Properties

Label 702.2.bb.a.197.2
Level $702$
Weight $2$
Character 702.197
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(71,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.71"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([10, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 197.2
Character \(\chi\) \(=\) 702.197
Dual form 702.2.bb.a.449.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(-0.398313 + 1.48652i) q^{5} +(0.370254 - 1.38181i) q^{7} +(0.707107 - 0.707107i) q^{8} +(1.33278 - 0.769482i) q^{10} +(0.350901 - 0.350901i) q^{11} +(0.183180 + 3.60090i) q^{13} +(-1.23890 + 0.715277i) q^{14} -1.00000 q^{16} +(1.10510 - 1.91408i) q^{17} +(0.805124 + 3.00476i) q^{19} +(-1.48652 - 0.398313i) q^{20} -0.496250 q^{22} +(0.887787 - 1.53769i) q^{23} +(2.27902 + 1.31580i) q^{25} +(2.41669 - 2.67575i) q^{26} +(1.38181 + 0.370254i) q^{28} +4.71069i q^{29} +(0.303918 + 0.0814346i) q^{31} +(0.707107 + 0.707107i) q^{32} +(-2.13488 + 0.572040i) q^{34} +(1.90661 + 1.10078i) q^{35} +(-2.95350 + 11.0226i) q^{37} +(1.55538 - 2.69400i) q^{38} +(0.769482 + 1.33278i) q^{40} +(7.77966 - 2.08455i) q^{41} +(1.40486 - 0.811094i) q^{43} +(0.350901 + 0.350901i) q^{44} +(-1.71507 + 0.459552i) q^{46} +(3.17219 + 11.8388i) q^{47} +(4.28987 + 2.47676i) q^{49} +(-0.681106 - 2.54192i) q^{50} +(-3.60090 + 0.183180i) q^{52} +2.02719i q^{53} +(0.381855 + 0.661392i) q^{55} +(-0.715277 - 1.23890i) q^{56} +(3.33096 - 3.33096i) q^{58} +(1.98083 - 1.98083i) q^{59} +(-3.39659 - 5.88306i) q^{61} +(-0.157320 - 0.272485i) q^{62} -1.00000i q^{64} +(-5.42578 - 1.16198i) q^{65} +(-2.05043 - 7.65232i) q^{67} +(1.91408 + 1.10510i) q^{68} +(-0.569808 - 2.12655i) q^{70} +(10.8566 - 2.90902i) q^{71} +(4.45270 + 4.45270i) q^{73} +(9.88261 - 5.70573i) q^{74} +(-3.00476 + 0.805124i) q^{76} +(-0.354956 - 0.614801i) q^{77} +(4.77307 - 8.26720i) q^{79} +(0.398313 - 1.48652i) q^{80} +(-6.97505 - 4.02705i) q^{82} +(-8.13149 + 2.17883i) q^{83} +(2.40516 + 2.40516i) q^{85} +(-1.56691 - 0.419853i) q^{86} -0.496250i q^{88} +(3.41203 + 0.914251i) q^{89} +(5.04357 + 1.08013i) q^{91} +(1.53769 + 0.887787i) q^{92} +(6.12820 - 10.6144i) q^{94} -4.78735 q^{95} +(-7.11700 - 1.90700i) q^{97} +(-1.28206 - 4.78473i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7} - 56 q^{16} - 8 q^{19} - 4 q^{28} + 8 q^{31} - 24 q^{35} - 4 q^{37} + 36 q^{38} + 48 q^{41} + 12 q^{43} - 60 q^{47} + 24 q^{50} - 4 q^{52} + 120 q^{65} - 56 q^{67} - 24 q^{71} + 28 q^{73}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −0.398313 + 1.48652i −0.178131 + 0.664794i 0.817866 + 0.575409i \(0.195157\pi\)
−0.995997 + 0.0893855i \(0.971510\pi\)
\(6\) 0 0
\(7\) 0.370254 1.38181i 0.139943 0.522274i −0.859986 0.510318i \(-0.829528\pi\)
0.999929 0.0119560i \(-0.00380579\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) 1.33278 0.769482i 0.421463 0.243332i
\(11\) 0.350901 0.350901i 0.105801 0.105801i −0.652225 0.758026i \(-0.726164\pi\)
0.758026 + 0.652225i \(0.226164\pi\)
\(12\) 0 0
