Properties

Label 702.2.bb.a.197.7
Level $702$
Weight $2$
Character 702.197
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(71,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.71"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([10, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 197.7
Character \(\chi\) \(=\) 702.197
Dual form 702.2.bb.a.449.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(0.964970 - 3.60132i) q^{5} +(-0.861011 + 3.21334i) q^{7} +(0.707107 - 0.707107i) q^{8} +(-3.22885 + 1.86418i) q^{10} +(-4.48313 + 4.48313i) q^{11} +(-0.905106 + 3.49010i) q^{13} +(2.88100 - 1.66335i) q^{14} -1.00000 q^{16} +(-1.38308 + 2.39556i) q^{17} +(0.703205 + 2.62440i) q^{19} +(3.60132 + 0.964970i) q^{20} +6.34010 q^{22} +(-0.0915043 + 0.158490i) q^{23} +(-7.70819 - 4.45033i) q^{25} +(3.10788 - 1.82787i) q^{26} +(-3.21334 - 0.861011i) q^{28} +0.948565i q^{29} +(2.14063 + 0.573581i) q^{31} +(0.707107 + 0.707107i) q^{32} +(2.67190 - 0.715935i) q^{34} +(10.7414 + 6.20155i) q^{35} +(1.96458 - 7.33191i) q^{37} +(1.35849 - 2.35297i) q^{38} +(-1.86418 - 3.22885i) q^{40} +(-2.27956 + 0.610806i) q^{41} +(-3.17570 + 1.83349i) q^{43} +(-4.48313 - 4.48313i) q^{44} +(0.176773 - 0.0473661i) q^{46} +(1.38011 + 5.15065i) q^{47} +(-3.52202 - 2.03344i) q^{49} +(2.30366 + 8.59737i) q^{50} +(-3.49010 - 0.905106i) q^{52} -3.43327i q^{53} +(11.8191 + 20.4712i) q^{55} +(1.66335 + 2.88100i) q^{56} +(0.670737 - 0.670737i) q^{58} +(-3.31440 + 3.31440i) q^{59} +(4.13990 + 7.17052i) q^{61} +(-1.10807 - 1.91924i) q^{62} -1.00000i q^{64} +(11.6955 + 6.62741i) q^{65} +(1.93297 + 7.21395i) q^{67} +(-2.39556 - 1.38308i) q^{68} +(-3.21016 - 11.9805i) q^{70} +(-11.7943 + 3.16027i) q^{71} +(2.16027 + 2.16027i) q^{73} +(-6.57361 + 3.79528i) q^{74} +(-2.62440 + 0.703205i) q^{76} +(-10.5458 - 18.2658i) q^{77} +(6.31331 - 10.9350i) q^{79} +(-0.964970 + 3.60132i) q^{80} +(2.04380 + 1.17999i) q^{82} +(-6.52658 + 1.74879i) q^{83} +(7.29255 + 7.29255i) q^{85} +(3.54203 + 0.949085i) q^{86} +6.34010i q^{88} +(-0.643808 - 0.172508i) q^{89} +(-10.4356 - 5.91342i) q^{91} +(-0.158490 - 0.0915043i) q^{92} +(2.66617 - 4.61795i) q^{94} +10.1298 q^{95} +(-5.65566 - 1.51543i) q^{97} +(1.05259 + 3.92830i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7} - 56 q^{16} - 8 q^{19} - 4 q^{28} + 8 q^{31} - 24 q^{35} - 4 q^{37} + 36 q^{38} + 48 q^{41} + 12 q^{43} - 60 q^{47} + 24 q^{50} - 4 q^{52} + 120 q^{65} - 56 q^{67} - 24 q^{71} + 28 q^{73}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 0.964970 3.60132i 0.431548 1.61056i −0.317648 0.948209i \(-0.602893\pi\)
0.749195 0.662349i \(-0.230440\pi\)
\(6\) 0 0
\(7\) −0.861011 + 3.21334i −0.325432 + 1.21453i 0.588446 + 0.808537i \(0.299740\pi\)
−0.913877 + 0.405991i \(0.866927\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) −3.22885 + 1.86418i −1.02105 + 0.589505i
\(11\) −4.48313 + 4.48313i −1.35171 + 1.35171i −0.467968 + 0.883745i \(0.655014\pi\)
−0.883745 + 0.467968i \(0.844986\pi\)
\(12\) 0 0
\(13\) −0.905106 + 3.49010i −0.251031 + 0.967979i
\(14\) 2.88100 1.66335i 0.769980 0.444548i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −1.38308 + 2.39556i −0.335446 + 0.581010i −0.983570 0.180525i \(-0.942220\pi\)
0.648124 + 0.761534i \(0.275554\pi\)
\(18\) 0 0
\(19\) 0.703205 + 2.62440i 0.161326 + 0.602078i 0.998480 + 0.0551104i \(0.0175511\pi\)
−0.837154 + 0.546967i \(0.815782\pi\)
\(20\) 3.60132 + 0.964970i 0.805279 + 0.215774i
\(21\) 0 0
\(22\) 6.34010 1.35171
\(23\) −0.0915043 + 0.158490i −0.0190800 + 0.0330475i −0.875408 0.483385i \(-0.839407\pi\)
0.856328 + 0.516433i \(0.172740\pi\)
\(24\) 0 0
\(25\) −7.70819 4.45033i −1.54164 0.890065i
\(26\) 3.10788 1.82787i 0.609505 0.358474i
\(27\) 0 0
\(28\) −3.21334 0.861011i −0.607264 0.162716i
\(29\) 0.948565i 0.176144i 0.996114 + 0.0880720i \(0.0280706\pi\)
−0.996114 + 0.0880720i \(0.971929\pi\)
\(30\) 0 0
\(31\) 2.14063 + 0.573581i 0.384469 + 0.103018i 0.445876 0.895095i \(-0.352892\pi\)
−0.0614072 + 0.998113i \(0.519559\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) 2.67190 0.715935i 0.458228 0.122782i
\(35\) 10.7414 + 6.20155i 1.81563 + 1.04825i
\(36\) 0 0
\(37\) 1.96458 7.33191i 0.322975 1.20536i −0.593357 0.804939i \(-0.702198\pi\)
0.916332 0.400419i \(-0.131136\pi\)
\(38\) 1.35849 2.35297i 0.220376 0.381702i
\(39\) 0 0
\(40\) −1.86418 3.22885i −0.294753 0.510526i
\(41\) −2.27956 + 0.610806i −0.356007 + 0.0953919i −0.432390 0.901687i \(-0.642330\pi\)
0.0763827 + 0.997079i \(0.475663\pi\)
\(42\) 0 0
\(43\) −3.17570 + 1.83349i −0.484290 + 0.279605i −0.722202 0.691682i \(-0.756870\pi\)
0.237913 + 0.971287i \(0.423537\pi\)
\(44\) −4.48313 4.48313i −0.675857 0.675857i
\(45\) 0 0
\(46\) 0.176773 0.0473661i 0.0260637 0.00698375i
\(47\) 1.38011 + 5.15065i 0.201310 + 0.751300i 0.990543 + 0.137205i \(0.0438120\pi\)
−0.789232 + 0.614095i \(0.789521\pi\)
\(48\) 0 0
\(49\) −3.52202 2.03344i −0.503146 0.290491i
\(50\) 2.30366 + 8.59737i 0.325786 + 1.21585i
\(51\) 0 0
\(52\) −3.49010 0.905106i −0.483990 0.125516i
\(53\) 3.43327i 0.471596i −0.971802 0.235798i \(-0.924230\pi\)
0.971802 0.235798i \(-0.0757704\pi\)
\(54\) 0 0
\(55\) 11.8191 + 20.4712i 1.59368 + 2.76034i
\(56\) 1.66335 + 2.88100i 0.222274 + 0.384990i
\(57\) 0 0
\(58\) 0.670737 0.670737i 0.0880720 0.0880720i
\(59\) −3.31440 + 3.31440i −0.431498 + 0.431498i −0.889138 0.457640i \(-0.848695\pi\)
0.457640 + 0.889138i \(0.348695\pi\)
\(60\) 0 0
\(61\) 4.13990 + 7.17052i 0.530060 + 0.918090i 0.999385 + 0.0350651i \(0.0111639\pi\)
−0.469325 + 0.883025i \(0.655503\pi\)
\(62\) −1.10807 1.91924i −0.140725 0.243744i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 11.6955 + 6.62741i 1.45065 + 0.822029i
\(66\) 0 0
\(67\) 1.93297 + 7.21395i 0.236150 + 0.881324i 0.977627 + 0.210346i \(0.0674589\pi\)
−0.741477 + 0.670978i \(0.765874\pi\)
\(68\) −2.39556 1.38308i −0.290505 0.167723i
\(69\) 0 0
\(70\) −3.21016 11.9805i −0.383687 1.43194i
\(71\) −11.7943 + 3.16027i −1.39972 + 0.375055i −0.878245 0.478210i \(-0.841286\pi\)
−0.521478 + 0.853265i \(0.674619\pi\)
\(72\) 0 0
\(73\) 2.16027 + 2.16027i 0.252841 + 0.252841i 0.822134 0.569294i \(-0.192783\pi\)
