Properties

Label 702.2.bb.a.197.9
Level $702$
Weight $2$
Character 702.197
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(71,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.71"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([10, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 197.9
Character \(\chi\) \(=\) 702.197
Dual form 702.2.bb.a.449.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(-0.763001 + 2.84756i) q^{5} +(-0.504962 + 1.88454i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(-2.55305 + 1.47400i) q^{10} +(0.566782 - 0.566782i) q^{11} +(2.11327 - 2.92131i) q^{13} +(-1.68964 + 0.975511i) q^{14} -1.00000 q^{16} +(-4.02058 + 6.96385i) q^{17} +(-1.18319 - 4.41574i) q^{19} +(-2.84756 - 0.763001i) q^{20} +0.801550 q^{22} +(-3.49688 + 6.05678i) q^{23} +(-3.19629 - 1.84538i) q^{25} +(3.55999 - 0.571370i) q^{26} +(-1.88454 - 0.504962i) q^{28} -7.87674i q^{29} +(-2.31031 - 0.619046i) q^{31} +(-0.707107 - 0.707107i) q^{32} +(-7.76717 + 2.08121i) q^{34} +(-4.98106 - 2.87582i) q^{35} +(-2.09658 + 7.82455i) q^{37} +(2.28576 - 3.95904i) q^{38} +(-1.47400 - 2.55305i) q^{40} +(5.00455 - 1.34097i) q^{41} +(2.02114 - 1.16691i) q^{43} +(0.566782 + 0.566782i) q^{44} +(-6.75546 + 1.81012i) q^{46} +(1.37959 + 5.14869i) q^{47} +(2.76566 + 1.59676i) q^{49} +(-0.955238 - 3.56500i) q^{50} +(2.92131 + 2.11327i) q^{52} +8.27924i q^{53} +(1.18149 + 2.04640i) q^{55} +(-0.975511 - 1.68964i) q^{56} +(5.56970 - 5.56970i) q^{58} +(6.24226 - 6.24226i) q^{59} +(2.46959 + 4.27745i) q^{61} +(-1.19590 - 2.07137i) q^{62} -1.00000i q^{64} +(6.70618 + 8.24664i) q^{65} +(0.200953 + 0.749969i) q^{67} +(-6.96385 - 4.02058i) q^{68} +(-1.48863 - 5.55565i) q^{70} +(-2.57304 + 0.689443i) q^{71} +(5.68293 + 5.68293i) q^{73} +(-7.01530 + 4.05028i) q^{74} +(4.41574 - 1.18319i) q^{76} +(0.781921 + 1.35433i) q^{77} +(0.554497 - 0.960416i) q^{79} +(0.763001 - 2.84756i) q^{80} +(4.48696 + 2.59055i) q^{82} +(-2.29264 + 0.614312i) q^{83} +(-16.7623 - 16.7623i) q^{85} +(2.25429 + 0.604036i) q^{86} +0.801550i q^{88} +(-2.84070 - 0.761164i) q^{89} +(4.43822 + 5.45771i) q^{91} +(-6.05678 - 3.49688i) q^{92} +(-2.66516 + 4.61619i) q^{94} +13.4769 q^{95} +(-3.54866 - 0.950861i) q^{97} +(0.826542 + 3.08469i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7} - 56 q^{16} - 8 q^{19} - 4 q^{28} + 8 q^{31} - 24 q^{35} - 4 q^{37} + 36 q^{38} + 48 q^{41} + 12 q^{43} - 60 q^{47} + 24 q^{50} - 4 q^{52} + 120 q^{65} - 56 q^{67} - 24 q^{71} + 28 q^{73}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −0.763001 + 2.84756i −0.341224 + 1.27347i 0.555737 + 0.831358i \(0.312436\pi\)
−0.896962 + 0.442109i \(0.854231\pi\)
\(6\) 0 0
\(7\) −0.504962 + 1.88454i −0.190858 + 0.712290i 0.802443 + 0.596729i \(0.203533\pi\)
−0.993300 + 0.115561i \(0.963133\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) −2.55305 + 1.47400i −0.807345 + 0.466121i
\(11\) 0.566782 0.566782i 0.170891 0.170891i −0.616480 0.787371i \(-0.711442\pi\)
0.787371 + 0.616480i \(0.211442\pi\)
\(12\) 0 0
\(13\) 2.11327 2.92131i 0.586117 0.810226i
\(14\) −1.68964 + 0.975511i −0.451574 + 0.260716i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −4.02058 + 6.96385i −0.975135 + 1.68898i −0.295645 + 0.955298i \(0.595535\pi\)
−0.679490 + 0.733685i \(0.737799\pi\)
\(18\) 0 0
\(19\) −1.18319 4.41574i −0.271443 1.01304i −0.958188 0.286141i \(-0.907627\pi\)
0.686744 0.726899i \(-0.259039\pi\)
\(20\) −2.84756 0.763001i −0.636733 0.170612i
\(21\) 0 0
\(22\) 0.801550 0.170891
\(23\) −3.49688 + 6.05678i −0.729150 + 1.26293i 0.228093 + 0.973639i \(0.426751\pi\)
−0.957243 + 0.289286i \(0.906582\pi\)
\(24\) 0 0
\(25\) −3.19629 1.84538i −0.639258 0.369076i
\(26\) 3.55999 0.571370i 0.698172 0.112055i
\(27\) 0 0
\(28\) −1.88454 0.504962i −0.356145 0.0954288i
\(29\) 7.87674i 1.46267i −0.682016 0.731337i \(-0.738897\pi\)
0.682016 0.731337i \(-0.261103\pi\)
\(30\) 0 0
\(31\) −2.31031 0.619046i −0.414944 0.111184i 0.0453062 0.998973i \(-0.485574\pi\)
−0.460250 + 0.887789i \(0.652240\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 0 0
\(34\) −7.76717 + 2.08121i −1.33206 + 0.356924i
\(35\) −4.98106 2.87582i −0.841953 0.486102i
\(36\) 0 0
\(37\) −2.09658 + 7.82455i −0.344676 + 1.28635i 0.548314 + 0.836272i \(0.315270\pi\)
−0.892990 + 0.450076i \(0.851397\pi\)
\(38\) 2.28576 3.95904i 0.370798 0.642242i
\(39\) 0 0
\(40\) −1.47400 2.55305i −0.233061 0.403673i
\(41\) 5.00455 1.34097i 0.781580 0.209424i 0.154099 0.988055i \(-0.450753\pi\)
0.627481 + 0.778632i \(0.284086\pi\)
\(42\) 0 0
\(43\) 2.02114 1.16691i 0.308222 0.177952i −0.337909 0.941179i \(-0.609720\pi\)
0.646130 + 0.763227i \(0.276386\pi\)
\(44\) 0.566782 + 0.566782i 0.0854456 + 0.0854456i
\(45\) 0 0
\(46\) −6.75546 + 1.81012i −0.996038 + 0.266887i
\(47\) 1.37959 + 5.14869i 0.201233 + 0.751013i 0.990565 + 0.137046i \(0.0437608\pi\)
−0.789331 + 0.613968i \(0.789573\pi\)
\(48\) 0 0
\(49\) 2.76566 + 1.59676i 0.395095 + 0.228108i
\(50\) −0.955238 3.56500i −0.135091 0.504167i
\(51\) 0 0
\(52\) 2.92131 + 2.11327i 0.405113 + 0.293058i
\(53\) 8.27924i 1.13724i 0.822600 + 0.568620i \(0.192523\pi\)
−0.822600 + 0.568620i \(0.807477\pi\)
\(54\) 0 0
\(55\) 1.18149 + 2.04640i 0.159312 + 0.275936i
\(56\) −0.975511 1.68964i −0.130358 0.225787i
\(57\) 0 0
\(58\) 5.56970 5.56970i 0.731337 0.731337i
\(59\) 6.24226 6.24226i 0.812673 0.812673i −0.172361 0.985034i \(-0.555139\pi\)
0.985034 + 0.172361i \(0.0551395\pi\)
\(60\) 0 0
\(61\) 2.46959 + 4.27745i 0.316198 + 0.547671i 0.979691 0.200511i \(-0.0642603\pi\)
−0.663493 + 0.748182i \(0.730927\pi\)
\(62\) −1.19590 2.07137i −0.151880 0.263064i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 6.70618 + 8.24664i 0.831799 + 1.02287i
\(66\) 0 0
\(67\) 0.200953 + 0.749969i 0.0245504 + 0.0916232i 0.977114 0.212716i \(-0.0682310\pi\)
−0.952564 + 0.304339i \(0.901564\pi\)
\(68\) −6.96385 4.02058i −0.844491 0.487567i
\(69\) 0 0
\(70\) −1.48863 5.55565i −0.177926 0.664027i
\(71\) −2.57304 + 0.689443i −0.305363 + 0.0818218i −0.408247 0.912872i \(-0.633860\pi\)
0.102884 + 0.994693i \(0.467193\pi\)
\(72\) 0 0
\(73\) 5.68293 + 5.68293i 0.665137 + 0.665137i 0.956586 0.291449i \(-0.0941375\pi\)
