 + 0.998065i \(0.480194\pi\)
\(720\) 0 0
\(721\) −9.62694 + 35.9282i −0.358526 + 1.33804i
\(722\) −20.7938 + 5.57167i −0.773864 + 0.207356i
\(723\) 0 0
\(724\) −3.13809 −0.116626
\(725\) −2.25030 3.89764i −0.0835742 0.144755i
\(726\) 0 0
\(727\) 6.36454 3.67457i 0.236048 0.136282i −0.377311 0.926087i \(-0.623151\pi\)
0.613359 + 0.789804i \(0.289818\pi\)
\(728\) −4.49767 8.44247i −0.166695 0.312899i
\(729\) 0 0
\(730\) 11.3520 3.04177i 0.420158 0.112581i
\(731\) 24.9001i 0.920963i
\(732\) 0 0
\(733\) −7.53620 + 2.01932i −0.278356 + 0.0745852i −0.395296 0.918554i \(-0.629358\pi\)
0.116940 + 0.993139i \(0.462691\pi\)
\(734\) 24.7742 24.7742i 0.914432 0.914432i
\(735\) 0 0
\(736\) −1.17991 0.316156i −0.0434920 0.0116537i
\(737\) −9.55644 + 5.51741i −0.352016 + 0.203237i
\(738\) 0 0
\(739\) −6.40212 23.8930i −0.235506 0.878920i −0.977920 0.208979i \(-0.932986\pi\)
0.742414 0.669941i \(-0.233681\pi\)
\(740\) −9.63601 16.6901i −0.354227 0.613539i
\(741\) 0 0
\(742\) −0.188920 + 0.327220i −0.00693548 + 0.0120126i
\(743\) −19.0656 5.10861i −0.699449 0.187417i −0.108465 0.994100i \(-0.534594\pi\)
−0.590984 + 0.806683i \(0.701260\pi\)
\(744\) 0 0
\(745\) 8.50578 + 4.91081i 0.311628 + 0.179918i
\(746\) 4.48418 4.48418i 0.164177 0.164177i
\(747\) 0 0
\(748\) 10.2026 + 2.73379i 0.373045 + 0.0999572i
\(749\) −6.80134 + 25.3829i −0.248516 + 0.927473i
\(750\) 0 0
\(751\) 9.33335 5.38861i 0.340579 0.196633i −0.319949 0.947435i \(-0.603666\pi\)
0.660528 + 0.750801i \(0.270333\pi\)
\(752\) 1.40065 5.22728i 0.0510763 0.190619i
\(753\) 0 0
\(754\) −15.7216 + 3.64295i −0.572547 + 0.132669i
\(755\) 8.00813i 0.291446i
\(756\) 0 0
\(757\) −25.3500 + 43.9076i −0.921363 + 1.59585i −0.124055 + 0.992275i \(0.539590\pi\)
−0.797308 + 0.603572i \(0.793744\pi\)
\(758\) −17.0981 + 29.6148i −0.621031 + 1.07566i
\(759\) 0 0
\(760\) 8.99682 + 8.99682i 0.326349 + 0.326349i
\(761\) 0.501543 + 0.501543i 0.0181809 + 0.0181809i 0.716139 0.697958i \(-0.245908\pi\)
−0.697958 + 0.716139i \(0.745908\pi\)
\(762\) 0 0
\(763\) −10.4053 + 18.0225i −0.376698 + 0.652460i
\(764\) 8.31799 14.4072i 0.300934 0.521234i
\(765\) 0 0
\(766\) 16.7505i 0.605221i
\(767\) 14.1123 3.27006i 0.509567 0.118075i
\(768\) 0 0
\(769\) −4.82649 + 18.0127i −0.174048 + 0.649555i 0.822664 + 0.568528i \(0.192487\pi\)
−0.996712 + 0.0810274i \(0.974180\pi\)
\(770\) −20.0328 + 11.5659i −0.721930 + 0.416807i
\(771\) 0 0
\(772\) 3.96019 14.7796i 0.142530 0.531930i
\(773\) 40.5648 + 10.8693i 1.45902 + 0.390942i 0.899150 0.437641i \(-0.144186\pi\)
0.559866 + 0.828583i \(0.310853\pi\)
\(774\) 0 0
\(775\) −5.99568 + 5.99568i −0.215371 + 0.215371i