−0.569294 + 0.822134i \(0.692783\pi\)
\(74\) −6.57361 + 3.79528i −0.764167 + 0.441192i
\(75\) 0 0
\(76\) −2.62440 + 0.703205i −0.301039 + 0.0806631i
\(77\) −10.5458 18.2658i −1.20180 2.08158i
\(78\) 0 0
\(79\) 6.31331 10.9350i 0.710302 1.23028i −0.254441 0.967088i \(-0.581892\pi\)
0.964744 0.263191i \(-0.0847751\pi\)
\(80\) −0.964970 + 3.60132i −0.107887 + 0.402639i
\(81\) 0 0
\(82\) 2.04380 + 1.17999i 0.225700 + 0.130308i
\(83\) −6.52658 + 1.74879i −0.716385 + 0.191955i −0.598558 0.801079i \(-0.704259\pi\)
−0.117827 + 0.993034i \(0.537593\pi\)
\(84\) 0 0
\(85\) 7.29255 + 7.29255i 0.790989 + 0.790989i
\(86\) 3.54203 + 0.949085i 0.381947 + 0.102342i
\(87\) 0 0
\(88\) 6.34010i 0.675857i
\(89\) −0.643808 0.172508i −0.0682435 0.0182858i 0.224536 0.974466i \(-0.427913\pi\)
−0.292779 + 0.956180i \(0.594580\pi\)
\(90\) 0 0
\(91\) −10.4356 5.91342i −1.09394 0.619895i
\(92\) −0.158490 0.0915043i −0.0165237 0.00953998i
\(93\) 0 0
\(94\) 2.66617 4.61795i 0.274995 0.476305i
\(95\) 10.1298 1.03930
\(96\) 0 0
\(97\) −5.65566 1.51543i −0.574246 0.153869i −0.0400026 0.999200i \(-0.512737\pi\)
−0.534243 + 0.845331i \(0.679403\pi\)
\(98\) 1.05259 + 3.92830i 0.106327 + 0.396819i
\(99\) 0 0
\(100\) 4.45033 7.70819i 0.445033 0.770819i
\(101\) 9.35186 0.930545 0.465272 0.885168i \(-0.345956\pi\)
0.465272 + 0.885168i \(0.345956\pi\)
\(102\) 0 0
\(103\) 0.256212 0.147924i 0.0252453 0.0145754i −0.487324 0.873221i \(-0.662027\pi\)
0.512570 + 0.858646i \(0.328694\pi\)
\(104\) 1.82787 + 3.10788i 0.179237 + 0.304753i
\(105\) 0 0
\(106\) −2.42769 + 2.42769i −0.235798 + 0.235798i
\(107\) 16.2026 9.35458i 1.56636 0.904341i 0.569777 0.821799i \(-0.307030\pi\)
0.996588 0.0825417i \(-0.0263038\pi\)
\(108\) 0 0
\(109\) −7.95895 + 7.95895i −0.762329 + 0.762329i −0.976743 0.214414i \(-0.931216\pi\)
0.214414 + 0.976743i \(0.431216\pi\)
\(110\) 6.11801 22.8327i 0.583329 2.17701i
\(111\) 0 0
\(112\) 0.861011 3.21334i 0.0813579 0.303632i
\(113\) 6.98898i 0.657468i 0.944423 + 0.328734i \(0.106622\pi\)
−0.944423 + 0.328734i \(0.893378\pi\)
\(114\) 0 0
\(115\) 0.482474 + 0.482474i 0.0449910 + 0.0449910i
\(116\) −0.948565 −0.0880720
\(117\) 0 0
\(118\) 4.68727 0.431498
\(119\) −6.50691 6.50691i −0.596487 0.596487i
\(120\) 0 0
\(121\) 29.1969i 2.65426i
\(122\) 2.14297 7.99767i 0.194015 0.724075i
\(123\) 0 0
\(124\) −0.573581 + 2.14063i −0.0515091 + 0.192234i
\(125\) −10.2835 + 10.2835i −0.919782 + 0.919782i
\(126\) 0 0
\(127\) −1.39357 + 0.804578i −0.123659 + 0.0713947i −0.560554 0.828118i \(-0.689412\pi\)
0.436894 + 0.899513i \(0.356078\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) −3.58371 12.9563i −0.314313 1.13634i
\(131\) −8.16562 + 4.71442i −0.713434 + 0.411901i −0.812331 0.583197i \(-0.801802\pi\)
0.0988974 + 0.995098i \(0.468468\pi\)
\(132\) 0 0
\(133\) −9.03853 −0.783740
\(134\) 3.73421 6.46785i 0.322587 0.558737i
\(135\) 0 0
\(136\) 0.715935 + 2.67190i 0.0613909 + 0.229114i
\(137\) −15.6755 4.20024i −1.33925 0.358851i −0.483093 0.875569i \(-0.660487\pi\)
−0.856155 + 0.516718i \(0.827153\pi\)
\(138\) 0 0
\(139\) 8.89419 0.754396 0.377198 0.926133i \(-0.376888\pi\)
0.377198 + 0.926133i \(0.376888\pi\)
\(140\) −6.20155 + 10.7414i −0.524127 + 0.907814i
\(141\) 0 0
\(142\) 10.5745 + 6.10517i 0.887389 + 0.512334i
\(143\) −11.5888 19.7043i −0.969108 1.64775i
\(144\) 0 0
\(145\) 3.41608 + 0.915337i 0.283690 + 0.0760146i
\(146\) 3.05508i 0.252841i
\(147\) 0 0
\(148\) 7.33191 + 1.96458i 0.602679 + 0.161487i
\(149\) 16.7277 + 16.7277i 1.37039 + 1.37039i 0.859862 + 0.510527i \(0.170550\pi\)
0.510527 + 0.859862i \(0.329450\pi\)
\(150\) 0 0
\(151\) 0.145209 0.0389086i 0.0118169 0.00316634i −0.252906 0.967491i \(-0.581386\pi\)
0.264723 + 0.964325i \(0.414720\pi\)
\(152\) 2.35297 + 1.35849i 0.190851 + 0.110188i
\(153\) 0 0
\(154\) −5.45890 + 20.3729i −0.439890 + 1.64169i
\(155\) 4.13129 7.15561i 0.331833 0.574752i
\(156\) 0 0
\(157\) 0.888484 + 1.53890i 0.0709087 + 0.122818i 0.899300 0.437333i \(-0.144077\pi\)
−0.828391 + 0.560150i \(0.810743\pi\)
\(158\) −12.1964 + 3.26801i −0.970291 + 0.259989i
\(159\) 0 0
\(160\) 3.22885 1.86418i 0.255263 0.147376i
\(161\) −0.430496 0.430496i −0.0339278 0.0339278i
\(162\) 0 0
\(163\) −5.77944 + 1.54860i −0.452681 + 0.121295i −0.477953 0.878385i \(-0.658621\pi\)
0.0252727 + 0.999681i \(0.491955\pi\)
\(164\) −0.610806 2.27956i −0.0476959 0.178004i
\(165\) 0 0
\(166\) 5.85157 + 3.37840i 0.454170 + 0.262215i
\(167\) −4.60758 17.1957i −0.356545 1.33064i −0.878529 0.477689i \(-0.841475\pi\)
0.521984 0.852955i \(-0.325192\pi\)
\(168\) 0 0
\(169\) −11.3616 6.31781i −0.873967 0.485986i
\(170\) 10.3132i 0.790989i
\(171\) 0 0
\(172\) −1.83349 3.17570i −0.139802 0.242145i
\(173\) −7.21223 12.4919i −0.548335 0.949745i −0.998389 0.0567432i \(-0.981928\pi\)
0.450053 0.893002i \(-0.351405\pi\)
\(174\) 0 0
\(175\) 20.9372 20.9372i 1.58271 1.58271i
\(176\) 4.48313 4.48313i 0.337928 0.337928i
\(177\) 0 0
\(178\) 0.333259 + 0.577222i 0.0249788 + 0.0432646i
\(179\) 7.51417 + 13.0149i 0.561636 + 0.972782i 0.997354 + 0.0726986i \(0.0231611\pi\)
−0.435718 + 0.900083i \(0.643506\pi\)
\(180\) 0 0
\(181\) 7.25012i 0.538897i 0.963015 + 0.269449i \(0.0868414\pi\)
−0.963015 + 0.269449i \(0.913159\pi\)
\(182\) 3.19763 + 11.5605i 0.237024 + 0.856919i
\(183\) 0 0
\(184\) 0.0473661 + 0.176773i 0.00349188 + 0.0130319i
\(185\) −24.5088 14.1501i −1.80192 1.04034i
\(186\) 0 0
\(187\) −4.53910 16.9401i −0.331932 1.23879i
\(188\) −5.15065 + 1.38011i −0.375650 + 0.100655i
\(189\) 0 0
\(190\) −7.16289 7.16289i −0.519650 0.519650i
\(191\) 2.75813 1.59241i 0.199571 0.115222i −0.396884 0.917869i \(-0.629909\pi\)
0.596455 + 0.802646i \(0.296575\pi\)
\(192\) 0 0
\(193\) −13.6996 + 3.67080i −0.986119 + 0.264230i −0.715620 0.698490i \(-0.753856\pi\)
−0.270500 + 0.962720i \(0.587189\pi\)
\(194\) 2.92759 + 5.07073i 0.210189 + 0.364057i
\(195\) 0 0
\(196\) 2.03344 3.52202i 0.145246 0.251573i
\(197\) 0.0907674 0.338748i 0.00646691 0.0241348i −0.962617 0.270866i \(-0.912690\pi\)
0.969084 + 0.246731i \(0.0793566\pi\)
\(198\) 0 0
\(199\) −17.1252 9.88723i −1.21397 0.700887i −0.250350 0.968155i \(-0.580546\pi\)
−0.963622 + 0.267268i \(0.913879\pi\)