−0.291449 + 0.956586i \(0.594137\pi\)
\(74\) −7.01530 + 4.05028i −0.815512 + 0.470836i
\(75\) 0 0
\(76\) 4.41574 1.18319i 0.506520 0.135722i
\(77\) 0.781921 + 1.35433i 0.0891082 + 0.154340i
\(78\) 0 0
\(79\) 0.554497 0.960416i 0.0623857 0.108055i −0.833146 0.553054i \(-0.813462\pi\)
0.895531 + 0.444998i \(0.146796\pi\)
\(80\) 0.763001 2.84756i 0.0853061 0.318367i
\(81\) 0 0
\(82\) 4.48696 + 2.59055i 0.495502 + 0.286078i
\(83\) −2.29264 + 0.614312i −0.251650 + 0.0674295i −0.382439 0.923981i \(-0.624916\pi\)
0.130789 + 0.991410i \(0.458249\pi\)
\(84\) 0 0
\(85\) −16.7623 16.7623i −1.81812 1.81812i
\(86\) 2.25429 + 0.604036i 0.243087 + 0.0651349i
\(87\) 0 0
\(88\) 0.801550i 0.0854456i
\(89\) −2.84070 0.761164i −0.301114 0.0806832i 0.105099 0.994462i \(-0.466484\pi\)
−0.406213 + 0.913779i \(0.633151\pi\)
\(90\) 0 0
\(91\) 4.43822 + 5.45771i 0.465252 + 0.572123i
\(92\) −6.05678 3.49688i −0.631463 0.364575i
\(93\) 0 0
\(94\) −2.66516 + 4.61619i −0.274890 + 0.476123i
\(95\) 13.4769 1.38270
\(96\) 0 0
\(97\) −3.54866 0.950861i −0.360312 0.0965453i 0.0741216 0.997249i \(-0.476385\pi\)
−0.434433 + 0.900704i \(0.643051\pi\)
\(98\) 0.826542 + 3.08469i 0.0834933 + 0.311601i
\(99\) 0 0
\(100\) 1.84538 3.19629i 0.184538 0.319629i
\(101\) 13.6438 1.35761 0.678804 0.734319i \(-0.262498\pi\)
0.678804 + 0.734319i \(0.262498\pi\)
\(102\) 0 0
\(103\) 11.6669 6.73592i 1.14958 0.663710i 0.200794 0.979633i \(-0.435648\pi\)
0.948785 + 0.315924i \(0.102314\pi\)
\(104\) 0.571370 + 3.55999i 0.0560274 + 0.349086i
\(105\) 0 0
\(106\) −5.85430 + 5.85430i −0.568620 + 0.568620i
\(107\) 16.0522 9.26775i 1.55183 0.895947i 0.553833 0.832628i \(-0.313165\pi\)
0.997993 0.0633192i \(-0.0201686\pi\)
\(108\) 0 0
\(109\) 4.23071 4.23071i 0.405229 0.405229i −0.474842 0.880071i \(-0.657495\pi\)
0.880071 + 0.474842i \(0.157495\pi\)
\(110\) −0.611584 + 2.28246i −0.0583122 + 0.217624i
\(111\) 0 0
\(112\) 0.504962 1.88454i 0.0477144 0.178073i
\(113\) 5.97917i 0.562473i −0.959639 0.281236i \(-0.909256\pi\)
0.959639 0.281236i \(-0.0907445\pi\)
\(114\) 0 0
\(115\) −14.5789 14.5789i −1.35949 1.35949i
\(116\) 7.87674 0.731337
\(117\) 0 0
\(118\) 8.82789 0.812673
\(119\) −11.0934 11.0934i −1.01693 1.01693i
\(120\) 0 0
\(121\) 10.3575i 0.941592i
\(122\) −1.27835 + 4.77087i −0.115737 + 0.431935i
\(123\) 0 0
\(124\) 0.619046 2.31031i 0.0555920 0.207472i
\(125\) −2.72919 + 2.72919i −0.244106 + 0.244106i
\(126\) 0 0
\(127\) 1.93815 1.11899i 0.171983 0.0992946i −0.411537 0.911393i \(-0.635008\pi\)
0.583521 + 0.812098i \(0.301675\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 0 0
\(130\) −1.08927 + 10.5732i −0.0955352 + 0.927334i
\(131\) −7.37842 + 4.25993i −0.644656 + 0.372192i −0.786406 0.617710i \(-0.788060\pi\)
0.141750 + 0.989903i \(0.454727\pi\)
\(132\) 0 0
\(133\) 8.91912 0.773386
\(134\) −0.388212 + 0.672403i −0.0335364 + 0.0580868i
\(135\) 0 0
\(136\) −2.08121 7.76717i −0.178462 0.666029i
\(137\) −11.2268 3.00821i −0.959170 0.257009i −0.254921 0.966962i \(-0.582049\pi\)
−0.704249 + 0.709953i \(0.748716\pi\)
\(138\) 0 0
\(139\) 22.8286 1.93629 0.968147 0.250381i \(-0.0805558\pi\)
0.968147 + 0.250381i \(0.0805558\pi\)
\(140\) 2.87582 4.98106i 0.243051 0.420976i
\(141\) 0 0
\(142\) −2.30692 1.33190i −0.193593 0.111771i
\(143\) −0.457981 2.85351i −0.0382983 0.238623i
\(144\) 0 0
\(145\) 22.4295 + 6.00996i 1.86267 + 0.499100i
\(146\) 8.03688i 0.665137i
\(147\) 0 0
\(148\) −7.82455 2.09658i −0.643174 0.172338i
\(149\) 5.50303 + 5.50303i 0.450826 + 0.450826i 0.895629 0.444803i \(-0.146726\pi\)
−0.444803 + 0.895629i \(0.646726\pi\)
\(150\) 0 0
\(151\) −7.67704 + 2.05706i −0.624748 + 0.167401i −0.557285 0.830321i \(-0.688157\pi\)
−0.0674629 + 0.997722i \(0.521490\pi\)
\(152\) 3.95904 + 2.28576i 0.321121 + 0.185399i
\(153\) 0 0
\(154\) −0.404752 + 1.51056i −0.0326159 + 0.121724i
\(155\) 3.52554 6.10641i 0.283178 0.490479i
\(156\) 0 0
\(157\) 1.97021 + 3.41251i 0.157240 + 0.272348i 0.933872 0.357606i \(-0.116407\pi\)
−0.776632 + 0.629954i \(0.783074\pi\)
\(158\) 1.07121 0.287029i 0.0852205 0.0228348i
\(159\) 0 0
\(160\) 2.55305 1.47400i 0.201836 0.116530i
\(161\) −9.64846 9.64846i −0.760405 0.760405i
\(162\) 0 0
\(163\) −19.9290 + 5.33996i −1.56096 + 0.418258i −0.932967 0.359962i \(-0.882790\pi\)
−0.627992 + 0.778220i \(0.716123\pi\)
\(164\) 1.34097 + 5.00455i 0.104712 + 0.390790i
\(165\) 0 0
\(166\) −2.05553 1.18676i −0.159540 0.0921103i
\(167\) −1.46059 5.45101i −0.113024 0.421811i 0.886107 0.463480i \(-0.153399\pi\)
−0.999131 + 0.0416684i \(0.986733\pi\)
\(168\) 0 0
\(169\) −4.06814 12.3471i −0.312934 0.949775i
\(170\) 23.7054i 1.81812i
\(171\) 0 0
\(172\) 1.16691 + 2.02114i 0.0889759 + 0.154111i
\(173\) 8.21647 + 14.2313i 0.624687 + 1.08199i 0.988601 + 0.150557i \(0.0481066\pi\)
−0.363915 + 0.931432i \(0.618560\pi\)
\(174\) 0 0
\(175\) 5.09170 5.09170i 0.384896 0.384896i
\(176\) −0.566782 + 0.566782i −0.0427228 + 0.0427228i
\(177\) 0 0
\(178\) −1.47046 2.54690i −0.110215 0.190898i
\(179\) −3.02863 5.24575i −0.226371 0.392085i 0.730359 0.683063i \(-0.239353\pi\)
−0.956730 + 0.290978i \(0.906019\pi\)
\(180\) 0 0
\(181\) 12.2487i 0.910436i 0.890380 + 0.455218i \(0.150439\pi\)
−0.890380 + 0.455218i \(0.849561\pi\)
\(182\) −0.720889 + 6.99748i −0.0534358 + 0.518687i
\(183\) 0 0
\(184\) −1.81012 6.75546i −0.133444 0.498019i
\(185\) −20.6812 11.9403i −1.52051 0.877867i
\(186\) 0 0
\(187\) 1.66819 + 6.22578i 0.121990 + 0.455274i
\(188\) −5.14869 + 1.37959i −0.375507 + 0.100617i
\(189\) 0 0
\(190\) 9.52957 + 9.52957i 0.691348 + 0.691348i
\(191\) 0.364345 0.210355i 0.0263631 0.0152207i −0.486761 0.873535i \(-0.661822\pi\)
0.513124 + 0.858315i \(0.328488\pi\)
\(192\) 0 0
\(193\) 13.1262 3.51716i 0.944847 0.253171i 0.246673 0.969099i \(-0.420663\pi\)
0.698174 + 0.715928i \(0.253996\pi\)
\(194\) −1.83692 3.18164i −0.131883 0.228429i
\(195\) 0 0
\(196\) −1.59676 + 2.76566i −0.114054 + 0.197547i
\(197\) 0.239457 0.893667i 0.0170606 0.0636712i −0.956871 0.290514i \(-0.906174\pi\)
0.973931 + 0.226843i \(0.0728404\pi\)
\(198\) 0 0
\(199\) 11.1074 + 6.41286i 0.787382 + 0.454595i 0.839040 0.544070i \(-0.183117\pi\)