\(776\) −7.60151 4.38873i −0.272878 0.157546i
\(777\) 0 0
\(778\) −10.8836 2.91625i −0.390196 0.104553i
\(779\) 21.8503 37.8459i 0.782870 1.35597i
\(780\) 0 0
\(781\) −16.0754 27.8434i −0.575222 0.996314i
\(782\) −0.765489 2.85684i −0.0273738 0.102161i
\(783\) 0 0
\(784\) 0.0335972 0.0193974i 0.00119990 0.000692764i
\(785\) −0.144463 0.0387088i −0.00515612 0.00138158i
\(786\) 0 0
\(787\) −5.40139 + 5.40139i −0.192539 + 0.192539i −0.796792 0.604253i \(-0.793471\pi\)
0.604253 + 0.796792i \(0.293471\pi\)
\(788\) −20.0309 + 5.36725i −0.713570 + 0.191201i
\(789\) 0 0
\(790\) 0.646922i 0.0230164i
\(791\) −34.5227 + 9.25033i −1.22749 + 0.328904i
\(792\) 0 0
\(793\) −17.0455 31.9957i −0.605303 1.13620i
\(794\) 5.06146 2.92223i 0.179624 0.103706i
\(795\) 0 0
\(796\) −3.10178 5.37244i −0.109940 0.190421i
\(797\) −9.14439 −0.323911 −0.161955 0.986798i \(-0.551780\pi\)
−0.161955 + 0.986798i \(0.551780\pi\)
\(798\) 0 0
\(799\) 12.6565 3.39130i 0.447755 0.119976i
\(800\) −0.260247 + 0.971255i −0.00920112 + 0.0343391i
\(801\) 0 0
\(802\) −13.8654 24.0156i −0.489604 0.848019i
\(803\) 25.6525 0.905258
\(804\) 0 0
\(805\) 5.60938 + 3.23858i 0.197705 + 0.114145i
\(806\) 14.2956 + 26.8339i 0.503541 + 0.945185i
\(807\) 0 0
\(808\) −2.49873 2.49873i −0.0879051 0.0879051i
\(809\) −22.1408 12.7830i −0.778428 0.449425i 0.0574451 0.998349i \(-0.481705\pi\)
−0.835873 + 0.548923i \(0.815038\pi\)
\(810\) 0 0
\(811\) 31.5345 + 31.5345i 1.10733 + 1.10733i 0.993501 + 0.113826i \(0.0363105\pi\)
0.113826 + 0.993501i \(0.463689\pi\)
\(812\) −3.07346 11.4703i −0.107857 0.402529i
\(813\) 0 0
\(814\) −10.8874 40.6323i −0.381603 1.42416i
\(815\) 37.3124i 1.30699i
\(816\) 0 0
\(817\) −46.2937 + 46.2937i −1.61961 + 1.61961i
\(818\) 4.08575 0.142855
\(819\) 0 0
\(820\) −13.7197 −0.479113
\(821\) 7.50060 7.50060i 0.261773 0.261773i −0.564001 0.825774i \(-0.690739\pi\)
0.825774 + 0.564001i \(0.190739\pi\)
\(822\) 0 0
\(823\) 21.3590i 0.744527i −0.928127 0.372263i \(-0.878582\pi\)
0.928127 0.372263i \(-0.121418\pi\)
\(824\) −3.62860 13.5421i −0.126408 0.471762i
\(825\) 0 0
\(826\) 2.75886 + 10.2962i 0.0959929 + 0.358250i
\(827\) 14.6770 + 14.6770i 0.510368 + 0.510368i 0.914639 0.404271i \(-0.132475\pi\)
−0.404271 + 0.914639i \(0.632475\pi\)
\(828\) 0 0
\(829\) 3.49885 + 2.02006i 0.121520 + 0.0701596i 0.559528 0.828812i \(-0.310982\pi\)
−0.438008 + 0.898971i \(0.644316\pi\)
\(830\) −5.55932 5.55932i −0.192967 0.192967i
\(831\) 0 0
\(832\) 3.05922 + 1.90819i 0.106059 + 0.0661545i
\(833\) 0.0813471 + 0.0469658i 0.00281851 + 0.00162727i
\(834\) 0 0
\(835\) 36.3765 1.25886
\(836\) 13.8859 + 24.0511i 0.480254 + 0.831825i