\(200\) −8.59737 + 2.30366i −0.607926 + 0.162893i
\(201\) 0 0
\(202\) −6.61276 6.61276i −0.465272 0.465272i
\(203\) −3.04806 0.816725i −0.213932 0.0573229i
\(204\) 0 0
\(205\) 8.79882i 0.614536i
\(206\) −0.285767 0.0765711i −0.0199103 0.00533496i
\(207\) 0 0
\(208\) 0.905106 3.49010i 0.0627578 0.241995i
\(209\) −14.9181 8.61294i −1.03190 0.595770i
\(210\) 0 0
\(211\) 4.63875 8.03456i 0.319345 0.553122i −0.661007 0.750380i \(-0.729870\pi\)
0.980352 + 0.197258i \(0.0632038\pi\)
\(212\) 3.43327 0.235798
\(213\) 0 0
\(214\) −18.0717 4.84229i −1.23535 0.331012i
\(215\) 3.53853 + 13.2060i 0.241326 + 0.900639i
\(216\) 0 0
\(217\) −3.68622 + 6.38472i −0.250237 + 0.433423i
\(218\) 11.2557 0.762329
\(219\) 0 0
\(220\) −20.4712 + 11.8191i −1.38017 + 0.796842i
\(221\) −7.10892 6.99532i −0.478198 0.470556i
\(222\) 0 0
\(223\) 10.9424 10.9424i 0.732760 0.732760i −0.238406 0.971166i \(-0.576625\pi\)
0.971166 + 0.238406i \(0.0766248\pi\)
\(224\) −2.88100 + 1.66335i −0.192495 + 0.111137i
\(225\) 0 0
\(226\) 4.94195 4.94195i 0.328734 0.328734i
\(227\) −1.90344 + 7.10373i −0.126336 + 0.471491i −0.999884 0.0152467i \(-0.995147\pi\)
0.873548 + 0.486738i \(0.161813\pi\)
\(228\) 0 0
\(229\) −6.40571 + 23.9064i −0.423301 + 1.57978i 0.344304 + 0.938858i \(0.388115\pi\)
−0.767605 + 0.640923i \(0.778552\pi\)
\(230\) 0.682322i 0.0449910i
\(231\) 0 0
\(232\) 0.670737 + 0.670737i 0.0440360 + 0.0440360i
\(233\) 18.0279 1.18105 0.590525 0.807019i \(-0.298921\pi\)
0.590525 + 0.807019i \(0.298921\pi\)
\(234\) 0 0
\(235\) 19.8809 1.29689
\(236\) −3.31440 3.31440i −0.215749 0.215749i
\(237\) 0 0
\(238\) 9.20216i 0.596487i
\(239\) −7.37545 + 27.5256i −0.477078 + 1.78048i 0.136275 + 0.990671i \(0.456487\pi\)
−0.613353 + 0.789809i \(0.710180\pi\)
\(240\) 0 0
\(241\) 2.07549 7.74584i 0.133694 0.498954i −0.866306 0.499514i \(-0.833512\pi\)
1.00000 0.000560714i \(0.000178481\pi\)
\(242\) −20.6453 + 20.6453i −1.32713 + 1.32713i
\(243\) 0 0
\(244\) −7.17052 + 4.13990i −0.459045 + 0.265030i
\(245\) −10.7217 + 10.7217i −0.684985 + 0.684985i
\(246\) 0 0
\(247\) −9.79587 + 0.0788981i −0.623296 + 0.00502017i
\(248\) 1.91924 1.10807i 0.121872 0.0703627i
\(249\) 0 0
\(250\) 14.5430 0.919782
\(251\) 3.03917 5.26399i 0.191830 0.332260i −0.754026 0.656844i \(-0.771891\pi\)
0.945857 + 0.324584i \(0.105224\pi\)
\(252\) 0 0
\(253\) −0.300306 1.12076i −0.0188801 0.0704614i
\(254\) 1.55433 + 0.416480i 0.0975270 + 0.0261323i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 0.319391 0.553201i 0.0199230 0.0345077i −0.855892 0.517155i \(-0.826991\pi\)
0.875815 + 0.482647i \(0.160325\pi\)
\(258\) 0 0
\(259\) 21.8684 + 12.6257i 1.35883 + 0.784524i
\(260\) −6.62741 + 11.6955i −0.411015 + 0.725327i
\(261\) 0 0
\(262\) 9.10757 + 2.44037i 0.562667 + 0.150766i
\(263\) 5.63477i 0.347455i 0.984794 + 0.173727i \(0.0555811\pi\)
−0.984794 + 0.173727i \(0.944419\pi\)
\(264\) 0 0
\(265\) −12.3643 3.31300i −0.759533 0.203516i
\(266\) 6.39121 + 6.39121i 0.391870 + 0.391870i
\(267\) 0 0
\(268\) −7.21395 + 1.93297i −0.440662 + 0.118075i
\(269\) 17.6754 + 10.2049i 1.07769 + 0.622202i 0.930271 0.366873i \(-0.119572\pi\)
0.147415 + 0.989075i \(0.452905\pi\)
\(270\) 0 0
\(271\) 5.54365 20.6892i 0.336753 1.25678i −0.565204 0.824951i \(-0.691202\pi\)
0.901956 0.431827i \(-0.142131\pi\)
\(272\) 1.38308 2.39556i 0.0838615 0.145252i
\(273\) 0 0
\(274\) 8.11424 + 14.0543i 0.490199 + 0.849049i
\(275\) 54.5082 14.6054i 3.28697 0.880740i
\(276\) 0 0
\(277\) −4.17616 + 2.41111i −0.250921 + 0.144869i −0.620186 0.784455i \(-0.712943\pi\)
0.369265 + 0.929324i \(0.379610\pi\)
\(278\) −6.28914 6.28914i −0.377198 0.377198i
\(279\) 0 0
\(280\) 11.9805 3.21016i 0.715970 0.191844i
\(281\) 0.975427 + 3.64034i 0.0581891 + 0.217165i 0.988898 0.148596i \(-0.0474755\pi\)
−0.930709 + 0.365761i \(0.880809\pi\)
\(282\) 0 0
\(283\) 10.9117 + 6.29987i 0.648633 + 0.374489i 0.787932 0.615762i \(-0.211152\pi\)
−0.139299 + 0.990250i \(0.544485\pi\)
\(284\) −3.16027 11.7943i −0.187527 0.699861i
\(285\) 0 0
\(286\) −5.73846 + 22.1276i −0.339322 + 1.30843i
\(287\) 7.85090i 0.463424i
\(288\) 0 0
\(289\) 4.67418 + 8.09592i 0.274952 + 0.476231i
\(290\) −1.76829 3.06278i −0.103838 0.179852i
\(291\) 0 0
\(292\) −2.16027 + 2.16027i −0.126420 + 0.126420i
\(293\) 21.0170 21.0170i 1.22783 1.22783i 0.263045 0.964784i \(-0.415273\pi\)
0.964784 0.263045i \(-0.0847267\pi\)
\(294\) 0 0
\(295\) 8.73791 + 15.1345i 0.508741 + 0.881165i
\(296\) −3.79528 6.57361i −0.220596 0.382083i
\(297\) 0 0
\(298\) 23.6566i 1.37039i
\(299\) −0.470325 0.462809i −0.0271996 0.0267650i
\(300\) 0 0
\(301\) −3.15731 11.7832i −0.181984 0.679175i
\(302\) −0.130191 0.0751656i −0.00749163 0.00432530i
\(303\) 0 0
\(304\) −0.703205 2.62440i −0.0403315 0.150519i
\(305\) 29.8182 7.98976i 1.70738 0.457492i
\(306\) 0 0
\(307\) −22.9539 22.9539i −1.31005 1.31005i −0.921376 0.388674i \(-0.872933\pi\)
−0.388674 0.921376i \(-0.627067\pi\)
\(308\) 18.2658 10.5458i 1.04079 0.600901i
\(309\) 0 0
\(310\) −7.98104 + 2.13851i −0.453293 + 0.121459i
\(311\) 11.8059 + 20.4483i 0.669449 + 1.15952i 0.978058 + 0.208331i \(0.0668030\pi\)
−0.308610 + 0.951189i \(0.599864\pi\)
\(312\) 0 0
\(313\) 8.71521 15.0952i 0.492613 0.853230i −0.507351 0.861739i \(-0.669375\pi\)
0.999964 + 0.00850920i \(0.00270860\pi\)
\(314\) 0.459913 1.71642i 0.0259544 0.0968631i
\(315\) 0 0
\(316\) 10.9350 + 6.31331i 0.615140 + 0.355151i
\(317\) −0.604929 + 0.162090i −0.0339762 + 0.00910389i −0.275767 0.961224i \(-0.588932\pi\)
0.241791 + 0.970328i \(0.422265\pi\)
\(318\) 0 0
\(319\) −4.25254 4.25254i −0.238096 0.238096i
\(320\) −3.60132 0.964970i −0.201320 0.0539435i
\(321\) 0 0
\(322\) 0.608813i 0.0339278i
\(323\) −7.25949 1.94518i −0.403929 0.108232i
\(324\) 0 0
\(325\) 22.5088 22.8743i 1.24856 1.26884i
\(326\) 5.18170 + 2.99166i 0.286988 + 0.165693i
\(327\) 0 0
\(328\) −1.17999 + 2.04380i −0.0651539 + 0.112850i
\(329\) −17.7391 −0.977987
\(330\) 0 0
\(331\) 29.8637 + 8.00195i 1.64146 + 0.439827i 0.957203 0.289418i \(-0.0934616\pi\)
0.684253 + 0.729244i \(0.260128\pi\)
\(332\) −1.74879 6.52658i −0.0959774 0.358192i
\(333\) 0 0
\(334\) −8.90116 + 15.4173i −0.487050 + 0.843595i