\(13\) 0.183180 + 3.60090i 0.0508050 + 0.998709i
\(14\) −1.23890 + 0.715277i −0.331109 + 0.191166i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 1.10510 1.91408i 0.268025 0.464233i −0.700327 0.713823i \(-0.746962\pi\)
0.968352 + 0.249589i \(0.0802956\pi\)
\(18\) 0 0
\(19\) 0.805124 + 3.00476i 0.184708 + 0.689340i 0.994693 + 0.102889i \(0.0328086\pi\)
−0.809985 + 0.586451i \(0.800525\pi\)
\(20\) −1.48652 0.398313i −0.332397 0.0890655i
\(21\) 0 0
\(22\) −0.496250 −0.105801
\(23\) 0.887787 1.53769i 0.185116 0.320631i −0.758499 0.651674i \(-0.774067\pi\)
0.943616 + 0.331043i \(0.107400\pi\)
\(24\) 0 0
\(25\) 2.27902 + 1.31580i 0.455805 + 0.263159i
\(26\) 2.41669 2.67575i 0.473952 0.524757i
\(27\) 0 0
\(28\) 1.38181 + 0.370254i 0.261137 + 0.0699715i
\(29\) 4.71069i 0.874754i 0.899278 + 0.437377i \(0.144092\pi\)
−0.899278 + 0.437377i \(0.855908\pi\)
\(30\) 0 0
\(31\) 0.303918 + 0.0814346i 0.0545853 + 0.0146261i 0.286008 0.958227i \(-0.407671\pi\)
−0.231423 + 0.972853i \(0.574338\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) −2.13488 + 0.572040i −0.366129 + 0.0981040i
\(35\) 1.90661 + 1.10078i 0.322277 + 0.186067i
\(36\) 0 0
\(37\) −2.95350 + 11.0226i −0.485553 + 1.81211i 0.0920063 + 0.995758i \(0.470672\pi\)
−0.577559 + 0.816349i \(0.695995\pi\)
\(38\) 1.55538 2.69400i 0.252316 0.437024i
\(39\) 0 0
\(40\) 0.769482 + 1.33278i 0.121666 + 0.210731i
\(41\) 7.77966 2.08455i 1.21498 0.325553i 0.406265 0.913755i \(-0.366831\pi\)
0.808714 + 0.588202i \(0.200164\pi\)
\(42\) 0 0
\(43\) 1.40486 0.811094i 0.214239 0.123691i −0.389041 0.921220i \(-0.627194\pi\)
0.603280 + 0.797530i \(0.293860\pi\)
\(44\) 0.350901 + 0.350901i 0.0529004 + 0.0529004i
\(45\) 0 0
\(46\) −1.71507 + 0.459552i −0.252874 + 0.0677573i
\(47\) 3.17219 + 11.8388i 0.462711 + 1.72686i 0.664368 + 0.747406i \(0.268701\pi\)
−0.201656 + 0.979456i \(0.564632\pi\)
\(48\) 0 0
\(49\) 4.28987 + 2.47676i 0.612839 + 0.353823i
\(50\) −0.681106 2.54192i −0.0963229 0.359482i
\(51\) 0 0
\(52\) −3.60090 + 0.183180i −0.499354 + 0.0254025i
\(53\) 2.02719i 0.278456i 0.990260 + 0.139228i \(0.0444621\pi\)
−0.990260 + 0.139228i \(0.955538\pi\)
\(54\) 0 0
\(55\) 0.381855 + 0.661392i 0.0514893 + 0.0891821i
\(56\) −0.715277 1.23890i −0.0955828 0.165554i
\(57\) 0 0
\(58\) 3.33096 3.33096i 0.437377 0.437377i
\(59\) 1.98083 1.98083i 0.257882 0.257882i −0.566310 0.824192i \(-0.691630\pi\)
0.824192 + 0.566310i \(0.191630\pi\)
\(60\) 0 0
\(61\) −3.39659 5.88306i −0.434888 0.753249i 0.562398 0.826867i \(-0.309879\pi\)
−0.997287 + 0.0736177i \(0.976546\pi\)
\(62\) −0.157320 0.272485i −0.0199796 0.0346057i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −5.42578 1.16198i −0.672986 0.144126i
\(66\) 0 0
\(67\) −2.05043 7.65232i −0.250500 0.934880i −0.970539 0.240945i \(-0.922542\pi\)
0.720038 0.693934i \(-0.244124\pi\)
\(68\) 1.91408 + 1.10510i 0.232117 + 0.134013i
\(69\) 0 0
\(70\) −0.569808 2.12655i −0.0681051 0.254172i
\(71\) 10.8566 2.90902i 1.28844 0.345237i 0.451374 0.892335i \(-0.350934\pi\)