\(837\) 0 0
\(838\) −4.77057 + 17.8040i −0.164797 + 0.615029i
\(839\) 14.2816 3.82674i 0.493055 0.132114i −0.00372001 0.999993i \(-0.501184\pi\)
0.496775 + 0.867879i \(0.334517\pi\)
\(840\) 0 0
\(841\) 8.96619 0.309179
\(842\) 16.1224 + 27.9248i 0.555614 + 0.962352i
\(843\) 0 0
\(844\) 7.31878 4.22550i 0.251923 0.145448i
\(845\) −19.5814 + 17.0773i −0.673622 + 0.587478i
\(846\) 0 0
\(847\) −20.5808 + 5.51460i −0.707163 + 0.189484i
\(848\) 0.142416i 0.00489059i
\(849\) 0 0
\(850\) −2.35164 + 0.630121i −0.0806607 + 0.0216130i
\(851\) −8.32888 + 8.32888i −0.285510 + 0.285510i
\(852\) 0 0
\(853\) −27.2096 7.29079i −0.931639 0.249632i −0.239086 0.970999i \(-0.576848\pi\)
−0.692553 + 0.721367i \(0.743514\pi\)
\(854\) 23.1021 13.3380i 0.790537 0.456417i
\(855\) 0 0
\(856\) −2.56357 9.56738i −0.0876210 0.327006i
\(857\) 13.1050 + 22.6985i 0.447657 + 0.775365i 0.998233 0.0594200i \(-0.0189251\pi\)
−0.550576 + 0.834785i \(0.685592\pi\)
\(858\) 0 0
\(859\) 5.40366 9.35941i 0.184370 0.319339i −0.758994 0.651098i \(-0.774309\pi\)
0.943364 + 0.331759i \(0.107642\pi\)
\(860\) 19.8535 + 5.31973i 0.676998 + 0.181401i
\(861\) 0 0
\(862\) 11.3749 + 6.56728i 0.387429 + 0.223682i
\(863\) −33.3766 + 33.3766i −1.13615 + 1.13615i −0.147018 + 0.989134i \(0.546968\pi\)
−0.989134 + 0.147018i \(0.953032\pi\)
\(864\) 0 0
\(865\) −8.48550 2.27368i −0.288516 0.0773076i
\(866\) 1.41165 5.26834i 0.0479697 0.179025i
\(867\) 0 0
\(868\) −19.3751 + 11.1862i −0.657633 + 0.379685i
\(869\) −0.365467 + 1.36394i −0.0123976 + 0.0462685i
\(870\) 0 0
\(871\) −6.22536 6.66512i −0.210938 0.225839i
\(872\) 7.84397i 0.265630i
\(873\) 0 0
\(874\) 3.88820 6.73456i 0.131520 0.227800i
\(875\) 15.9221 27.5779i 0.538265 0.932302i
\(876\) 0 0
\(877\) −27.0793 27.0793i −0.914404 0.914404i 0.0822111 0.996615i \(-0.473802\pi\)
−0.996615 + 0.0822111i \(0.973802\pi\)
\(878\) 2.13806 + 2.13806i 0.0721559 + 0.0721559i
\(879\) 0 0
\(880\) 4.35944 7.55077i 0.146957 0.254537i
\(881\) −11.0506 + 19.1402i −0.372304 + 0.644849i −0.989920 0.141631i \(-0.954765\pi\)
0.617616 + 0.786480i \(0.288099\pi\)
\(882\) 0 0
\(883\) 13.1593i 0.442846i 0.975178 + 0.221423i \(0.0710702\pi\)
−0.975178 + 0.221423i \(0.928930\pi\)
\(884\) −0.297644 + 8.72484i −0.0100108 + 0.293448i
\(885\) 0 0
\(886\) 1.03309 3.85554i 0.0347073 0.129529i
\(887\) 46.9862 27.1275i 1.57764 0.910852i 0.582453 0.812864i \(-0.302093\pi\)
0.995188 0.0979875i \(-0.0312405\pi\)
\(888\) 0 0
\(889\) 1.89141 7.05885i 0.0634360 0.236746i
\(890\) −28.5791 7.65774i −0.957973 0.256688i
\(891\) 0 0
\(892\) 7.78077 7.78077i 0.260519 0.260519i