\(335\) 27.8450 1.52133
\(336\) 0 0
\(337\) 7.79004 4.49758i 0.424350 0.244999i −0.272586 0.962131i \(-0.587879\pi\)
0.696937 + 0.717132i \(0.254546\pi\)
\(338\) 3.56647 + 12.5012i 0.193991 + 0.679976i
\(339\) 0 0
\(340\) −7.29255 + 7.29255i −0.395494 + 0.395494i
\(341\) −12.1682 + 7.02529i −0.658943 + 0.380441i
\(342\) 0 0
\(343\) −6.89966 + 6.89966i −0.372547 + 0.372547i
\(344\) −0.949085 + 3.54203i −0.0511712 + 0.190974i
\(345\) 0 0
\(346\) −3.73332 + 13.9330i −0.200705 + 0.749040i
\(347\) 7.42847i 0.398781i 0.979920 + 0.199390i \(0.0638962\pi\)
−0.979920 + 0.199390i \(0.936104\pi\)
\(348\) 0 0
\(349\) 25.5197 + 25.5197i 1.36604 + 1.36604i 0.866011 + 0.500024i \(0.166676\pi\)
0.500024 + 0.866011i \(0.333324\pi\)
\(350\) −29.6097 −1.58271
\(351\) 0 0
\(352\) −6.34010 −0.337928
\(353\) 2.17346 + 2.17346i 0.115682 + 0.115682i 0.762578 0.646896i \(-0.223933\pi\)
−0.646896 + 0.762578i \(0.723933\pi\)
\(354\) 0 0
\(355\) 45.5245i 2.41619i
\(356\) 0.172508 0.643808i 0.00914289 0.0341217i
\(357\) 0 0
\(358\) 3.88962 14.5163i 0.205573 0.767209i
\(359\) −9.73682 + 9.73682i −0.513890 + 0.513890i −0.915716 0.401826i \(-0.868376\pi\)
0.401826 + 0.915716i \(0.368376\pi\)
\(360\) 0 0
\(361\) 10.0615 5.80903i 0.529554 0.305738i
\(362\) 5.12661 5.12661i 0.269449 0.269449i
\(363\) 0 0
\(364\) 5.91342 10.4356i 0.309948 0.546972i
\(365\) 9.86442 5.69522i 0.516327 0.298102i
\(366\) 0 0
\(367\) −15.8770 −0.828771 −0.414385 0.910102i \(-0.636003\pi\)
−0.414385 + 0.910102i \(0.636003\pi\)
\(368\) 0.0915043 0.158490i 0.00476999 0.00826187i
\(369\) 0 0
\(370\) 7.32466 + 27.3360i 0.380791 + 1.42113i
\(371\) 11.0323 + 2.95609i 0.572767 + 0.153472i
\(372\) 0 0
\(373\) −0.725285 −0.0375538 −0.0187769 0.999824i \(-0.505977\pi\)
−0.0187769 + 0.999824i \(0.505977\pi\)
\(374\) −8.76886 + 15.1881i −0.453427 + 0.785359i
\(375\) 0 0
\(376\) 4.61795 + 2.66617i 0.238153 + 0.137497i
\(377\) −3.31058 0.858551i −0.170504 0.0442176i
\(378\) 0 0
\(379\) −2.92733 0.784375i −0.150367 0.0402906i 0.182850 0.983141i \(-0.441468\pi\)
−0.333217 + 0.942850i \(0.608134\pi\)
\(380\) 10.1298i 0.519650i
\(381\) 0 0
\(382\) −3.07629 0.824290i −0.157397 0.0421744i
\(383\) −1.38928 1.38928i −0.0709889 0.0709889i 0.670721 0.741710i \(-0.265985\pi\)
−0.741710 + 0.670721i \(0.765985\pi\)
\(384\) 0 0
\(385\) −75.9574 + 20.3527i −3.87115 + 1.03727i
\(386\) 12.2827 + 7.09144i 0.625175 + 0.360945i
\(387\) 0 0
\(388\) 1.51543 5.65566i 0.0769343 0.287123i
\(389\) −11.5891 + 20.0729i −0.587591 + 1.01774i 0.406956 + 0.913448i \(0.366590\pi\)
−0.994547 + 0.104289i \(0.966743\pi\)
\(390\) 0 0
\(391\) −0.253115 0.438409i −0.0128006 0.0221713i
\(392\) −3.92830 + 1.05259i −0.198409 + 0.0531636i
\(393\) 0 0
\(394\) −0.303713 + 0.175349i −0.0153009 + 0.00883396i
\(395\) −33.2881 33.2881i −1.67491 1.67491i
\(396\) 0 0
\(397\) −3.81012 + 1.02092i −0.191224 + 0.0512384i −0.353160 0.935563i \(-0.614893\pi\)
0.161936 + 0.986801i \(0.448226\pi\)
\(398\) 5.11801 + 19.1007i 0.256543 + 0.957430i
\(399\) 0 0
\(400\) 7.70819 + 4.45033i 0.385409 + 0.222516i
\(401\) −5.75855 21.4912i −0.287568 1.07322i −0.946942 0.321404i \(-0.895845\pi\)
0.659374 0.751815i \(-0.270821\pi\)
\(402\) 0 0
\(403\) −3.93935 + 6.95187i −0.196233 + 0.346297i
\(404\) 9.35186i 0.465272i
\(405\) 0 0
\(406\) 1.57779 + 2.73282i 0.0783045 + 0.135627i
\(407\) 24.0624 + 41.6773i 1.19273 + 2.06587i
\(408\) 0 0
\(409\) −19.9999 + 19.9999i −0.988934 + 0.988934i −0.999939 0.0110057i \(-0.996497\pi\)
0.0110057 + 0.999939i \(0.496497\pi\)
\(410\) 6.22171 6.22171i 0.307268 0.307268i
\(411\) 0 0
\(412\) 0.147924 + 0.256212i 0.00728769 + 0.0126227i
\(413\) −7.79655 13.5040i −0.383643 0.664490i
\(414\) 0 0
\(415\) 25.1918i 1.23662i
\(416\) −3.10788 + 1.82787i −0.152376 + 0.0896185i
\(417\) 0 0
\(418\) 4.45839 + 16.6389i 0.218067 + 0.813836i
\(419\) 9.72023 + 5.61198i 0.474864 + 0.274163i 0.718274 0.695761i \(-0.244933\pi\)
−0.243409 + 0.969924i \(0.578266\pi\)
\(420\) 0 0
\(421\) −0.256866 0.958636i −0.0125189 0.0467211i 0.959384 0.282104i \(-0.0910323\pi\)
−0.971903 + 0.235383i \(0.924366\pi\)
\(422\) −8.96138 + 2.40120i −0.436233 + 0.116888i
\(423\) 0 0
\(424\) −2.42769 2.42769i −0.117899 0.117899i
\(425\) 21.3221 12.3103i 1.03427 0.597138i
\(426\) 0 0
\(427\) −26.6058 + 7.12900i −1.28754 + 0.344996i
\(428\) 9.35458 + 16.2026i 0.452171 + 0.783182i
\(429\) 0 0
\(430\) 6.83591 11.8401i 0.329657 0.570982i
\(431\) 1.41740 5.28983i 0.0682740 0.254802i −0.923350 0.383959i \(-0.874560\pi\)
0.991624 + 0.129157i \(0.0412271\pi\)
\(432\) 0 0
\(433\) −14.9131 8.61010i −0.716680 0.413775i 0.0968497 0.995299i \(-0.469123\pi\)
−0.813529 + 0.581524i \(0.802457\pi\)
\(434\) 7.12122 1.90813i 0.341830 0.0915930i
\(435\) 0 0
\(436\) −7.95895 7.95895i −0.381165 0.381165i
\(437\) −0.480287 0.128693i −0.0229752 0.00615620i
\(438\) 0 0
\(439\) 5.14800i 0.245701i 0.992425 + 0.122850i \(0.0392035\pi\)
−0.992425 + 0.122850i \(0.960796\pi\)
\(440\) 22.8327 + 6.11801i 1.08851 + 0.291664i
\(441\) 0 0
\(442\) 0.0803264 + 9.97320i 0.00382074 + 0.474377i
\(443\) −19.9015 11.4901i −0.945547 0.545912i −0.0538522 0.998549i \(-0.517150\pi\)
−0.891695 + 0.452637i \(0.850483\pi\)
\(444\) 0 0
\(445\) −1.24251 + 2.15209i −0.0589006 + 0.102019i
\(446\) −15.4749 −0.732760
\(447\) 0 0
\(448\) 3.21334 + 0.861011i 0.151816 + 0.0406790i
\(449\) 4.11231 + 15.3473i 0.194072 + 0.724286i 0.992505 + 0.122203i \(0.0389958\pi\)
−0.798433 + 0.602083i \(0.794338\pi\)
\(450\) 0 0
\(451\) 7.48123 12.9579i 0.352277 0.610162i
\(452\) −6.98898 −0.328734
\(453\) 0 0
\(454\) 6.36903 3.67716i 0.298913 0.172578i
\(455\) −31.3661 + 31.8755i −1.47047 + 1.49435i
\(456\) 0 0
\(457\) 18.3372 18.3372i 0.857780 0.857780i −0.133296 0.991076i \(-0.542556\pi\)
0.991076 + 0.133296i \(0.0425562\pi\)
\(458\) 21.4339 12.3749i 1.00154 0.578240i
\(459\) 0 0
\(460\) −0.482474 + 0.482474i −0.0224955 + 0.0224955i
\(461\) −0.435138 + 1.62396i −0.0202664 + 0.0756352i −0.975318 0.220803i \(-0.929132\pi\)
0.955052 + 0.296438i \(0.0957989\pi\)
\(462\) 0 0
\(463\) 4.49747 16.7848i 0.209015 0.780055i −0.779173 0.626809i \(-0.784361\pi\)
0.988188 0.153246i \(-0.0489727\pi\)