−0.0516579 + 0.998665i \(0.516451\pi\)
\(200\) 3.56500 0.955238i 0.252083 0.0675455i
\(201\) 0 0
\(202\) 9.64762 + 9.64762i 0.678804 + 0.678804i
\(203\) 14.8441 + 3.97745i 1.04185 + 0.279162i
\(204\) 0 0
\(205\) 15.2739i 1.06678i
\(206\) 13.0128 + 3.48677i 0.906644 + 0.242935i
\(207\) 0 0
\(208\) −2.11327 + 2.92131i −0.146529 + 0.202557i
\(209\) −3.17337 1.83215i −0.219507 0.126732i
\(210\) 0 0
\(211\) −3.42303 + 5.92886i −0.235651 + 0.408159i −0.959462 0.281839i \(-0.909056\pi\)
0.723811 + 0.689999i \(0.242389\pi\)
\(212\) −8.27924 −0.568620
\(213\) 0 0
\(214\) 17.9039 + 4.79734i 1.22389 + 0.327939i
\(215\) 1.78070 + 6.64568i 0.121443 + 0.453231i
\(216\) 0 0
\(217\) 2.33324 4.04129i 0.158390 0.274340i
\(218\) 5.98313 0.405229
\(219\) 0 0
\(220\) −2.04640 + 1.18149i −0.137968 + 0.0796560i
\(221\) 11.8470 + 26.4619i 0.796916 + 1.78002i
\(222\) 0 0
\(223\) 12.5100 12.5100i 0.837733 0.837733i −0.150827 0.988560i \(-0.548194\pi\)
0.988560 + 0.150827i \(0.0481937\pi\)
\(224\) 1.68964 0.975511i 0.112893 0.0651791i
\(225\) 0 0
\(226\) 4.22791 4.22791i 0.281236 0.281236i
\(227\) 5.01242 18.7066i 0.332686 1.24160i −0.573669 0.819087i \(-0.694481\pi\)
0.906356 0.422515i \(-0.138853\pi\)
\(228\) 0 0
\(229\) −6.72179 + 25.0861i −0.444188 + 1.65773i 0.273882 + 0.961763i \(0.411692\pi\)
−0.718070 + 0.695971i \(0.754974\pi\)
\(230\) 20.6177i 1.35949i
\(231\) 0 0
\(232\) 5.56970 + 5.56970i 0.365669 + 0.365669i
\(233\) −11.9090 −0.780184 −0.390092 0.920776i \(-0.627557\pi\)
−0.390092 + 0.920776i \(0.627557\pi\)
\(234\) 0 0
\(235\) −15.7138 −1.02506
\(236\) 6.24226 + 6.24226i 0.406337 + 0.406337i
\(237\) 0 0
\(238\) 15.6885i 1.01693i
\(239\) −2.40211 + 8.96480i −0.155380 + 0.579885i 0.843693 + 0.536826i \(0.180377\pi\)
−0.999073 + 0.0430587i \(0.986290\pi\)
\(240\) 0 0
\(241\) −2.53446 + 9.45875i −0.163259 + 0.609292i 0.834997 + 0.550255i \(0.185470\pi\)
−0.998256 + 0.0590365i \(0.981197\pi\)
\(242\) −7.32387 + 7.32387i −0.470796 + 0.470796i
\(243\) 0 0
\(244\) −4.27745 + 2.46959i −0.273836 + 0.158099i
\(245\) −6.65706 + 6.65706i −0.425304 + 0.425304i
\(246\) 0 0
\(247\) −15.4002 5.87519i −0.979890 0.373829i
\(248\) 2.07137 1.19590i 0.131532 0.0759400i
\(249\) 0 0
\(250\) −3.85966 −0.244106
\(251\) 7.05445 12.2187i 0.445273 0.771235i −0.552798 0.833315i \(-0.686440\pi\)
0.998071 + 0.0620799i \(0.0197734\pi\)
\(252\) 0 0
\(253\) 1.45090 + 5.41484i 0.0912174 + 0.340428i
\(254\) 2.16173 + 0.579234i 0.135639 + 0.0363444i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 2.55988 4.43384i 0.159681 0.276575i −0.775073 0.631872i \(-0.782287\pi\)
0.934754 + 0.355297i \(0.115620\pi\)
\(258\) 0 0
\(259\) −13.6870 7.90220i −0.850469 0.491019i
\(260\) −8.24664 + 6.70618i −0.511435 + 0.415900i
\(261\) 0 0
\(262\) −8.22956 2.20510i −0.508424 0.136232i
\(263\) 14.4227i 0.889343i −0.895694 0.444671i \(-0.853320\pi\)
0.895694 0.444671i \(-0.146680\pi\)
\(264\) 0 0
\(265\) −23.5756 6.31706i −1.44824 0.388054i
\(266\) 6.30677 + 6.30677i 0.386693 + 0.386693i
\(267\) 0 0
\(268\) −0.749969 + 0.200953i −0.0458116 + 0.0122752i
\(269\) −10.3656 5.98459i −0.632002 0.364887i 0.149525 0.988758i \(-0.452226\pi\)
−0.781527 + 0.623871i \(0.785559\pi\)
\(270\) 0 0
\(271\) 6.16812 23.0197i 0.374687 1.39835i −0.479115 0.877752i \(-0.659042\pi\)
0.853802 0.520598i \(-0.174291\pi\)
\(272\) 4.02058 6.96385i 0.243784 0.422246i
\(273\) 0 0
\(274\) −5.81141 10.0657i −0.351080 0.608089i
\(275\) −2.85752 + 0.765671i −0.172315 + 0.0461717i
\(276\) 0 0
\(277\) −8.17883 + 4.72205i −0.491419 + 0.283721i −0.725163 0.688577i \(-0.758235\pi\)
0.233744 + 0.972298i \(0.424902\pi\)
\(278\) 16.1422 + 16.1422i 0.968147 + 0.968147i
\(279\) 0 0
\(280\) 5.55565 1.48863i 0.332014 0.0889628i
\(281\) −5.04768 18.8382i −0.301119 1.12379i −0.936235 0.351376i \(-0.885714\pi\)
0.635115 0.772417i \(-0.280953\pi\)
\(282\) 0 0
\(283\) 17.9472 + 10.3618i 1.06685 + 0.615946i 0.927319 0.374272i \(-0.122107\pi\)
0.139530 + 0.990218i \(0.455441\pi\)
\(284\) −0.689443 2.57304i −0.0409109 0.152682i
\(285\) 0 0
\(286\) 1.69390 2.34158i 0.100162 0.138461i
\(287\) 10.1084i 0.596682i
\(288\) 0 0
\(289\) −23.8302 41.2751i −1.40178 2.42795i
\(290\) 11.6104 + 20.1097i 0.681783 + 1.18088i
\(291\) 0 0
\(292\) −5.68293 + 5.68293i −0.332568 + 0.332568i
\(293\) −13.6517 + 13.6517i −0.797542 + 0.797542i −0.982707 0.185165i \(-0.940718\pi\)
0.185165 + 0.982707i \(0.440718\pi\)
\(294\) 0 0
\(295\) 13.0123 + 22.5380i 0.757608 + 1.31222i
\(296\) −4.05028 7.01530i −0.235418 0.407756i
\(297\) 0 0
\(298\) 7.78247i 0.450826i
\(299\) 10.3039 + 23.0151i 0.595888 + 1.33100i
\(300\) 0 0
\(301\) 1.17849 + 4.39818i 0.0679269 + 0.253507i
\(302\) −6.88304 3.97393i −0.396075 0.228674i
\(303\) 0 0
\(304\) 1.18319 + 4.41574i 0.0678608 + 0.253260i
\(305\) −14.0646 + 3.76859i −0.805335 + 0.215789i
\(306\) 0 0
\(307\) −15.5762 15.5762i −0.888978 0.888978i 0.105447 0.994425i \(-0.466373\pi\)
−0.994425 + 0.105447i \(0.966373\pi\)
\(308\) −1.35433 + 0.781921i −0.0771700 + 0.0445541i
\(309\) 0 0
\(310\) 6.81082 1.82495i 0.386828 0.103650i
\(311\) −4.85889 8.41584i −0.275522 0.477218i 0.694745 0.719257i \(-0.255517\pi\)
−0.970267 + 0.242038i \(0.922184\pi\)
\(312\) 0 0
\(313\) 2.74916 4.76168i 0.155392 0.269146i −0.777810 0.628500i \(-0.783669\pi\)
0.933202 + 0.359353i \(0.117003\pi\)
\(314\) −1.01986 + 3.80616i −0.0575539 + 0.214794i
\(315\) 0 0
\(316\) 0.960416 + 0.554497i 0.0540276 + 0.0311929i
\(317\) −1.01082 + 0.270848i −0.0567731 + 0.0152123i −0.287094 0.957902i \(-0.592689\pi\)
0.230321 + 0.973115i \(0.426022\pi\)
\(318\) 0 0
\(319\) −4.46439 4.46439i −0.249958 0.249958i
\(320\) 2.84756 + 0.763001i 0.159183 + 0.0426530i
\(321\) 0 0
\(322\) 13.6450i 0.760405i
\(323\) 35.5077 + 9.51426i 1.97570 + 0.529388i
\(324\) 0 0
\(325\) −12.1456 + 5.43757i −0.673715 + 0.301622i
\(326\) −17.8678 10.3160i −0.989609 0.571351i
\(327\) 0 0
\(328\) −2.59055 + 4.48696i −0.143039 + 0.247751i
\(329\) −10.3996 −0.573346
\(330\) 0 0
\(331\) 11.9246 + 3.19520i 0.655438 + 0.175624i 0.571186 0.820821i \(-0.306483\pi\)
0.0842515 + 0.996445i \(0.473150\pi\)
\(332\) −0.614312 2.29264i −0.0337147 0.125825i