0.837069 + 0.547097i \(0.184267\pi\)
\(72\) 0 0
\(73\) 4.45270 + 4.45270i 0.521149 + 0.521149i 0.917918 0.396769i \(-0.129869\pi\)
−0.396769 + 0.917918i \(0.629869\pi\)
\(74\) 9.88261 5.70573i 1.14883 0.663277i
\(75\) 0 0
\(76\) −3.00476 + 0.805124i −0.344670 + 0.0923540i
\(77\) −0.354956 0.614801i −0.0404510 0.0700631i
\(78\) 0 0
\(79\) 4.77307 8.26720i 0.537012 0.930133i −0.462051 0.886853i \(-0.652886\pi\)
0.999063 0.0432790i \(-0.0137805\pi\)
\(80\) 0.398313 1.48652i 0.0445328 0.166199i
\(81\) 0 0
\(82\) −6.97505 4.02705i −0.770266 0.444713i
\(83\) −8.13149 + 2.17883i −0.892547 + 0.239157i −0.675813 0.737073i \(-0.736207\pi\)
−0.216734 + 0.976231i \(0.569540\pi\)
\(84\) 0 0
\(85\) 2.40516 + 2.40516i 0.260876 + 0.260876i
\(86\) −1.56691 0.419853i −0.168965 0.0452739i
\(87\) 0 0
\(88\) 0.496250i 0.0529004i
\(89\) 3.41203 + 0.914251i 0.361674 + 0.0969104i 0.435080 0.900392i \(-0.356720\pi\)
−0.0734055 + 0.997302i \(0.523387\pi\)
\(90\) 0 0
\(91\) 5.04357 + 1.08013i 0.528710 + 0.113228i
\(92\) 1.53769 + 0.887787i 0.160315 + 0.0925582i
\(93\) 0 0
\(94\) 6.12820 10.6144i 0.632075 1.09479i
\(95\) −4.78735 −0.491171
\(96\) 0 0
\(97\) −7.11700 1.90700i −0.722622 0.193626i −0.121281 0.992618i \(-0.538700\pi\)
−0.601341 + 0.798992i \(0.705367\pi\)
\(98\) −1.28206 4.78473i −0.129508 0.483331i
\(99\) 0 0
\(100\) −1.31580 + 2.27902i −0.131580 + 0.227902i
\(101\) −5.51878 −0.549139 −0.274569 0.961567i \(-0.588535\pi\)
−0.274569 + 0.961567i \(0.588535\pi\)
\(102\) 0 0
\(103\) 13.0560 7.53787i 1.28644 0.742729i 0.308426 0.951248i \(-0.400198\pi\)
0.978018 + 0.208520i \(0.0668646\pi\)
\(104\) 2.67575 + 2.41669i 0.262378 + 0.236976i
\(105\) 0 0
\(106\) 1.43344 1.43344i 0.139228 0.139228i
\(107\) −10.8647 + 6.27276i −1.05033 + 0.606411i −0.922743 0.385416i \(-0.874058\pi\)
−0.127591 + 0.991827i \(0.540724\pi\)
\(108\) 0 0
\(109\) −6.92733 + 6.92733i −0.663518 + 0.663518i −0.956208 0.292690i \(-0.905450\pi\)
0.292690 + 0.956208i \(0.405450\pi\)
\(110\) 0.197663 0.737687i 0.0188464 0.0703357i
\(111\) 0 0
\(112\) −0.370254 + 1.38181i −0.0349858 + 0.130569i
\(113\) 14.3065i 1.34585i −0.739713 0.672923i \(-0.765039\pi\)
0.739713 0.672923i \(-0.234961\pi\)
\(114\) 0 0
\(115\) 1.93220 + 1.93220i 0.180179 + 0.180179i
\(116\) −4.71069 −0.437377
\(117\) 0 0
\(118\) −2.80131 −0.257882
\(119\) −2.23573 2.23573i −0.204949 0.204949i
\(120\) 0 0
\(121\) 10.7537i 0.977612i
\(122\) −1.75820 + 6.56170i −0.159180 + 0.594069i
\(123\) 0 0
\(124\) −0.0814346 + 0.303918i −0.00731304 + 0.0272926i
\(125\) −8.30479 + 8.30479i −0.742803 + 0.742803i
\(126\) 0 0
\(127\) 2.50743 1.44766i 0.222498 0.128459i −0.384608 0.923080i \(-0.625663\pi\)
0.607106 + 0.794621i \(0.292330\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 3.01496 + 4.65825i 0.264430 + 0.408556i
\(131\) −11.3218 + 6.53662i −0.989186 + 0.571107i −0.905031 0.425346i \(-0.860153\pi\)
−0.0841553 + 0.996453i \(0.526819\pi\)
\(132\) 0 0
\(133\) 4.45011 0.385873
\(134\) −3.96113 + 6.86088i −0.342190 + 0.592690i