\(464\) 0.948565i 0.0440360i
\(465\) 0 0
\(466\) −12.7477 12.7477i −0.590525 0.590525i
\(467\) 0.582570 0.0269581 0.0134791 0.999909i \(-0.495709\pi\)
0.0134791 + 0.999909i \(0.495709\pi\)
\(468\) 0 0
\(469\) −24.8452 −1.14724
\(470\) −14.0579 14.0579i −0.648444 0.648444i
\(471\) 0 0
\(472\) 4.68727i 0.215749i
\(473\) 6.01729 22.4568i 0.276675 1.03257i
\(474\) 0 0
\(475\) 6.25898 23.3588i 0.287182 1.07178i
\(476\) 6.50691 6.50691i 0.298244 0.298244i
\(477\) 0 0
\(478\) 24.6787 14.2483i 1.12878 0.651701i
\(479\) −5.53126 + 5.53126i −0.252730 + 0.252730i −0.822089 0.569359i \(-0.807191\pi\)
0.569359 + 0.822089i \(0.307191\pi\)
\(480\) 0 0
\(481\) 23.8109 + 13.4927i 1.08569 + 0.615215i
\(482\) −6.94473 + 4.00954i −0.316324 + 0.182630i
\(483\) 0 0
\(484\) 29.1969 1.32713
\(485\) −10.9151 + 18.9055i −0.495629 + 0.858454i
\(486\) 0 0
\(487\) 1.40502 + 5.24359i 0.0636674 + 0.237610i 0.990425 0.138049i \(-0.0440831\pi\)
−0.926758 + 0.375659i \(0.877416\pi\)
\(488\) 7.99767 + 2.14297i 0.362038 + 0.0970077i
\(489\) 0 0
\(490\) 15.1628 0.684985
\(491\) −1.20154 + 2.08113i −0.0542247 + 0.0939199i −0.891864 0.452304i \(-0.850602\pi\)
0.837639 + 0.546224i \(0.183935\pi\)
\(492\) 0 0
\(493\) −2.27235 1.31194i −0.102341 0.0590868i
\(494\) 6.98252 + 6.87094i 0.314158 + 0.309138i
\(495\) 0 0
\(496\) −2.14063 0.573581i −0.0961172 0.0257545i
\(497\) 40.6200i 1.82206i
\(498\) 0 0
\(499\) −6.02143 1.61344i −0.269556 0.0722273i 0.121509 0.992590i \(-0.461227\pi\)
−0.391065 + 0.920363i \(0.627893\pi\)
\(500\) −10.2835 10.2835i −0.459891 0.459891i
\(501\) 0 0
\(502\) −5.87122 + 1.57319i −0.262045 + 0.0702148i
\(503\) 11.8442 + 6.83823i 0.528105 + 0.304901i 0.740244 0.672338i \(-0.234710\pi\)
−0.212140 + 0.977239i \(0.568043\pi\)
\(504\) 0 0
\(505\) 9.02426 33.6790i 0.401574 1.49870i
\(506\) −0.580146 + 1.00484i −0.0257907 + 0.0446707i
\(507\) 0 0
\(508\) −0.804578 1.39357i −0.0356974 0.0618297i
\(509\) −7.67175 + 2.05564i −0.340044 + 0.0911146i −0.424800 0.905287i \(-0.639656\pi\)
0.0847559 + 0.996402i \(0.472989\pi\)
\(510\) 0 0
\(511\) −8.80170 + 5.08166i −0.389364 + 0.224799i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) −0.617015 + 0.165329i −0.0272154 + 0.00729234i
\(515\) −0.285484 1.06544i −0.0125799 0.0469490i
\(516\) 0 0
\(517\) −29.2783 16.9038i −1.28766 0.743429i
\(518\) −6.53555 24.3910i −0.287156 1.07168i
\(519\) 0 0
\(520\) 12.9563 3.58371i 0.568171 0.157156i
\(521\) 40.0151i 1.75309i −0.481316 0.876547i \(-0.659841\pi\)
0.481316 0.876547i \(-0.340159\pi\)
\(522\) 0 0
\(523\) 5.07493 + 8.79004i 0.221911 + 0.384362i 0.955388 0.295353i \(-0.0954371\pi\)
−0.733477 + 0.679714i \(0.762104\pi\)
\(524\) −4.71442 8.16562i −0.205951 0.356717i
\(525\) 0 0
\(526\) 3.98438 3.98438i 0.173727 0.173727i
\(527\) −4.33471 + 4.33471i −0.188823 + 0.188823i
\(528\) 0 0
\(529\) 11.4833 + 19.8896i 0.499272 + 0.864764i
\(530\) 6.40023 + 11.0855i 0.278008 + 0.481525i
\(531\) 0 0
\(532\) 9.03853i 0.391870i
\(533\) −0.0685312 8.50873i −0.00296842 0.368554i
\(534\) 0 0
\(535\) −18.0538 67.3776i −0.780533 2.91299i
\(536\) 6.46785 + 3.73421i 0.279368 + 0.161293i
\(537\) 0 0
\(538\) −5.28243 19.7143i −0.227742 0.849944i
\(539\) 24.9058 6.67350i 1.07277 0.287448i
\(540\) 0 0
\(541\) 24.3541 + 24.3541i 1.04706 + 1.04706i 0.998836 + 0.0482280i \(0.0153574\pi\)
0.0482280 + 0.998836i \(0.484643\pi\)
\(542\) −18.5494 + 10.7095i −0.796766 + 0.460013i
\(543\) 0 0
\(544\) −2.67190 + 0.715935i −0.114557 + 0.0306954i
\(545\) 20.9826 + 36.3429i 0.898794 + 1.55676i
\(546\) 0 0
\(547\) −3.38921 + 5.87029i −0.144912 + 0.250996i −0.929340 0.369224i \(-0.879623\pi\)
0.784428 + 0.620220i \(0.212957\pi\)
\(548\) 4.20024 15.6755i 0.179425 0.669624i
\(549\) 0 0
\(550\) −48.8707 28.2155i −2.08385 1.20311i
\(551\) −2.48941 + 0.667035i −0.106052 + 0.0284167i
\(552\) 0 0
\(553\) 29.7019 + 29.7019i 1.26305 + 1.26305i
\(554\) 4.65790 + 1.24808i 0.197895 + 0.0530259i
\(555\) 0 0
\(556\) 8.89419i 0.377198i
\(557\) 41.9906 + 11.2513i 1.77920 + 0.476734i 0.990437 0.137967i \(-0.0440568\pi\)
0.788760 + 0.614701i \(0.210723\pi\)
\(558\) 0 0
\(559\) −3.52472 12.7430i −0.149080 0.538972i
\(560\) −10.7414 6.20155i −0.453907 0.262063i
\(561\) 0 0
\(562\) 1.88438 3.26384i 0.0794878 0.137677i
\(563\) −1.63879 −0.0690668 −0.0345334 0.999404i \(-0.510995\pi\)
−0.0345334 + 0.999404i \(0.510995\pi\)
\(564\) 0 0
\(565\) 25.1695 + 6.74415i 1.05889 + 0.283729i
\(566\) −3.26105 12.1704i −0.137072 0.511561i
\(567\) 0 0
\(568\) −6.10517 + 10.5745i −0.256167 + 0.443694i
\(569\) −3.08870 −0.129485 −0.0647424 0.997902i \(-0.520623\pi\)
−0.0647424 + 0.997902i \(0.520623\pi\)
\(570\) 0 0
\(571\) 5.59791 3.23195i 0.234265 0.135253i −0.378273 0.925694i \(-0.623482\pi\)
0.612538 + 0.790441i \(0.290149\pi\)
\(572\) 19.7043 11.5888i 0.823876 0.484554i
\(573\) 0 0
\(574\) −5.55143 + 5.55143i −0.231712 + 0.231712i
\(575\) 1.41067 0.814448i 0.0588288 0.0339648i
\(576\) 0 0
\(577\) 32.0507 32.0507i 1.33429 1.33429i 0.432795 0.901492i \(-0.357527\pi\)
0.901492 0.432795i \(-0.142473\pi\)
\(578\) 2.41954 9.02983i 0.100639 0.375591i
\(579\) 0 0
\(580\) −0.915337 + 3.41608i −0.0380073 + 0.141845i
\(581\) 22.4778i 0.932537i
\(582\) 0 0
\(583\) 15.3918 + 15.3918i 0.637463 + 0.637463i
\(584\) 3.05508 0.126420
\(585\) 0 0
\(586\) −29.7226 −1.22783
\(587\) 16.0190 + 16.0190i 0.661174 + 0.661174i 0.955657 0.294483i \(-0.0951473\pi\)
−0.294483 + 0.955657i \(0.595147\pi\)
\(588\) 0 0
\(589\) 6.02121i 0.248100i
\(590\) 4.52308 16.8803i 0.186212 0.694953i
\(591\) 0 0
\(592\) −1.96458 + 7.33191i −0.0807437 + 0.301340i
\(593\) −14.2009 + 14.2009i −0.583160 + 0.583160i −0.935770 0.352610i \(-0.885294\pi\)
0.352610 + 0.935770i \(0.385294\pi\)
\(594\) 0 0
\(595\) −29.7124 + 17.1545i −1.21809 + 0.703265i
\(596\) −16.7277 + 16.7277i −0.685194 + 0.685194i
\(597\) 0 0
\(598\) 0.00531438 + 0.659826i 0.000217321 + 0.0269823i
\(599\) 8.75479 5.05458i 0.357711 0.206525i −0.310365 0.950617i \(-0.600451\pi\)
0.668076 + 0.744093i \(0.267118\pi\)
\(600\) 0 0
\(601\) −15.4541 −0.630387 −0.315194 0.949027i \(-0.602069\pi\)
−0.315194 + 0.949027i \(0.602069\pi\)
\(602\) −6.09946 + 10.5646i −0.248595 + 0.430580i