\(333\) 0 0
\(334\) 2.82165 4.88724i 0.154394 0.267418i
\(335\) −2.28891 −0.125056
\(336\) 0 0
\(337\) −18.3428 + 10.5902i −0.999195 + 0.576886i −0.908010 0.418948i \(-0.862399\pi\)
−0.0911852 + 0.995834i \(0.529066\pi\)
\(338\) 5.85409 11.6073i 0.318420 0.631354i
\(339\) 0 0
\(340\) 16.7623 16.7623i 0.909062 0.909062i
\(341\) −1.66031 + 0.958578i −0.0899106 + 0.0519099i
\(342\) 0 0
\(343\) −14.0628 + 14.0628i −0.759319 + 0.759319i
\(344\) −0.604036 + 2.25429i −0.0325674 + 0.121543i
\(345\) 0 0
\(346\) −4.25316 + 15.8730i −0.228651 + 0.853338i
\(347\) 2.51714i 0.135127i −0.997715 0.0675636i \(-0.978477\pi\)
0.997715 0.0675636i \(-0.0215226\pi\)
\(348\) 0 0
\(349\) −12.5807 12.5807i −0.673429 0.673429i 0.285076 0.958505i \(-0.407981\pi\)
−0.958505 + 0.285076i \(0.907981\pi\)
\(350\) 7.20075 0.384896
\(351\) 0 0
\(352\) −0.801550 −0.0427228
\(353\) 2.20712 + 2.20712i 0.117473 + 0.117473i 0.763400 0.645927i \(-0.223529\pi\)
−0.645927 + 0.763400i \(0.723529\pi\)
\(354\) 0 0
\(355\) 7.85291i 0.416789i
\(356\) 0.761164 2.84070i 0.0403416 0.150557i
\(357\) 0 0
\(358\) 1.56774 5.85087i 0.0828574 0.309228i
\(359\) 14.3618 14.3618i 0.757986 0.757986i −0.217970 0.975956i \(-0.569943\pi\)
0.975956 + 0.217970i \(0.0699434\pi\)
\(360\) 0 0
\(361\) −1.64433 + 0.949354i −0.0865436 + 0.0499660i
\(362\) −8.66111 + 8.66111i −0.455218 + 0.455218i
\(363\) 0 0
\(364\) −5.45771 + 4.43822i −0.286062 + 0.232626i
\(365\) −20.5186 + 11.8464i −1.07399 + 0.620069i
\(366\) 0 0
\(367\) 23.2205 1.21210 0.606049 0.795427i \(-0.292753\pi\)
0.606049 + 0.795427i \(0.292753\pi\)
\(368\) 3.49688 6.05678i 0.182288 0.315731i
\(369\) 0 0
\(370\) −6.18074 23.0668i −0.321321 1.19919i
\(371\) −15.6026 4.18070i −0.810045 0.217051i
\(372\) 0 0
\(373\) 25.3140 1.31071 0.655355 0.755321i \(-0.272519\pi\)
0.655355 + 0.755321i \(0.272519\pi\)
\(374\) −3.22270 + 5.58188i −0.166642 + 0.288632i
\(375\) 0 0
\(376\) −4.61619 2.66516i −0.238062 0.137445i
\(377\) −23.0104 16.6457i −1.18510 0.857298i
\(378\) 0 0
\(379\) −22.2862 5.97156i −1.14476 0.306738i −0.363898 0.931439i \(-0.618554\pi\)
−0.780865 + 0.624700i \(0.785221\pi\)
\(380\) 13.4769i 0.691348i
\(381\) 0 0
\(382\) 0.406374 + 0.108888i 0.0207919 + 0.00557117i
\(383\) −16.8662 16.8662i −0.861821 0.861821i 0.129729 0.991550i \(-0.458589\pi\)
−0.991550 + 0.129729i \(0.958589\pi\)
\(384\) 0 0
\(385\) −4.45313 + 1.19321i −0.226953 + 0.0608118i
\(386\) 11.7687 + 6.79464i 0.599009 + 0.345838i
\(387\) 0 0
\(388\) 0.950861 3.54866i 0.0482726 0.180156i
\(389\) −12.4984 + 21.6479i −0.633694 + 1.09759i 0.353096 + 0.935587i \(0.385129\pi\)
−0.986790 + 0.162004i \(0.948204\pi\)
\(390\) 0 0
\(391\) −28.1190 48.7035i −1.42204 2.46304i
\(392\) −3.08469 + 0.826542i −0.155801 + 0.0417467i
\(393\) 0 0
\(394\) 0.801240 0.462596i 0.0403659 0.0233053i
\(395\) 2.31176 + 2.31176i 0.116317 + 0.116317i
\(396\) 0 0
\(397\) 20.3908 5.46370i 1.02338 0.274215i 0.292173 0.956366i \(-0.405622\pi\)
0.731212 + 0.682150i \(0.238955\pi\)
\(398\) 3.31954 + 12.3887i 0.166393 + 0.620989i
\(399\) 0 0
\(400\) 3.19629 + 1.84538i 0.159814 + 0.0922689i
\(401\) −4.57548 17.0759i −0.228488 0.852730i −0.980977 0.194125i \(-0.937813\pi\)
0.752488 0.658606i \(-0.228853\pi\)
\(402\) 0 0
\(403\) −6.69075 + 5.44093i −0.333290 + 0.271032i
\(404\) 13.6438i 0.678804i
\(405\) 0 0
\(406\) 7.68385 + 13.3088i 0.381343 + 0.660506i
\(407\) 3.24651 + 5.62312i 0.160923 + 0.278727i
\(408\) 0 0
\(409\) −14.7908 + 14.7908i −0.731359 + 0.731359i −0.970889 0.239530i \(-0.923007\pi\)
0.239530 + 0.970889i \(0.423007\pi\)
\(410\) −10.8003 + 10.8003i −0.533388 + 0.533388i
\(411\) 0 0
\(412\) 6.73592 + 11.6669i 0.331855 + 0.574789i
\(413\) 8.61171 + 14.9159i 0.423754 + 0.733964i
\(414\) 0 0
\(415\) 6.99715i 0.343477i
\(416\) −3.55999 + 0.571370i −0.174543 + 0.0280137i
\(417\) 0 0
\(418\) −0.948390 3.53944i −0.0463872 0.173120i
\(419\) 15.5017 + 8.94990i 0.757306 + 0.437231i 0.828328 0.560244i \(-0.189293\pi\)
−0.0710214 + 0.997475i \(0.522626\pi\)
\(420\) 0 0
\(421\) −0.247286 0.922884i −0.0120520 0.0449786i 0.959638 0.281238i \(-0.0907451\pi\)
−0.971690 + 0.236260i \(0.924078\pi\)
\(422\) −6.61278 + 1.77189i −0.321905 + 0.0862542i
\(423\) 0 0
\(424\) −5.85430 5.85430i −0.284310 0.284310i
\(425\) 25.7019 14.8390i 1.24672 0.719797i
\(426\) 0 0
\(427\) −9.30808 + 2.49409i −0.450450 + 0.120698i
\(428\) 9.26775 + 16.0522i 0.447974 + 0.775913i
\(429\) 0 0
\(430\) −3.44006 + 5.95835i −0.165894 + 0.287337i
\(431\) −10.1624 + 37.9267i −0.489507 + 1.82687i 0.0693375 + 0.997593i \(0.477911\pi\)
−0.558845 + 0.829272i \(0.688755\pi\)
\(432\) 0 0
\(433\) 9.53436 + 5.50467i 0.458192 + 0.264537i 0.711284 0.702905i \(-0.248114\pi\)
−0.253092 + 0.967442i \(0.581447\pi\)
\(434\) 4.50747 1.20777i 0.216365 0.0579749i
\(435\) 0 0
\(436\) 4.23071 + 4.23071i 0.202614 + 0.202614i
\(437\) 30.8826 + 8.27498i 1.47732 + 0.395846i
\(438\) 0 0
\(439\) 4.26304i 0.203464i −0.994812 0.101732i \(-0.967562\pi\)
0.994812 0.101732i \(-0.0324384\pi\)
\(440\) −2.28246 0.611584i −0.108812 0.0291561i
\(441\) 0 0
\(442\) −10.3343 + 27.0885i −0.491553 + 1.28847i
\(443\) −24.9846 14.4249i −1.18705 0.685346i −0.229419 0.973328i \(-0.573683\pi\)
−0.957636 + 0.287981i \(0.907016\pi\)
\(444\) 0 0
\(445\) 4.33492 7.50829i 0.205495 0.355927i
\(446\) 17.6918 0.837733
\(447\) 0 0
\(448\) 1.88454 + 0.504962i 0.0890363 + 0.0238572i
\(449\) 6.56424 + 24.4981i 0.309786 + 1.15614i 0.928747 + 0.370714i \(0.120887\pi\)
−0.618961 + 0.785421i \(0.712446\pi\)
\(450\) 0 0
\(451\) 2.07645 3.59652i 0.0977764 0.169354i
\(452\) 5.97917 0.281236
\(453\) 0 0
\(454\) 16.7719 9.68326i 0.787144 0.454458i
\(455\) −18.9275 + 8.47384i −0.887335 + 0.397260i
\(456\) 0 0
\(457\) −20.3409 + 20.3409i −0.951506 + 0.951506i −0.998877 0.0473712i \(-0.984916\pi\)
0.0473712 + 0.998877i \(0.484916\pi\)
\(458\) −22.4916 + 12.9855i −1.05096 + 0.606773i
\(459\) 0 0
\(460\) 14.5789 14.5789i 0.679745 0.679745i
\(461\) 9.57678 35.7410i 0.446035 1.66462i −0.267155 0.963654i \(-0.586083\pi\)
0.713190 0.700971i \(-0.247250\pi\)
\(462\) 0 0
\(463\) 0.644720 2.40613i 0.0299627 0.111822i −0.949325 0.314296i \(-0.898231\pi\)