\(893\) 29.8357 + 17.2257i 0.998414 + 0.576435i
\(894\) 0 0
\(895\) −21.0172 5.63153i −0.702526 0.188241i
\(896\) −1.32654 + 2.29763i −0.0443165 + 0.0767584i
\(897\) 0 0
\(898\) −6.69347 11.5934i −0.223364 0.386878i
\(899\) 9.76881 + 36.4577i 0.325808 + 1.21593i
\(900\) 0 0
\(901\) 0.298626 0.172412i 0.00994869 0.00574388i
\(902\) −28.9260 7.75071i −0.963132 0.258070i
\(903\) 0 0
\(904\) 9.52570 9.52570i 0.316820 0.316820i
\(905\) −6.05815 + 1.62328i −0.201380 + 0.0539595i
\(906\) 0 0
\(907\) 50.1526i 1.66529i −0.553808 0.832644i \(-0.686826\pi\)
0.553808 0.832644i \(-0.313174\pi\)
\(908\) 7.64941 2.04965i 0.253855 0.0680202i
\(909\) 0 0
\(910\) −13.0500 13.9718i −0.432602 0.463160i
\(911\) 15.3462 8.86012i 0.508442 0.293549i −0.223751 0.974646i \(-0.571830\pi\)
0.732193 + 0.681097i \(0.238497\pi\)
\(912\) 0 0
\(913\) −8.58039 14.8617i −0.283970 0.491850i
\(914\) 1.33956 0.0443086
\(915\) 0 0
\(916\) 1.40853 0.377414i 0.0465390 0.0124701i
\(917\) −0.469256 + 1.75129i −0.0154962 + 0.0578327i
\(918\) 0 0
\(919\) −2.14603 3.71704i −0.0707911 0.122614i 0.828457 0.560052i \(-0.189219\pi\)
−0.899248 + 0.437439i \(0.855886\pi\)
\(920\) −2.44138 −0.0804898
\(921\) 0 0
\(922\) 4.39148 + 2.53542i 0.144626 + 0.0834996i
\(923\) 19.4193 18.1380i 0.639194 0.597021i
\(924\) 0 0
\(925\) 6.85601 + 6.85601i 0.225424 + 0.225424i
\(926\) −6.70135 3.86903i −0.220220 0.127144i
\(927\) 0 0
\(928\) 3.16495 + 3.16495i 0.103895 + 0.103895i
\(929\) −13.2874 49.5894i −0.435946 1.62697i −0.738791 0.673934i \(-0.764603\pi\)
0.302845 0.953040i \(-0.402064\pi\)
\(930\) 0 0
\(931\) 0.0639209 + 0.238556i 0.00209492 + 0.00781836i
\(932\) 4.39305i 0.143899i
\(933\) 0 0
\(934\) −7.38200 + 7.38200i −0.241546 + 0.241546i
\(935\) 21.1105 0.690388
\(936\) 0 0
\(937\) 13.7998 0.450821 0.225410 0.974264i \(-0.427628\pi\)
0.225410 + 0.974264i \(0.427628\pi\)
\(938\) 4.74536 4.74536i 0.154941 0.154941i
\(939\) 0 0
\(940\) 10.8159i 0.352776i
\(941\) 4.97964 + 18.5843i 0.162332 + 0.605830i 0.998365 + 0.0571520i \(0.0182020\pi\)
−0.836034 + 0.548678i \(0.815131\pi\)
\(942\) 0 0
\(943\) 2.17028 + 8.09959i 0.0706740 + 0.263759i
\(944\) −2.84098 2.84098i −0.0924662 0.0924662i
\(945\) 0 0
\(946\) 38.8530 + 22.4318i 1.26322 + 0.729320i
\(947\) 4.69573 + 4.69573i 0.152591 + 0.152591i 0.779274 0.626683i \(-0.215588\pi\)
−0.626683 + 0.779274i \(0.715588\pi\)
\(948\) 0 0
\(949\) 4.78599 + 20.6545i 0.155360 + 0.670473i
\(950\) −5.54363 3.20061i −0.179859 0.103842i
\(951\) 0 0
\(952\) −6.42373 −0.208194
\(953\) 10.4833 + 18.1575i 0.339586 + 0.588180i 0.984355 0.176197i \(-0.0563797\pi\)
−0.644769 + 0.764378i \(0.723046\pi\)