\(603\) 0 0
\(604\) 0.0389086 + 0.145209i 0.00158317 + 0.00590846i
\(605\) −105.147 28.1741i −4.27484 1.14544i
\(606\) 0 0
\(607\) −28.3126 −1.14917 −0.574586 0.818444i \(-0.694837\pi\)
−0.574586 + 0.818444i \(0.694837\pi\)
\(608\) −1.35849 + 2.35297i −0.0550939 + 0.0954255i
\(609\) 0 0
\(610\) −26.7342 15.4350i −1.08244 0.624946i
\(611\) −19.2254 + 0.154846i −0.777778 + 0.00626440i
\(612\) 0 0
\(613\) −10.9069 2.92249i −0.440524 0.118038i 0.0317379 0.999496i \(-0.489896\pi\)
−0.472262 + 0.881458i \(0.656562\pi\)
\(614\) 32.4617i 1.31005i
\(615\) 0 0
\(616\) −20.3729 5.45890i −0.820847 0.219945i
\(617\) −27.0649 27.0649i −1.08959 1.08959i −0.995570 0.0940202i \(-0.970028\pi\)
−0.0940202 0.995570i \(-0.529972\pi\)
\(618\) 0 0
\(619\) 25.4606 6.82214i 1.02335 0.274205i 0.292150 0.956372i \(-0.405629\pi\)
0.731196 + 0.682168i \(0.238963\pi\)
\(620\) 7.15561 + 4.13129i 0.287376 + 0.165917i
\(621\) 0 0
\(622\) 6.11116 22.8072i 0.245035 0.914484i
\(623\) 1.10865 1.92024i 0.0444172 0.0769328i
\(624\) 0 0
\(625\) 4.85917 + 8.41632i 0.194367 + 0.336653i
\(626\) −16.8365 + 4.51132i −0.672921 + 0.180309i
\(627\) 0 0
\(628\) −1.53890 + 0.888484i −0.0614088 + 0.0354544i
\(629\) 14.8469 + 14.8469i 0.591984 + 0.591984i
\(630\) 0 0
\(631\) 38.1709 10.2279i 1.51956 0.407165i 0.599963 0.800028i \(-0.295182\pi\)
0.919597 + 0.392863i \(0.128515\pi\)
\(632\) −3.26801 12.1964i −0.129994 0.485146i
\(633\) 0 0
\(634\) 0.542364 + 0.313134i 0.0215400 + 0.0124361i
\(635\) 1.55279 + 5.79508i 0.0616205 + 0.229971i
\(636\) 0 0
\(637\) 10.2847 10.4517i 0.407495 0.414112i
\(638\) 6.01399i 0.238096i
\(639\) 0 0
\(640\) 1.86418 + 3.22885i 0.0736881 + 0.127632i
\(641\) 16.8449 + 29.1763i 0.665335 + 1.15239i 0.979194 + 0.202925i \(0.0650448\pi\)
−0.313859 + 0.949470i \(0.601622\pi\)
\(642\) 0 0
\(643\) 16.2755 16.2755i 0.641844 0.641844i −0.309165 0.951009i \(-0.600049\pi\)
0.951009 + 0.309165i \(0.100049\pi\)
\(644\) 0.430496 0.430496i 0.0169639 0.0169639i
\(645\) 0 0
\(646\) 3.75779 + 6.50868i 0.147848 + 0.256081i
\(647\) 3.32926 + 5.76644i 0.130887 + 0.226702i 0.924019 0.382348i \(-0.124884\pi\)
−0.793132 + 0.609050i \(0.791551\pi\)
\(648\) 0 0
\(649\) 29.7178i 1.16652i
\(650\) −32.0907 + 0.258466i −1.25870 + 0.0101379i
\(651\) 0 0
\(652\) −1.54860 5.77944i −0.0606477 0.226340i
\(653\) −18.3358 10.5862i −0.717536 0.414270i 0.0963092 0.995351i \(-0.469296\pi\)
−0.813845 + 0.581082i \(0.802630\pi\)
\(654\) 0 0
\(655\) 9.09855 + 33.9563i 0.355510 + 1.32678i
\(656\) 2.27956 0.610806i 0.0890018 0.0238480i
\(657\) 0 0
\(658\) 12.5434 + 12.5434i 0.488994 + 0.488994i
\(659\) 34.2945 19.7999i 1.33592 0.771296i 0.349723 0.936853i \(-0.386276\pi\)
0.986200 + 0.165557i \(0.0529423\pi\)
\(660\) 0 0
\(661\) −24.0112 + 6.43378i −0.933927 + 0.250245i −0.693529 0.720429i \(-0.743945\pi\)
−0.240399 + 0.970674i \(0.577278\pi\)
\(662\) −15.4586 26.7750i −0.600815 1.04064i
\(663\) 0 0
\(664\) −3.37840 + 5.85157i −0.131108 + 0.227085i
\(665\) −8.72191 + 32.5506i −0.338221 + 1.26226i
\(666\) 0 0
\(667\) −0.150338 0.0867978i −0.00582112 0.00336082i
\(668\) 17.1957 4.60758i 0.665322 0.178273i
\(669\) 0 0
\(670\) −19.6894 19.6894i −0.760666 0.760666i
\(671\) −50.7060 13.5866i −1.95748 0.524506i
\(672\) 0 0
\(673\) 8.10263i 0.312334i 0.987731 + 0.156167i \(0.0499137\pi\)
−0.987731 + 0.156167i \(0.950086\pi\)
\(674\) −8.68866 2.32812i −0.334675 0.0896758i
\(675\) 0 0
\(676\) 6.31781 11.3616i 0.242993 0.436983i
\(677\) 1.64864 + 0.951842i 0.0633623 + 0.0365822i 0.531346 0.847155i \(-0.321686\pi\)
−0.467984 + 0.883737i \(0.655020\pi\)
\(678\) 0 0
\(679\) 9.73918 16.8688i 0.373755 0.647363i
\(680\) 10.3132 0.395494
\(681\) 0 0
\(682\) 13.5718 + 3.63656i 0.519692 + 0.139251i
\(683\) 1.49884 + 5.59375i 0.0573515 + 0.214039i 0.988655 0.150206i \(-0.0479938\pi\)
−0.931303 + 0.364245i \(0.881327\pi\)
\(684\) 0 0
\(685\) −30.2528 + 52.3993i −1.15590 + 2.00208i
\(686\) 9.75759 0.372547
\(687\) 0 0
\(688\) 3.17570 1.83349i 0.121072 0.0699012i
\(689\) 11.9825 + 3.10747i 0.456495 + 0.118385i
\(690\) 0 0
\(691\) −33.4689 + 33.4689i −1.27322 + 1.27322i −0.328828 + 0.944390i \(0.606654\pi\)
−0.944390 + 0.328828i \(0.893346\pi\)
\(692\) 12.4919 7.21223i 0.474872 0.274168i
\(693\) 0 0
\(694\) 5.25272 5.25272i 0.199390 0.199390i
\(695\) 8.58263 32.0308i 0.325558 1.21500i
\(696\) 0 0
\(697\) 1.68959 6.30562i 0.0639976 0.238842i
\(698\) 36.0902i 1.36604i
\(699\) 0 0
\(700\) 20.9372 + 20.9372i 0.791353 + 0.791353i
\(701\) −28.7797 −1.08700 −0.543498 0.839411i \(-0.682900\pi\)
−0.543498 + 0.839411i \(0.682900\pi\)
\(702\) 0 0
\(703\) 20.6233 0.777824
\(704\) 4.48313 + 4.48313i 0.168964 + 0.168964i
\(705\) 0 0
\(706\) 3.07374i 0.115682i
\(707\) −8.05205 + 30.0507i −0.302829 + 1.13017i
\(708\) 0 0
\(709\) 8.40582 31.3709i 0.315687 1.17816i −0.607661 0.794197i \(-0.707892\pi\)
0.923348 0.383964i \(-0.125441\pi\)
\(710\) 32.1907 32.1907i 1.20809 1.20809i
\(711\) 0 0
\(712\) −0.577222 + 0.333259i −0.0216323 + 0.0124894i
\(713\) −0.286784 + 0.286784i −0.0107401 + 0.0107401i
\(714\) 0 0
\(715\) −82.1442 + 22.7211i −3.07202 + 0.849721i
\(716\) −13.0149 + 7.51417i −0.486391 + 0.280818i
\(717\) 0 0
\(718\) 13.7699 0.513890
\(719\) 13.4021 23.2131i 0.499813 0.865701i −0.500187 0.865917i \(-0.666735\pi\)
1.00000 0.000215949i \(6.87386e-5\pi\)
\(720\) 0 0
\(721\) 0.254728 + 0.950659i 0.00948658 + 0.0354044i
\(722\) −11.2222 3.00697i −0.417646 0.111908i
\(723\) 0 0
\(724\) −7.25012 −0.269449
\(725\) 4.22142 7.31172i 0.156780 0.271550i
\(726\) 0 0
\(727\) −2.56179 1.47905i −0.0950116 0.0548550i 0.451741 0.892149i \(-0.350803\pi\)
−0.546753 + 0.837294i \(0.684136\pi\)
\(728\) −11.5605 + 3.19763i −0.428460 + 0.118512i
\(729\) 0 0
\(730\) −11.0023 2.94806i −0.407214 0.109113i
\(731\) 10.1435i 0.375169i
\(732\) 0 0
\(733\) 46.8751 + 12.5601i 1.73137 + 0.463920i 0.980498 0.196527i \(-0.0629663\pi\)
0.750873 + 0.660447i \(0.229633\pi\)
\(734\) 11.2267 + 11.2267i 0.414385 + 0.414385i
\(735\) 0 0
\(736\) −0.176773 + 0.0473661i −0.00651593 + 0.00174594i
\(737\) −41.0068 23.6753i −1.51050 0.872090i
\(738\) 0 0
\(739\) −10.8543 + 40.5087i −0.399281 + 1.49014i 0.415084 + 0.909783i \(0.363752\pi\)