0.979288 + 0.202474i \(0.0648981\pi\)
\(464\) 7.87674i 0.365669i
\(465\) 0 0
\(466\) −8.42093 8.42093i −0.390092 0.390092i
\(467\) −31.2741 −1.44719 −0.723596 0.690223i \(-0.757512\pi\)
−0.723596 + 0.690223i \(0.757512\pi\)
\(468\) 0 0
\(469\) −1.51482 −0.0699480
\(470\) −11.1113 11.1113i −0.512528 0.512528i
\(471\) 0 0
\(472\) 8.82789i 0.406337i
\(473\) 0.484165 1.80693i 0.0222619 0.0830827i
\(474\) 0 0
\(475\) −4.36688 + 16.2974i −0.200366 + 0.747777i
\(476\) 11.0934 11.0934i 0.508467 0.508467i
\(477\) 0 0
\(478\) −8.03762 + 4.64052i −0.367632 + 0.212253i
\(479\) 3.91612 3.91612i 0.178932 0.178932i −0.611958 0.790890i \(-0.709618\pi\)
0.790890 + 0.611958i \(0.209618\pi\)
\(480\) 0 0
\(481\) 18.4273 + 22.6602i 0.840213 + 1.03322i
\(482\) −8.48048 + 4.89621i −0.386275 + 0.223016i
\(483\) 0 0
\(484\) −10.3575 −0.470796
\(485\) 5.41526 9.37951i 0.245894 0.425902i
\(486\) 0 0
\(487\) −0.759319 2.83382i −0.0344080 0.128412i 0.946586 0.322453i \(-0.104507\pi\)
−0.980994 + 0.194040i \(0.937841\pi\)
\(488\) −4.77087 1.27835i −0.215967 0.0578683i
\(489\) 0 0
\(490\) −9.41450 −0.425304
\(491\) 17.8494 30.9160i 0.805531 1.39522i −0.110400 0.993887i \(-0.535213\pi\)
0.915932 0.401334i \(-0.131453\pi\)
\(492\) 0 0
\(493\) 54.8525 + 31.6691i 2.47043 + 1.42630i
\(494\) −6.73518 15.0440i −0.303030 0.676860i
\(495\) 0 0
\(496\) 2.31031 + 0.619046i 0.103736 + 0.0277960i
\(497\) 5.19714i 0.233124i
\(498\) 0 0
\(499\) −17.6124 4.71922i −0.788438 0.211261i −0.157936 0.987449i \(-0.550484\pi\)
−0.630502 + 0.776188i \(0.717151\pi\)
\(500\) −2.72919 2.72919i −0.122053 0.122053i
\(501\) 0 0
\(502\) 13.6281 3.65165i 0.608254 0.162981i
\(503\) 20.2816 + 11.7096i 0.904310 + 0.522104i 0.878596 0.477565i \(-0.158481\pi\)
0.0257142 + 0.999669i \(0.491814\pi\)
\(504\) 0 0
\(505\) −10.4102 + 38.8515i −0.463249 + 1.72887i
\(506\) −2.80293 + 4.85481i −0.124605 + 0.215823i
\(507\) 0 0
\(508\) 1.11899 + 1.93815i 0.0496473 + 0.0859917i
\(509\) −3.19606 + 0.856383i −0.141663 + 0.0379585i −0.328954 0.944346i \(-0.606696\pi\)
0.187291 + 0.982305i \(0.440029\pi\)
\(510\) 0 0
\(511\) −13.5794 + 7.84007i −0.600717 + 0.346824i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 4.94531 1.32509i 0.218128 0.0584473i
\(515\) 10.2790 + 38.3618i 0.452948 + 1.69042i
\(516\) 0 0
\(517\) 3.70011 + 2.13626i 0.162731 + 0.0939525i
\(518\) −4.09048 15.2659i −0.179725 0.670744i
\(519\) 0 0
\(520\) −10.5732 1.08927i −0.463667 0.0477676i
\(521\) 7.00178i 0.306754i −0.988168 0.153377i \(-0.950985\pi\)
0.988168 0.153377i \(-0.0490148\pi\)
\(522\) 0 0
\(523\) −21.4957 37.2316i −0.939940 1.62802i −0.765580 0.643341i \(-0.777548\pi\)
−0.174360 0.984682i \(-0.555786\pi\)
\(524\) −4.25993 7.37842i −0.186096 0.322328i
\(525\) 0 0
\(526\) 10.1984 10.1984i 0.444671 0.444671i
\(527\) 13.5997 13.5997i 0.592414 0.592414i
\(528\) 0 0
\(529\) −12.9564 22.4411i −0.563320 0.975698i
\(530\) −12.2036 21.1373i −0.530092 0.918146i
\(531\) 0 0
\(532\) 8.91912i 0.386693i
\(533\) 6.65861 17.4537i 0.288417 0.756003i
\(534\) 0 0
\(535\) 14.1426 + 52.7809i 0.611438 + 2.28192i
\(536\) −0.672403 0.388212i −0.0290434 0.0167682i
\(537\) 0 0
\(538\) −3.09785 11.5613i −0.133558 0.498445i
\(539\) 2.47254 0.662515i 0.106500 0.0285365i
\(540\) 0 0
\(541\) 8.12664 + 8.12664i 0.349391 + 0.349391i 0.859883 0.510491i \(-0.170536\pi\)
−0.510491 + 0.859883i \(0.670536\pi\)
\(542\) 20.6389 11.9159i 0.886518 0.511832i
\(543\) 0 0
\(544\) 7.76717 2.08121i 0.333015 0.0892310i
\(545\) 8.81916 + 15.2752i 0.377771 + 0.654319i
\(546\) 0 0
\(547\) 2.01972 3.49826i 0.0863570 0.149575i −0.819612 0.572919i \(-0.805811\pi\)
0.905969 + 0.423345i \(0.139144\pi\)
\(548\) 3.00821 11.2268i 0.128504 0.479585i
\(549\) 0 0
\(550\) −2.56199 1.47916i −0.109243 0.0630717i
\(551\) −34.7816 + 9.31971i −1.48175 + 0.397033i
\(552\) 0 0
\(553\) 1.52995 + 1.52995i 0.0650599 + 0.0650599i
\(554\) −9.12230 2.44431i −0.387570 0.103849i
\(555\) 0 0
\(556\) 22.8286i 0.968147i
\(557\) −22.2275 5.95584i −0.941810 0.252357i −0.244926 0.969542i \(-0.578764\pi\)
−0.696883 + 0.717185i \(0.745430\pi\)
\(558\) 0 0
\(559\) 0.862329 8.37039i 0.0364726 0.354030i
\(560\) 4.98106 + 2.87582i 0.210488 + 0.121525i
\(561\) 0 0
\(562\) 9.75137 16.8899i 0.411337 0.712456i
\(563\) −4.88910 −0.206051 −0.103025 0.994679i \(-0.532852\pi\)
−0.103025 + 0.994679i \(0.532852\pi\)
\(564\) 0 0
\(565\) 17.0260 + 4.56211i 0.716290 + 0.191929i
\(566\) 5.36367 + 20.0175i 0.225452 + 0.841397i
\(567\) 0 0
\(568\) 1.33190 2.30692i 0.0558853 0.0967963i
\(569\) 21.3664 0.895725 0.447863 0.894102i \(-0.352185\pi\)
0.447863 + 0.894102i \(0.352185\pi\)
\(570\) 0 0
\(571\) −21.5820 + 12.4604i −0.903179 + 0.521451i −0.878230 0.478238i \(-0.841276\pi\)
−0.0249486 + 0.999689i \(0.507942\pi\)
\(572\) 2.85351 0.457981i 0.119311 0.0191492i
\(573\) 0 0
\(574\) −7.14774 + 7.14774i −0.298341 + 0.298341i
\(575\) 22.3541 12.9061i 0.932230 0.538223i
\(576\) 0 0
\(577\) −4.11164 + 4.11164i −0.171170 + 0.171170i −0.787493 0.616323i \(-0.788621\pi\)
0.616323 + 0.787493i \(0.288621\pi\)
\(578\) 12.3354 46.0364i 0.513085 1.91486i
\(579\) 0 0
\(580\) −6.00996 + 22.4295i −0.249550 + 0.931333i
\(581\) 4.63079i 0.192117i
\(582\) 0 0
\(583\) 4.69252 + 4.69252i 0.194344 + 0.194344i
\(584\) −8.03688 −0.332568
\(585\) 0 0
\(586\) −19.3065 −0.797542
\(587\) 12.7350 + 12.7350i 0.525630 + 0.525630i 0.919266 0.393636i \(-0.128783\pi\)
−0.393636 + 0.919266i \(0.628783\pi\)
\(588\) 0 0
\(589\) 10.9342i 0.450535i
\(590\) −6.73569 + 25.1379i −0.277304 + 1.03491i
\(591\) 0 0
\(592\) 2.09658 7.82455i 0.0861690 0.321587i
\(593\) 8.08152 8.08152i 0.331868 0.331868i −0.521427 0.853296i \(-0.674600\pi\)
0.853296 + 0.521427i \(0.174600\pi\)
\(594\) 0 0
\(595\) 40.0535 23.1249i 1.64203 0.948029i
\(596\) −5.50303 + 5.50303i −0.225413 + 0.225413i
\(597\) 0 0
\(598\) −8.98821 + 23.5601i −0.367555 + 0.963443i
\(599\) 0.103217 0.0595921i 0.00421731 0.00243487i −0.497890 0.867240i \(-0.665892\pi\)
0.502107 + 0.864805i \(0.332558\pi\)
\(600\) 0 0
\(601\) 27.0871 1.10490 0.552452 0.833545i \(-0.313692\pi\)
0.552452 + 0.833545i \(0.313692\pi\)