\(954\) 0 0
\(955\) 8.60548 32.1161i 0.278467 1.03925i
\(956\) 8.98867 2.40851i 0.290714 0.0778967i
\(957\) 0 0
\(958\) −6.62599 −0.214076
\(959\) −29.8804 51.7544i −0.964888 1.67124i
\(960\) 0 0
\(961\) 34.7359 20.0548i 1.12051 0.646928i
\(962\) 30.6844 16.3469i 0.989305 0.527045i
\(963\) 0 0
\(964\) 1.61040 0.431507i 0.0518676 0.0138979i
\(965\) 30.5809i 0.984432i
\(966\) 0 0
\(967\) −30.1367 + 8.07510i −0.969131 + 0.259678i −0.708461 0.705750i \(-0.750610\pi\)
−0.260670 + 0.965428i \(0.583943\pi\)
\(968\) 5.67876 5.67876i 0.182522 0.182522i
\(969\) 0 0
\(970\) −16.9451 4.54042i −0.544073 0.145784i
\(971\) −39.9399 + 23.0593i −1.28173 + 0.740008i −0.977165 0.212482i \(-0.931845\pi\)
−0.304567 + 0.952491i \(0.598512\pi\)
\(972\) 0 0
\(973\) −13.4236 50.0976i −0.430342 1.60606i
\(974\) 8.34344 + 14.4513i 0.267341 + 0.463048i
\(975\) 0 0
\(976\) −5.02738 + 8.70767i −0.160922 + 0.278726i
\(977\) 33.6291 + 9.01089i 1.07589 + 0.288284i 0.752911 0.658122i \(-0.228649\pi\)
0.322979 + 0.946406i \(0.395316\pi\)
\(978\) 0 0
\(979\) −55.9288 32.2905i −1.78749 1.03201i
\(980\) 0.0548262 0.0548262i 0.00175136 0.00175136i
\(981\) 0 0
\(982\) 14.8479 + 3.97849i 0.473816 + 0.126959i
\(983\) 12.1329 45.2806i 0.386979 1.44423i −0.448044 0.894011i \(-0.647879\pi\)
0.835024 0.550214i \(-0.185454\pi\)
\(984\) 0 0
\(985\) −35.8936 + 20.7232i −1.14366 + 0.660295i
\(986\) −2.80489 + 10.4680i −0.0893260 + 0.333369i
\(987\) 0 0
\(988\) −16.7744 + 15.6676i −0.533664 + 0.498454i
\(989\) 12.5623i 0.399456i
\(990\) 0 0
\(991\) −5.58679 + 9.67660i −0.177470 + 0.307387i −0.941013 0.338369i \(-0.890125\pi\)
0.763543 + 0.645757i \(0.223458\pi\)
\(992\) 4.21632 7.30289i 0.133868 0.231867i
\(993\) 0 0
\(994\) 13.8259 + 13.8259i 0.438532 + 0.438532i
\(995\) −8.76710 8.76710i −0.277936 0.277936i
\(996\) 0 0
\(997\) 2.80499 4.85839i 0.0888350 0.153867i −0.818184 0.574957i \(-0.805019\pi\)
0.907019 + 0.421090i \(0.138352\pi\)
\(998\) −11.1678 + 19.3432i −0.353510 + 0.612298i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.bb.a.449.10 56
3.2 odd 2 234.2.y.a.59.5 56
9.2 odd 6 702.2.bc.a.683.10 56
9.7 even 3 234.2.z.a.137.5 yes 56
13.2 odd 12 702.2.bc.a.665.10 56
39.2 even 12 234.2.z.a.41.5 yes 56
117.2 even 12 inner 702.2.bb.a.197.10 56
117.106 odd 12 234.2.y.a.119.5 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.y.a.59.5 56 3.2 odd 2
234.2.y.a.119.5 yes 56 117.106 odd 12
234.2.z.a.41.5 yes 56 39.2 even 12
234.2.z.a.137.5 yes 56 9.7 even 3
702.2.bb.a.197.10 56 117.2 even 12 inner
702.2.bb.a.449.10 56 1.1 even 1 trivial
702.2.bc.a.665.10 56 13.2 odd 12
702.2.bc.a.683.10 56 9.2 odd 6