−0.814365 + 0.580354i \(0.802914\pi\)
\(740\) 14.1501 24.5088i 0.520170 0.900960i
\(741\) 0 0
\(742\) −5.71072 9.89126i −0.209647 0.363119i
\(743\) −39.4848 + 10.5799i −1.44856 + 0.388140i −0.895521 0.445018i \(-0.853197\pi\)
−0.553035 + 0.833158i \(0.686530\pi\)
\(744\) 0 0
\(745\) 76.3836 44.1001i 2.79848 1.61570i
\(746\) 0.512854 + 0.512854i 0.0187769 + 0.0187769i
\(747\) 0 0
\(748\) 16.9401 4.53910i 0.619393 0.165966i
\(749\) 16.1088 + 60.1188i 0.588602 + 2.19669i
\(750\) 0 0
\(751\) 22.8343 + 13.1834i 0.833234 + 0.481068i 0.854959 0.518696i \(-0.173582\pi\)
−0.0217248 + 0.999764i \(0.506916\pi\)
\(752\) −1.38011 5.15065i −0.0503276 0.187825i
\(753\) 0 0
\(754\) 1.73385 + 2.94802i 0.0631431 + 0.107361i
\(755\) 0.560489i 0.0203983i
\(756\) 0 0
\(757\) −5.99038 10.3756i −0.217724 0.377109i 0.736388 0.676560i \(-0.236530\pi\)
−0.954112 + 0.299451i \(0.903197\pi\)
\(758\) 1.51530 + 2.62457i 0.0550380 + 0.0953287i
\(759\) 0 0
\(760\) 7.16289 7.16289i 0.259825 0.259825i
\(761\) 8.76263 8.76263i 0.317645 0.317645i −0.530217 0.847862i \(-0.677890\pi\)
0.847862 + 0.530217i \(0.177890\pi\)
\(762\) 0 0
\(763\) −18.7220 32.4275i −0.677784 1.17396i
\(764\) 1.59241 + 2.75813i 0.0576112 + 0.0997856i
\(765\) 0 0
\(766\) 1.96474i 0.0709889i
\(767\) −8.56770 14.5675i −0.309362 0.526001i
\(768\) 0 0
\(769\) 1.22527 + 4.57277i 0.0441843 + 0.164898i 0.984493 0.175425i \(-0.0561301\pi\)
−0.940308 + 0.340324i \(0.889463\pi\)
\(770\) 68.1015 + 39.3184i 2.45421 + 1.41694i
\(771\) 0 0
\(772\) −3.67080 13.6996i −0.132115 0.493060i
\(773\) −26.0869 + 6.98997i −0.938281 + 0.251412i −0.695382 0.718640i \(-0.744765\pi\)
−0.242899 + 0.970052i \(0.578098\pi\)
\(774\) 0 0
\(775\) −13.9478 13.9478i −0.501019 0.501019i
\(776\) −5.07073 + 2.92759i −0.182029 + 0.105094i
\(777\) 0 0
\(778\) 22.3884 5.99896i 0.802664 0.215073i
\(779\) −3.20599 5.55294i −0.114867 0.198955i
\(780\) 0 0
\(781\) 38.7074 67.0431i 1.38506 2.39899i
\(782\) −0.131022 + 0.488982i −0.00468534 + 0.0174859i
\(783\) 0 0
\(784\) 3.52202 + 2.03344i 0.125786 + 0.0726228i
\(785\) 6.39942 1.71472i 0.228405 0.0612010i
\(786\) 0 0
\(787\) 25.3004 + 25.3004i 0.901862 + 0.901862i 0.995597 0.0937351i \(-0.0298807\pi\)
−0.0937351 + 0.995597i \(0.529881\pi\)
\(788\) 0.338748 + 0.0907674i 0.0120674 + 0.00323345i
\(789\) 0 0
\(790\) 47.0765i 1.67491i
\(791\) −22.4579 6.01759i −0.798513 0.213961i
\(792\) 0 0
\(793\) −28.7728 + 7.95858i −1.02175 + 0.282617i
\(794\) 3.41606 + 1.97226i 0.121231 + 0.0699930i
\(795\) 0 0
\(796\) 9.88723 17.1252i 0.350444 0.606986i
\(797\) −5.72377 −0.202746 −0.101373 0.994848i \(-0.532324\pi\)
−0.101373 + 0.994848i \(0.532324\pi\)
\(798\) 0 0
\(799\) −14.2475 3.81761i −0.504041 0.135057i
\(800\) −2.30366 8.59737i −0.0814466 0.303963i
\(801\) 0 0
\(802\) −11.1247 + 19.2685i −0.392825 + 0.680393i
\(803\) −19.3695 −0.683536
\(804\) 0 0
\(805\) −1.96577 + 1.13494i −0.0692842 + 0.0400013i
\(806\) 7.70125 2.13017i 0.271265 0.0750320i
\(807\) 0 0
\(808\) 6.61276 6.61276i 0.232636 0.232636i
\(809\) 31.6723 18.2860i 1.11354 0.642903i 0.173796 0.984782i \(-0.444397\pi\)
0.939744 + 0.341879i \(0.111063\pi\)
\(810\) 0 0
\(811\) 13.4164 13.4164i 0.471115 0.471115i −0.431160 0.902275i \(-0.641896\pi\)
0.902275 + 0.431160i \(0.141896\pi\)
\(812\) 0.816725 3.04806i 0.0286614 0.106966i
\(813\) 0 0
\(814\) 12.4556 46.4850i 0.436570 1.62930i
\(815\) 22.3079i 0.781413i
\(816\) 0 0
\(817\) −7.04497 7.04497i −0.246472 0.246472i
\(818\) 28.2842 0.988934
\(819\) 0 0
\(820\) −8.79882 −0.307268
\(821\) −2.17233 2.17233i −0.0758148 0.0758148i 0.668183 0.743997i \(-0.267072\pi\)
−0.743997 + 0.668183i \(0.767072\pi\)
\(822\) 0 0
\(823\) 45.1543i 1.57398i 0.616965 + 0.786990i \(0.288362\pi\)
−0.616965 + 0.786990i \(0.711638\pi\)
\(824\) 0.0765711 0.285767i 0.00266748 0.00995517i
\(825\) 0 0
\(826\) −4.03579 + 15.0618i −0.140423 + 0.524066i
\(827\) −9.71124 + 9.71124i −0.337693 + 0.337693i −0.855498 0.517806i \(-0.826749\pi\)
0.517806 + 0.855498i \(0.326749\pi\)
\(828\) 0 0
\(829\) −11.7657 + 6.79293i −0.408639 + 0.235928i −0.690205 0.723614i \(-0.742480\pi\)
0.281566 + 0.959542i \(0.409146\pi\)
\(830\) 17.8133 17.8133i 0.618309 0.618309i
\(831\) 0 0
\(832\) 3.49010 + 0.905106i 0.120997 + 0.0313789i
\(833\) 9.74247 5.62482i 0.337557 0.194888i
\(834\) 0 0
\(835\) −66.3734 −2.29695
\(836\) 8.61294 14.9181i 0.297885 0.515952i
\(837\) 0 0
\(838\) −2.90497 10.8415i −0.100351 0.374514i
\(839\) 42.9336 + 11.5040i 1.48223 + 0.397163i 0.907106 0.420901i \(-0.138286\pi\)
0.575127 + 0.818064i \(0.304953\pi\)
\(840\) 0 0
\(841\) 28.1002 0.968973
\(842\) −0.496227 + 0.859490i −0.0171011 + 0.0296200i
\(843\) 0 0
\(844\) 8.03456 + 4.63875i 0.276561 + 0.159672i
\(845\) −33.7160 + 34.8201i −1.15987 + 1.19785i
\(846\) 0 0
\(847\) 93.8193 + 25.1388i 3.22367 + 0.863780i
\(848\) 3.43327i 0.117899i
\(849\) 0 0
\(850\) −23.7817 6.37228i −0.815705 0.218568i
\(851\) 0.982268 + 0.982268i 0.0336717 + 0.0336717i
\(852\) 0 0
\(853\) −15.3450 + 4.11168i −0.525403 + 0.140781i −0.511765 0.859126i \(-0.671008\pi\)
−0.0136383 + 0.999907i \(0.504341\pi\)
\(854\) 23.8541 + 13.7722i 0.816270 + 0.471274i
\(855\) 0 0
\(856\) 4.84229 18.0717i 0.165506 0.617676i
\(857\) 11.7570 20.3638i 0.401613 0.695614i −0.592308 0.805712i \(-0.701783\pi\)
0.993921 + 0.110098i \(0.0351164\pi\)
\(858\) 0 0
\(859\) −4.23525 7.33567i −0.144505 0.250290i 0.784683 0.619897i \(-0.212826\pi\)
−0.929188 + 0.369607i \(0.879492\pi\)
\(860\) −13.2060 + 3.53853i −0.450320 + 0.120663i
\(861\) 0 0
\(862\) −4.74273 + 2.73822i −0.161538 + 0.0932640i
\(863\) −4.48332 4.48332i −0.152614 0.152614i 0.626670 0.779284i \(-0.284417\pi\)
−0.779284 + 0.626670i \(0.784417\pi\)
\(864\) 0 0
\(865\) −51.9470 + 13.9192i −1.76625 + 0.473266i
\(866\) 4.45692 + 16.6334i 0.151452 + 0.565227i
\(867\) 0 0
\(868\) −6.38472 3.68622i −0.216711 0.125118i
\(869\) 20.7195 + 77.3262i 0.702861 + 2.62311i
\(870\) 0 0
\(871\) −26.9269 + 0.216875i −0.912384 + 0.00734854i
\(872\) 11.2557i 0.381165i
\(873\) 0 0
\(874\) 0.248615 + 0.430614i 0.00840952 + 0.0145657i
\(875\) −24.1901 41.8984i −0.817774 1.41643i