\(602\) −2.27666 + 3.94330i −0.0927899 + 0.160717i
\(603\) 0 0
\(604\) −2.05706 7.67704i −0.0837004 0.312374i
\(605\) −29.4936 7.90279i −1.19909 0.321294i
\(606\) 0 0
\(607\) −18.4983 −0.750823 −0.375412 0.926858i \(-0.622499\pi\)
−0.375412 + 0.926858i \(0.622499\pi\)
\(608\) −2.28576 + 3.95904i −0.0926996 + 0.160560i
\(609\) 0 0
\(610\) −12.6100 7.28036i −0.510562 0.294773i
\(611\) 17.9564 + 6.85039i 0.726437 + 0.277137i
\(612\) 0 0
\(613\) −21.0392 5.63743i −0.849764 0.227694i −0.192447 0.981307i \(-0.561642\pi\)
−0.657317 + 0.753614i \(0.728309\pi\)
\(614\) 22.0280i 0.888978i
\(615\) 0 0
\(616\) −1.51056 0.404752i −0.0608620 0.0163079i
\(617\) 1.85763 + 1.85763i 0.0747856 + 0.0747856i 0.743510 0.668725i \(-0.233159\pi\)
−0.668725 + 0.743510i \(0.733159\pi\)
\(618\) 0 0
\(619\) 13.7714 3.69004i 0.553520 0.148315i 0.0287923 0.999585i \(-0.490834\pi\)
0.524728 + 0.851270i \(0.324167\pi\)
\(620\) 6.10641 + 3.52554i 0.245239 + 0.141589i
\(621\) 0 0
\(622\) 2.51514 9.38665i 0.100848 0.376370i
\(623\) 2.86889 4.96907i 0.114940 0.199081i
\(624\) 0 0
\(625\) −14.9160 25.8354i −0.596642 1.03341i
\(626\) 5.31097 1.42307i 0.212269 0.0568773i
\(627\) 0 0
\(628\) −3.41251 + 1.97021i −0.136174 + 0.0786201i
\(629\) −46.0595 46.0595i −1.83651 1.83651i
\(630\) 0 0
\(631\) 34.0030 9.11109i 1.35364 0.362707i 0.492163 0.870503i \(-0.336206\pi\)
0.861477 + 0.507797i \(0.169540\pi\)
\(632\) 0.287029 + 1.07121i 0.0114174 + 0.0426103i
\(633\) 0 0
\(634\) −0.906274 0.523237i −0.0359927 0.0207804i
\(635\) 1.70759 + 6.37280i 0.0677635 + 0.252897i
\(636\) 0 0
\(637\) 10.5092 4.70498i 0.416391 0.186418i
\(638\) 6.31360i 0.249958i
\(639\) 0 0
\(640\) 1.47400 + 2.55305i 0.0582651 + 0.100918i
\(641\) −2.90958 5.03954i −0.114922 0.199050i 0.802827 0.596212i \(-0.203328\pi\)
−0.917748 + 0.397162i \(0.869995\pi\)
\(642\) 0 0
\(643\) −4.20333 + 4.20333i −0.165763 + 0.165763i −0.785114 0.619351i \(-0.787396\pi\)
0.619351 + 0.785114i \(0.287396\pi\)
\(644\) 9.64846 9.64846i 0.380203 0.380203i
\(645\) 0 0
\(646\) 18.3801 + 31.8353i 0.723157 + 1.25254i
\(647\) −2.47586 4.28832i −0.0973362 0.168591i 0.813245 0.581921i \(-0.197699\pi\)
−0.910581 + 0.413330i \(0.864366\pi\)
\(648\) 0 0
\(649\) 7.07600i 0.277757i
\(650\) −12.4332 4.74327i −0.487668 0.186046i
\(651\) 0 0
\(652\) −5.33996 19.9290i −0.209129 0.780480i
\(653\) 17.7446 + 10.2448i 0.694400 + 0.400912i 0.805258 0.592924i \(-0.202027\pi\)
−0.110859 + 0.993836i \(0.535360\pi\)
\(654\) 0 0
\(655\) −6.50067 24.2608i −0.254002 0.947949i
\(656\) −5.00455 + 1.34097i −0.195395 + 0.0523559i
\(657\) 0 0
\(658\) −7.35360 7.35360i −0.286673 0.286673i
\(659\) 4.16393 2.40405i 0.162204 0.0936484i −0.416701 0.909044i \(-0.636814\pi\)
0.578905 + 0.815395i \(0.303480\pi\)
\(660\) 0 0
\(661\) 39.4745 10.5772i 1.53538 0.411404i 0.610611 0.791931i \(-0.290924\pi\)
0.924770 + 0.380527i \(0.124257\pi\)
\(662\) 6.17265 + 10.6913i 0.239907 + 0.415531i
\(663\) 0 0
\(664\) 1.18676 2.05553i 0.0460552 0.0797699i
\(665\) −6.80530 + 25.3977i −0.263898 + 0.984881i
\(666\) 0 0
\(667\) 47.7077 + 27.5440i 1.84725 + 1.06651i
\(668\) 5.45101 1.46059i 0.210906 0.0565120i
\(669\) 0 0
\(670\) −1.61850 1.61850i −0.0625282 0.0625282i
\(671\) 3.82410 + 1.02466i 0.147628 + 0.0395567i
\(672\) 0 0
\(673\) 26.1416i 1.00768i −0.863796 0.503842i \(-0.831919\pi\)
0.863796 0.503842i \(-0.168081\pi\)
\(674\) −20.4587 5.48190i −0.788040 0.211155i
\(675\) 0 0
\(676\) 12.3471 4.06814i 0.474887 0.156467i
\(677\) 34.5645 + 19.9558i 1.32842 + 0.766964i 0.985055 0.172238i \(-0.0551000\pi\)
0.343365 + 0.939202i \(0.388433\pi\)
\(678\) 0 0
\(679\) 3.58388 6.20745i 0.137537 0.238220i
\(680\) 23.7054 0.909062
\(681\) 0 0
\(682\) −1.85183 0.496197i −0.0709103 0.0190003i
\(683\) −9.69531 36.1834i −0.370981 1.38452i −0.859129 0.511759i \(-0.828994\pi\)
0.488148 0.872761i \(-0.337673\pi\)
\(684\) 0 0
\(685\) 17.1321 29.6737i 0.654584 1.13377i
\(686\) −19.8878 −0.759319
\(687\) 0 0
\(688\) −2.02114 + 1.16691i −0.0770554 + 0.0444880i
\(689\) 24.1862 + 17.4963i 0.921422 + 0.666556i
\(690\) 0 0
\(691\) 32.8832 32.8832i 1.25094 1.25094i 0.295637 0.955300i \(-0.404468\pi\)
0.955300 0.295637i \(-0.0955319\pi\)
\(692\) −14.2313 + 8.21647i −0.540994 + 0.312343i
\(693\) 0 0
\(694\) 1.77989 1.77989i 0.0675636 0.0675636i
\(695\) −17.4182 + 65.0057i −0.660711 + 2.46581i
\(696\) 0 0
\(697\) −10.7829 + 40.2424i −0.408433 + 1.52429i
\(698\) 17.7918i 0.673429i
\(699\) 0 0
\(700\) 5.09170 + 5.09170i 0.192448 + 0.192448i
\(701\) 27.1053 1.02375 0.511876 0.859059i \(-0.328951\pi\)
0.511876 + 0.859059i \(0.328951\pi\)
\(702\) 0 0
\(703\) 37.0318 1.39668
\(704\) −0.566782 0.566782i −0.0213614 0.0213614i
\(705\) 0 0
\(706\) 3.12134i 0.117473i
\(707\) −6.88960 + 25.7123i −0.259110 + 0.967012i
\(708\) 0 0
\(709\) 11.7626 43.8986i 0.441753 1.64865i −0.282615 0.959233i \(-0.591202\pi\)
0.724369 0.689413i \(-0.242131\pi\)
\(710\) 5.55285 5.55285i 0.208395 0.208395i
\(711\) 0 0
\(712\) 2.54690 1.47046i 0.0954492 0.0551076i
\(713\) 11.8283 11.8283i 0.442974 0.442974i
\(714\) 0 0
\(715\) 8.47498 + 0.873104i 0.316946 + 0.0326522i
\(716\) 5.24575 3.02863i 0.196043 0.113185i
\(717\) 0 0
\(718\) 20.3106 0.757986
\(719\) −10.2199 + 17.7014i −0.381138 + 0.660150i −0.991225 0.132184i \(-0.957801\pi\)
0.610087 + 0.792334i \(0.291134\pi\)
\(720\) 0 0
\(721\) 6.80276 + 25.3882i 0.253348 + 0.945508i
\(722\) −1.83401 0.491422i −0.0682548 0.0182888i
\(723\) 0 0
\(724\) −12.2487 −0.455218
\(725\) −14.5356 + 25.1763i −0.539837 + 0.935026i
\(726\) 0 0
\(727\) −25.7087 14.8430i −0.953485 0.550495i −0.0593229 0.998239i \(-0.518894\pi\)
−0.894162 + 0.447744i \(0.852227\pi\)
\(728\) −6.99748 0.720889i −0.259344 0.0267179i
\(729\) 0 0
\(730\) −22.8855 6.13215i −0.847030 0.226961i
\(731\) 18.7666i 0.694108i
\(732\) 0 0
\(733\) 1.64769 + 0.441496i 0.0608587 + 0.0163070i 0.289120 0.957293i \(-0.406637\pi\)
−0.228261 + 0.973600i \(0.573304\pi\)
\(734\) 16.4194 + 16.4194i 0.606049 + 0.606049i
\(735\) 0 0
\(736\) 6.75546 1.81012i 0.249009 0.0667219i
\(737\) 0.538965 + 0.311172i 0.0198530 + 0.0114622i
\(738\) 0 0
\(739\) −12.2243 + 45.6218i −0.449679 + 1.67822i 0.253600 + 0.967309i \(0.418385\pi\)