\(876\) 0 0
\(877\) −9.00681 + 9.00681i −0.304138 + 0.304138i −0.842630 0.538492i \(-0.818994\pi\)
0.538492 + 0.842630i \(0.318994\pi\)
\(878\) 3.64019 3.64019i 0.122850 0.122850i
\(879\) 0 0
\(880\) −11.8191 20.4712i −0.398421 0.690085i
\(881\) 28.5401 + 49.4329i 0.961541 + 1.66544i 0.718634 + 0.695389i \(0.244768\pi\)
0.242907 + 0.970050i \(0.421899\pi\)
\(882\) 0 0
\(883\) 35.3145i 1.18843i −0.804307 0.594214i \(-0.797463\pi\)
0.804307 0.594214i \(-0.202537\pi\)
\(884\) 6.99532 7.10892i 0.235278 0.239099i
\(885\) 0 0
\(886\) 5.94772 + 22.1972i 0.199818 + 0.745729i
\(887\) 33.3408 + 19.2493i 1.11947 + 0.646328i 0.941267 0.337665i \(-0.109637\pi\)
0.178207 + 0.983993i \(0.442970\pi\)
\(888\) 0 0
\(889\) −1.38550 5.17076i −0.0464682 0.173422i
\(890\) 2.40035 0.643171i 0.0804598 0.0215591i
\(891\) 0 0
\(892\) 10.9424 + 10.9424i 0.366380 + 0.366380i
\(893\) −12.5468 + 7.24393i −0.419864 + 0.242409i
\(894\) 0 0
\(895\) 54.1219 14.5019i 1.80909 0.484745i
\(896\) −1.66335 2.88100i −0.0555685 0.0962474i
\(897\) 0 0
\(898\) 7.94437 13.7601i 0.265107 0.459179i
\(899\) −0.544079 + 2.03053i −0.0181460 + 0.0677219i
\(900\) 0 0
\(901\) 8.22462 + 4.74849i 0.274002 + 0.158195i
\(902\) −14.4526 + 3.87257i −0.481220 + 0.128942i
\(903\) 0 0
\(904\) 4.94195 + 4.94195i 0.164367 + 0.164367i
\(905\) 26.1100 + 6.99615i 0.867925 + 0.232560i
\(906\) 0 0
\(907\) 37.9356i 1.25963i −0.776745 0.629815i \(-0.783131\pi\)
0.776745 0.629815i \(-0.216869\pi\)
\(908\) −7.10373 1.90344i −0.235746 0.0631678i
\(909\) 0 0
\(910\) 44.7186 0.360173i 1.48241 0.0119396i
\(911\) 36.1297 + 20.8595i 1.19703 + 0.691107i 0.959892 0.280369i \(-0.0904568\pi\)
0.237140 + 0.971476i \(0.423790\pi\)
\(912\) 0 0
\(913\) 21.4194 37.0995i 0.708879 1.22782i
\(914\) −25.9328 −0.857780
\(915\) 0 0
\(916\) −23.9064 6.40571i −0.789891 0.211651i
\(917\) −8.11834 30.2981i −0.268091 1.00053i
\(918\) 0 0
\(919\) −16.7214 + 28.9624i −0.551590 + 0.955381i 0.446570 + 0.894748i \(0.352645\pi\)
−0.998160 + 0.0606329i \(0.980688\pi\)
\(920\) 0.682322 0.0224955
\(921\) 0 0
\(922\) 1.45600 0.840621i 0.0479508 0.0276844i
\(923\) −0.354576 44.0236i −0.0116710 1.44905i
\(924\) 0 0
\(925\) −47.7727 + 47.7727i −1.57076 + 1.57076i
\(926\) −15.0488 + 8.68844i −0.494535 + 0.285520i
\(927\) 0 0
\(928\) −0.670737 + 0.670737i −0.0220180 + 0.0220180i
\(929\) −2.86847 + 10.7053i −0.0941115 + 0.351229i −0.996883 0.0788911i \(-0.974862\pi\)
0.902772 + 0.430120i \(0.141529\pi\)
\(930\) 0 0
\(931\) 2.85985 10.6731i 0.0937277 0.349797i
\(932\) 18.0279i 0.590525i
\(933\) 0 0
\(934\) −0.411940 0.411940i −0.0134791 0.0134791i
\(935\) −65.3869 −2.13838
\(936\) 0 0
\(937\) −10.8175 −0.353392 −0.176696 0.984265i \(-0.556541\pi\)
−0.176696 + 0.984265i \(0.556541\pi\)
\(938\) 17.5682 + 17.5682i 0.573621 + 0.573621i
\(939\) 0 0
\(940\) 19.8809i 0.648444i
\(941\) −3.40767 + 12.7176i −0.111087 + 0.414582i −0.998964 0.0454978i \(-0.985513\pi\)
0.887877 + 0.460080i \(0.152179\pi\)
\(942\) 0 0
\(943\) 0.111783 0.417179i 0.00364015 0.0135852i
\(944\) 3.31440 3.31440i 0.107875 0.107875i
\(945\) 0 0
\(946\) −20.1342 + 11.6245i −0.654621 + 0.377945i
\(947\) 35.8279 35.8279i 1.16425 1.16425i 0.180716 0.983535i \(-0.442159\pi\)
0.983535 0.180716i \(-0.0578414\pi\)
\(948\) 0 0
\(949\) −9.49483 + 5.58428i −0.308215 + 0.181273i
\(950\) −20.9429 + 12.0914i −0.679479 + 0.392297i
\(951\) 0 0
\(952\) −9.20216 −0.298244
\(953\) 12.0254 20.8285i 0.389540 0.674702i −0.602848 0.797856i \(-0.705967\pi\)
0.992388 + 0.123154i \(0.0393008\pi\)
\(954\) 0 0
\(955\) −3.07325 11.4695i −0.0994480 0.371145i
\(956\) −27.5256 7.37545i −0.890240 0.238539i
\(957\) 0 0
\(958\) 7.82238 0.252730
\(959\) 26.9936 46.7542i 0.871668 1.50977i
\(960\) 0 0
\(961\) −22.5935 13.0443i −0.728822 0.420785i
\(962\) −7.29607 26.3777i −0.235235 0.850450i
\(963\) 0 0
\(964\) 7.74584 + 2.07549i 0.249477 + 0.0668471i
\(965\) 52.8788i 1.70223i
\(966\) 0 0
\(967\) 31.8750 + 8.54089i 1.02503 + 0.274656i 0.731897 0.681415i \(-0.238635\pi\)
0.293134 + 0.956071i \(0.405302\pi\)
\(968\) −20.6453 20.6453i −0.663565 0.663565i
\(969\) 0 0
\(970\) 21.0863 5.65007i 0.677042 0.181413i
\(971\) 1.82907 + 1.05601i 0.0586976 + 0.0338891i 0.529062 0.848583i \(-0.322544\pi\)
−0.470364 + 0.882472i \(0.655877\pi\)
\(972\) 0 0
\(973\) −7.65800 + 28.5800i −0.245504 + 0.916234i
\(974\) 2.71428 4.70128i 0.0869712 0.150639i
\(975\) 0 0
\(976\) −4.13990 7.17052i −0.132515 0.229523i
\(977\) 39.4958 10.5829i 1.26358 0.338576i 0.436014 0.899940i \(-0.356390\pi\)
0.827569 + 0.561364i \(0.189723\pi\)
\(978\) 0 0
\(979\) 3.65965 2.11290i 0.116963 0.0675285i
\(980\) −10.7217 10.7217i −0.342492 0.342492i
\(981\) 0 0
\(982\) 2.32119 0.621962i 0.0740723 0.0198476i
\(983\) −5.34955 19.9648i −0.170624 0.636777i −0.997256 0.0740342i \(-0.976413\pi\)
0.826632 0.562743i \(-0.190254\pi\)
\(984\) 0 0
\(985\) −1.13235 0.653764i −0.0360798 0.0208307i
\(986\) 0.679110 + 2.53447i 0.0216273 + 0.0807141i
\(987\) 0 0
\(988\) −0.0788981 9.79587i −0.00251008 0.311648i
\(989\) 0.671089i 0.0213394i
\(990\) 0 0
\(991\) −13.1411 22.7610i −0.417439 0.723026i 0.578242 0.815866i \(-0.303739\pi\)
−0.995681 + 0.0928392i \(0.970406\pi\)
\(992\) 1.10807 + 1.91924i 0.0351814 + 0.0609359i
\(993\) 0 0
\(994\) −28.7227 + 28.7227i −0.911028 + 0.911028i
\(995\) −52.1324 + 52.1324i −1.65271 + 1.65271i
\(996\) 0 0
\(997\) 28.7034 + 49.7157i 0.909045 + 1.57451i 0.815393 + 0.578908i \(0.196521\pi\)
0.0936524 + 0.995605i \(0.470146\pi\)
\(998\) 3.11692 + 5.39866i 0.0986644 + 0.170892i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.bb.a.197.7 56
3.2 odd 2 234.2.y.a.119.10 yes 56
9.4 even 3 234.2.z.a.41.9 yes 56
9.5 odd 6 702.2.bc.a.665.7 56
13.7 odd 12 702.2.bc.a.683.7 56
39.20 even 12 234.2.z.a.137.9 yes 56
117.59 even 12 inner 702.2.bb.a.449.7 56
117.85 odd 12 234.2.y.a.59.10 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.y.a.59.10 56 117.85 odd 12
234.2.y.a.119.10 yes 56 3.2 odd 2
234.2.z.a.41.9 yes 56 9.4 even 3
234.2.z.a.137.9 yes 56 39.20 even 12
702.2.bb.a.197.7 56 1.1 even 1 trivial
702.2.bb.a.449.7 56 117.59 even 12 inner
702.2.bc.a.665.7 56 9.5 odd 6
702.2.bc.a.683.7 56 13.7 odd 12