−0.703279 + 0.710914i \(0.748281\pi\)
\(740\) 11.9403 20.6812i 0.438933 0.760255i
\(741\) 0 0
\(742\) −8.07649 13.9889i −0.296497 0.513548i
\(743\) 31.1963 8.35903i 1.14448 0.306663i 0.363730 0.931504i \(-0.381503\pi\)
0.780752 + 0.624842i \(0.214836\pi\)
\(744\) 0 0
\(745\) −19.8690 + 11.4714i −0.727945 + 0.420279i
\(746\) 17.8997 + 17.8997i 0.655355 + 0.655355i
\(747\) 0 0
\(748\) −6.22578 + 1.66819i −0.227637 + 0.0609952i
\(749\) 9.35972 + 34.9309i 0.341997 + 1.27635i
\(750\) 0 0
\(751\) 31.9440 + 18.4429i 1.16565 + 0.672991i 0.952653 0.304061i \(-0.0983427\pi\)
0.213002 + 0.977052i \(0.431676\pi\)
\(752\) −1.37959 5.14869i −0.0503084 0.187753i
\(753\) 0 0
\(754\) −4.50053 28.0411i −0.163900 1.02120i
\(755\) 23.4303i 0.852717i
\(756\) 0 0
\(757\) −6.73813 11.6708i −0.244902 0.424182i 0.717202 0.696865i \(-0.245422\pi\)
−0.962104 + 0.272683i \(0.912089\pi\)
\(758\) −11.5362 19.9812i −0.419012 0.725751i
\(759\) 0 0
\(760\) −9.52957 + 9.52957i −0.345674 + 0.345674i
\(761\) 28.9718 28.9718i 1.05023 1.05023i 0.0515555 0.998670i \(-0.483582\pi\)
0.998670 0.0515555i \(-0.0164179\pi\)
\(762\) 0 0
\(763\) 5.83661 + 10.1093i 0.211299 + 0.365981i
\(764\) 0.210355 + 0.364345i 0.00761037 + 0.0131815i
\(765\) 0 0
\(766\) 23.8524i 0.861821i
\(767\) −5.04399 31.4272i −0.182128 1.13477i
\(768\) 0 0
\(769\) −5.66777 21.1524i −0.204385 0.762775i −0.989636 0.143598i \(-0.954133\pi\)
0.785251 0.619177i \(-0.212534\pi\)
\(770\) −3.99257 2.30511i −0.143882 0.0830704i
\(771\) 0 0
\(772\) 3.51716 + 13.1262i 0.126586 + 0.472424i
\(773\) 34.2518 9.17773i 1.23195 0.330100i 0.416611 0.909085i \(-0.363218\pi\)
0.815338 + 0.578985i \(0.196551\pi\)
\(774\) 0 0
\(775\) 6.24205 + 6.24205i 0.224221 + 0.224221i
\(776\) 3.18164 1.83692i 0.114214 0.0659416i
\(777\) 0 0
\(778\) −24.1451 + 6.46965i −0.865643 + 0.231948i
\(779\) −11.8427 20.5122i −0.424309 0.734925i
\(780\) 0 0
\(781\) −1.06759 + 1.84911i −0.0382012 + 0.0661665i
\(782\) 14.5555 54.3217i 0.520502 1.94254i
\(783\) 0 0
\(784\) −2.76566 1.59676i −0.0987736 0.0570270i
\(785\) −11.2206 + 3.00655i −0.400480 + 0.107308i
\(786\) 0 0
\(787\) −3.75885 3.75885i −0.133989 0.133989i 0.636932 0.770920i \(-0.280203\pi\)
−0.770920 + 0.636932i \(0.780203\pi\)
\(788\) 0.893667 + 0.239457i 0.0318356 + 0.00853032i
\(789\) 0 0
\(790\) 3.26932i 0.116317i
\(791\) 11.2680 + 3.01925i 0.400644 + 0.107352i
\(792\) 0 0
\(793\) 17.7147 + 1.82499i 0.629067 + 0.0648073i
\(794\) 18.2819 + 10.5551i 0.648800 + 0.374585i
\(795\) 0 0
\(796\) −6.41286 + 11.1074i −0.227298 + 0.393691i
\(797\) 5.11254 0.181096 0.0905478 0.995892i \(-0.471138\pi\)
0.0905478 + 0.995892i \(0.471138\pi\)
\(798\) 0 0
\(799\) −41.4015 11.0935i −1.46468 0.392459i
\(800\) 0.955238 + 3.56500i 0.0337728 + 0.126042i
\(801\) 0 0
\(802\) 8.83914 15.3098i 0.312121 0.540609i
\(803\) 6.44196 0.227332
\(804\) 0 0
\(805\) 34.8363 20.1128i 1.22782 0.708882i
\(806\) −8.57839 0.883757i −0.302161 0.0311290i
\(807\) 0 0
\(808\) −9.64762 + 9.64762i −0.339402 + 0.339402i
\(809\) −12.6443 + 7.30018i −0.444549 + 0.256661i −0.705525 0.708685i \(-0.749289\pi\)
0.260976 + 0.965345i \(0.415956\pi\)
\(810\) 0 0
\(811\) −20.1306 + 20.1306i −0.706880 + 0.706880i −0.965878 0.258998i \(-0.916608\pi\)
0.258998 + 0.965878i \(0.416608\pi\)
\(812\) −3.97745 + 14.8441i −0.139581 + 0.520924i
\(813\) 0 0
\(814\) −1.68052 + 6.27177i −0.0589021 + 0.219825i
\(815\) 60.8234i 2.13055i
\(816\) 0 0
\(817\) −7.54417 7.54417i −0.263937 0.263937i
\(818\) −20.9174 −0.731359
\(819\) 0 0
\(820\) −15.2739 −0.533388
\(821\) −3.57165 3.57165i −0.124651 0.124651i 0.642029 0.766680i \(-0.278093\pi\)
−0.766680 + 0.642029i \(0.778093\pi\)
\(822\) 0 0
\(823\) 44.2701i 1.54316i −0.636133 0.771579i \(-0.719467\pi\)
0.636133 0.771579i \(-0.280533\pi\)
\(824\) −3.48677 + 13.0128i −0.121467 + 0.453322i
\(825\) 0 0
\(826\) −4.45775 + 16.6365i −0.155105 + 0.578859i
\(827\) −14.3305 + 14.3305i −0.498320 + 0.498320i −0.910915 0.412595i \(-0.864623\pi\)
0.412595 + 0.910915i \(0.364623\pi\)
\(828\) 0 0
\(829\) 18.5330 10.7000i 0.643677 0.371627i −0.142352 0.989816i \(-0.545467\pi\)
0.786030 + 0.618189i \(0.212133\pi\)
\(830\) 4.94773 4.94773i 0.171738 0.171738i
\(831\) 0 0
\(832\) −2.92131 2.11327i −0.101278 0.0732646i
\(833\) −22.2391 + 12.8398i −0.770541 + 0.444872i
\(834\) 0 0
\(835\) 16.6365 0.575729
\(836\) 1.83215 3.17337i 0.0633662 0.109753i
\(837\) 0 0
\(838\) 4.63281 + 17.2899i 0.160038 + 0.597269i
\(839\) −47.0116 12.5967i −1.62302 0.434887i −0.671132 0.741337i \(-0.734192\pi\)
−0.951886 + 0.306451i \(0.900858\pi\)
\(840\) 0 0
\(841\) −33.0430 −1.13942
\(842\) 0.477720 0.827435i 0.0164633 0.0285153i
\(843\) 0 0
\(844\) −5.92886 3.42303i −0.204080 0.117825i
\(845\) 38.2630 2.16344i 1.31629 0.0744246i
\(846\) 0 0
\(847\) −19.5192 5.23015i −0.670687 0.179710i
\(848\) 8.27924i 0.284310i
\(849\) 0 0
\(850\) 28.6667 + 7.68123i 0.983261 + 0.263464i
\(851\) −40.0600 40.0600i −1.37324 1.37324i
\(852\) 0 0
\(853\) 1.60592 0.430304i 0.0549855 0.0147333i −0.231221 0.972901i \(-0.574272\pi\)
0.286207 + 0.958168i \(0.407606\pi\)
\(854\) −8.34540 4.81822i −0.285574 0.164876i
\(855\) 0 0
\(856\) −4.79734 + 17.9039i −0.163970 + 0.611943i
\(857\) 6.29501 10.9033i 0.215033 0.372449i −0.738249 0.674528i \(-0.764347\pi\)
0.953283 + 0.302079i \(0.0976806\pi\)
\(858\) 0 0
\(859\) 11.6155 + 20.1186i 0.396315 + 0.686438i 0.993268 0.115838i \(-0.0369554\pi\)
−0.596953 + 0.802276i \(0.703622\pi\)
\(860\) −6.64568 + 1.78070i −0.226616 + 0.0607215i
\(861\) 0 0
\(862\) −34.0042 + 19.6323i −1.15819 + 0.668679i
\(863\) 21.8752 + 21.8752i 0.744642 + 0.744642i 0.973467 0.228826i \(-0.0734885\pi\)
−0.228826 + 0.973467i \(0.573489\pi\)
\(864\) 0 0
\(865\) −46.7937 + 12.5383i −1.59103 + 0.426316i
\(866\) 2.84942 + 10.6342i 0.0968274 + 0.361365i
\(867\) 0 0
\(868\) 4.04129 + 2.33324i 0.137170 + 0.0791952i
\(869\) −0.230068 0.858625i −0.00780452 0.0291269i
\(870\) 0 0
\(871\) 2.61556 + 0.997842i 0.0886250 + 0.0338106i
\(872\) 5.98313i 0.202614i
\(873\) 0 0
\(874\) 15.9860 + 27.6886i 0.540735 + 0.936581i
\(875\) −3.76514 6.52142i −0.127285 0.220464i
\(876\) 0 0
\(877\) 18.9208 18.9208i 0.638911 0.638911i −0.311376 0.950287i \(-0.600790\pi\)
0.950287 + 0.311376i \(0.100790\pi\)
\(878\) 3.01442 3.01442i 0.101732 0.101732i
\(879\) 0 0
\(880\) −1.18149 2.04640i −0.0398280 0.0689841i
\(881\) 11.3559 + 19.6690i 0.382589 + 0.662664i 0.991432 0.130627i \(-0.0416990\pi\)
−0.608842 + 0.793291i \(0.708366\pi\)
\(882\) 0 0
\(883\) 11.3387i 0.381577i 0.981631 + 0.190789i \(0.0611045\pi\)
−0.981631 + 0.190789i \(0.938895\pi\)
\(884\) −26.4619 + 11.8470i −0.890011 + 0.398458i
\(885\) 0 0
\(886\) −7.46686 27.8667i −0.250854 0.936201i
\(887\) −15.5009 8.94943i −0.520468 0.300492i 0.216658 0.976248i \(-0.430484\pi\)
−0.737126 + 0.675755i \(0.763818\pi\)
\(888\) 0 0
\(889\) 1.13010 + 4.21758i 0.0379023 + 0.141453i
\(890\) 8.37441 2.24392i 0.280711 0.0752163i
\(891\) 0 0
\(892\) 12.5100 + 12.5100i 0.418866 + 0.418866i
\(893\) 21.1030 12.1838i 0.706183 0.407715i
\(894\) 0 0
\(895\) 17.2484 4.62170i 0.576551 0.154486i
\(896\) 0.975511 + 1.68964i 0.0325895 + 0.0564467i
\(897\) 0 0
\(898\) −12.6811 + 21.9644i −0.423175 + 0.732961i
\(899\) −4.87606 + 18.1977i −0.162626 + 0.606928i
\(900\) 0 0
\(901\) −57.6554 33.2874i −1.92078 1.10896i
\(902\) 4.01140 1.07485i 0.133565 0.0357886i
\(903\) 0 0
\(904\) 4.22791 + 4.22791i 0.140618 + 0.140618i
\(905\) −34.8788 9.34574i −1.15941 0.310663i
\(906\) 0 0
\(907\) 49.0395i 1.62833i 0.580634 + 0.814165i \(0.302805\pi\)
−0.580634 + 0.814165i \(0.697195\pi\)
\(908\) 18.7066 + 5.01242i 0.620801 + 0.166343i
\(909\) 0 0
\(910\) −19.3757 7.39185i −0.642298 0.245038i
\(911\) 49.7924 + 28.7477i 1.64970 + 0.952453i 0.977191 + 0.212362i \(0.0681155\pi\)
0.672506 + 0.740092i \(0.265218\pi\)
\(912\) 0 0
\(913\) −0.951247 + 1.64761i −0.0314817 + 0.0545279i
\(914\) −28.7663 −0.951506
\(915\) 0 0
\(916\) −25.0861 6.72179i −0.828867 0.222094i
\(917\) −4.30221 16.0561i −0.142071 0.530218i
\(918\) 0 0
\(919\) −18.6828 + 32.3595i −0.616288 + 1.06744i 0.373869 + 0.927482i \(0.378031\pi\)
−0.990157 + 0.139961i \(0.955302\pi\)
\(920\) 20.6177 0.679745
\(921\) 0 0
\(922\) 32.0445 18.5009i 1.05533 0.609295i
\(923\) −3.42345 + 8.97363i −0.112684 + 0.295371i
\(924\) 0 0
\(925\) 21.1405 21.1405i 0.695096 0.695096i
\(926\) 2.15728 1.24550i 0.0708925 0.0409298i
\(927\) 0 0
\(928\) −5.56970 + 5.56970i −0.182834 + 0.182834i
\(929\) −4.88234 + 18.2212i −0.160185 + 0.597817i 0.838421 + 0.545023i \(0.183479\pi\)
−0.998605 + 0.0527935i \(0.983187\pi\)
\(930\) 0 0
\(931\) 3.77854 14.1017i 0.123837 0.462165i
\(932\) 11.9090i 0.390092i
\(933\) 0 0
\(934\) −22.1141 22.1141i −0.723596 0.723596i
\(935\) −19.0011 −0.621402
\(936\) 0 0
\(937\) 38.9992 1.27405 0.637025 0.770843i \(-0.280165\pi\)
0.637025 + 0.770843i \(0.280165\pi\)
\(938\) −1.07114 1.07114i −0.0349740 0.0349740i
\(939\) 0 0
\(940\) 15.7138i 0.512528i
\(941\) 14.1514 52.8136i 0.461321 1.72167i −0.207485 0.978238i \(-0.566528\pi\)
0.668806 0.743437i \(-0.266805\pi\)
\(942\) 0 0
\(943\) −9.37840 + 35.0007i −0.305403 + 1.13978i
\(944\) −6.24226 + 6.24226i −0.203168 + 0.203168i
\(945\) 0 0
\(946\) 1.62005 0.935336i 0.0526723 0.0304104i
\(947\) 1.12052 1.12052i 0.0364120 0.0364120i −0.688666 0.725078i \(-0.741804\pi\)
0.725078 + 0.688666i \(0.241804\pi\)
\(948\) 0 0
\(949\) 28.6112 4.59203i 0.928760 0.149064i
\(950\) −14.6119 + 8.43617i −0.474072 + 0.273705i
\(951\) 0 0
\(952\) 15.6885 0.508467
\(953\) 10.7911 18.6908i 0.349559 0.605454i −0.636612 0.771184i \(-0.719665\pi\)
0.986171 + 0.165730i \(0.0529981\pi\)
\(954\) 0 0
\(955\) 0.321002 + 1.19799i 0.0103874 + 0.0387662i
\(956\) −8.96480 2.40211i −0.289942 0.0776898i
\(957\) 0 0
\(958\) 5.53822 0.178932
\(959\) 11.3382 19.6383i 0.366130 0.634155i
\(960\) 0 0
\(961\) −21.8925 12.6396i −0.706209 0.407730i
\(962\) −2.99310 + 29.0532i −0.0965015 + 0.936714i
\(963\) 0 0
\(964\) −9.45875 2.53446i −0.304646 0.0816296i
\(965\) 40.0613i 1.28962i
\(966\) 0 0
\(967\) −46.7947 12.5386i −1.50482 0.403215i −0.590107 0.807325i \(-0.700915\pi\)
−0.914710 + 0.404110i \(0.867581\pi\)
\(968\) −7.32387 7.32387i −0.235398 0.235398i
\(969\) 0 0
\(970\) 10.4615 2.80315i 0.335898 0.0900036i
\(971\) 1.30561 + 0.753792i 0.0418989 + 0.0241903i 0.520803 0.853677i \(-0.325633\pi\)
−0.478904 + 0.877867i \(0.658966\pi\)
\(972\) 0 0
\(973\) −11.5276 + 43.0214i −0.369557 + 1.37920i
\(974\) 1.46689 2.54073i 0.0470022 0.0814102i
\(975\) 0 0
\(976\) −2.46959 4.27745i −0.0790495 0.136918i
\(977\) −30.4352 + 8.15508i −0.973708 + 0.260904i −0.710393 0.703806i \(-0.751483\pi\)
−0.263315 + 0.964710i \(0.584816\pi\)
\(978\) 0 0
\(979\) −2.04147 + 1.17864i −0.0652457 + 0.0376696i
\(980\) −6.65706 6.65706i −0.212652 0.212652i
\(981\) 0 0
\(982\) 34.4824 9.23952i 1.10038 0.294845i
\(983\) 3.72607 + 13.9059i 0.118843 + 0.443529i 0.999546 0.0301410i \(-0.00959563\pi\)
−0.880702 + 0.473670i \(0.842929\pi\)
\(984\) 0 0
\(985\) 2.36206 + 1.36374i 0.0752616 + 0.0434523i
\(986\) 16.3931 + 61.1800i 0.522064 + 1.94837i
\(987\) 0 0
\(988\) 5.87519 15.4002i 0.186915 0.489945i
\(989\) 16.3222i 0.519014i
\(990\) 0 0
\(991\) 9.55307 + 16.5464i 0.303463 + 0.525614i 0.976918 0.213615i \(-0.0685236\pi\)
−0.673455 + 0.739229i \(0.735190\pi\)
\(992\) 1.19590 + 2.07137i 0.0379700 + 0.0657660i
\(993\) 0 0
\(994\) 3.67493 3.67493i 0.116562 0.116562i
\(995\) −26.7359 + 26.7359i −0.847586 + 0.847586i
\(996\) 0 0
\(997\) −2.47501 4.28685i −0.0783845 0.135766i 0.824169 0.566345i \(-0.191643\pi\)
−0.902553 + 0.430579i \(0.858310\pi\)
\(998\) −9.11683 15.7908i −0.288588 0.499850i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.bb.a.197.9 56
3.2 odd 2 234.2.y.a.119.1 yes 56
9.4 even 3 234.2.z.a.41.6 yes 56
9.5 odd 6 702.2.bc.a.665.9 56
13.7 odd 12 702.2.bc.a.683.9 56
39.20 even 12 234.2.z.a.137.6 yes 56
117.59 even 12 inner 702.2.bb.a.449.9 56
117.85 odd 12 234.2.y.a.59.1 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.y.a.59.1 56 117.85 odd 12
234.2.y.a.119.1 yes 56 3.2 odd 2
234.2.z.a.41.6 yes 56 9.4 even 3
234.2.z.a.137.6 yes 56 39.20 even 12
702.2.bb.a.197.9 56 1.1 even 1 trivial
702.2.bb.a.449.9 56 117.59 even 12 inner
702.2.bc.a.665.9 56 9.5 odd 6
702.2.bc.a.683.9 56 13.7 odd 12