\(135\) 0 0
\(136\) −0.572040 2.13488i −0.0490520 0.183065i
\(137\) −6.29012 1.68543i −0.537401 0.143996i −0.0200975 0.999798i \(-0.506398\pi\)
−0.517304 + 0.855802i \(0.673064\pi\)
\(138\) 0 0
\(139\) 16.6819 1.41494 0.707470 0.706743i \(-0.249836\pi\)
0.707470 + 0.706743i \(0.249836\pi\)
\(140\) −1.10078 + 1.90661i −0.0930333 + 0.161138i
\(141\) 0 0
\(142\) −9.73378 5.61980i −0.816840 0.471603i
\(143\) 1.32784 + 1.19928i 0.111039 + 0.100289i
\(144\) 0 0
\(145\) −7.00256 1.87633i −0.581531 0.155821i
\(146\) 6.29707i 0.521149i
\(147\) 0 0
\(148\) −11.0226 2.95350i −0.906054 0.242776i
\(149\) −7.43995 7.43995i −0.609505 0.609505i 0.333312 0.942817i \(-0.391834\pi\)
−0.942817 + 0.333312i \(0.891834\pi\)
\(150\) 0 0
\(151\) −16.6015 + 4.44836i −1.35101 + 0.362002i −0.860508 0.509437i \(-0.829854\pi\)
−0.490503 + 0.871440i \(0.663187\pi\)
\(152\) 2.69400 + 1.55538i 0.218512 + 0.126158i
\(153\) 0 0
\(154\) −0.183739 + 0.685722i −0.0148061 + 0.0552570i
\(155\) −0.242109 + 0.419345i −0.0194467 + 0.0336826i
\(156\) 0 0
\(157\) −10.9518 18.9690i −0.874046 1.51389i −0.857775 0.514025i \(-0.828154\pi\)
−0.0162709 0.999868i \(-0.505179\pi\)
\(158\) −9.22086 + 2.47072i −0.733572 + 0.196560i
\(159\) 0 0
\(160\) −1.33278 + 0.769482i −0.105366 + 0.0608329i
\(161\) −1.79609 1.79609i −0.141552 0.141552i
\(162\) 0 0
\(163\) 5.13664 1.37636i 0.402333 0.107805i −0.0519776 0.998648i \(-0.516552\pi\)
0.454310 + 0.890844i \(0.349886\pi\)
\(164\) 2.08455 + 7.77966i 0.162776 + 0.607490i
\(165\) 0 0
\(166\) 7.29049 + 4.20917i 0.565852 + 0.326695i
\(167\) 2.80800 + 10.4796i 0.217290 + 0.810937i 0.985348 + 0.170557i \(0.0545566\pi\)
−0.768058 + 0.640380i \(0.778777\pi\)
\(168\) 0 0
\(169\) −12.9329 + 1.31923i −0.994838 + 0.101479i
\(170\) 3.40141i 0.260876i
\(171\) 0 0
\(172\) 0.811094 + 1.40486i 0.0618453 + 0.107119i
\(173\) −0.802919 1.39070i −0.0610448 0.105733i 0.833888 0.551934i \(-0.186110\pi\)
−0.894933 + 0.446201i \(0.852777\pi\)
\(174\) 0 0
\(175\) 2.66200 2.66200i 0.201228 0.201228i
\(176\) −0.350901 + 0.350901i −0.0264502 + 0.0264502i
\(177\) 0 0
\(178\) −1.76620 3.05914i −0.132382 0.229292i
\(179\) 5.02903 + 8.71053i 0.375887 + 0.651056i 0.990459 0.137805i \(-0.0440047\pi\)
−0.614572 + 0.788861i \(0.710671\pi\)
\(180\) 0 0
\(181\) 11.9484i 0.888116i −0.895998 0.444058i \(-0.853538\pi\)
0.895998 0.444058i \(-0.146462\pi\)
\(182\) −2.80258 4.33011i −0.207741 0.320969i
\(183\) 0 0
\(184\) −0.459552 1.71507i −0.0338786 0.126437i
\(185\) −15.2090 8.78091i −1.11819 0.645585i
\(186\) 0 0
\(187\) −0.283875 1.05943i −0.0207590 0.0774735i
\(188\) −11.8388 + 3.17219i −0.863431 + 0.231356i
\(189\) 0 0
\(190\) 3.38516 + 3.38516i 0.245586 + 0.245586i
\(191\) 18.9189 10.9228i 1.36892 0.790347i 0.378131 0.925752i \(-0.376567\pi\)
0.990790 + 0.135405i \(0.0432335\pi\)
\(192\) 0 0
\(193\) −12.6457 + 3.38840i −0.910257 + 0.243903i −0.683416 0.730029i \(-0.739506\pi\)
−0.226841 + 0.973932i \(0.572840\pi\)
\(194\) 3.68403 + 6.38093i 0.264498 + 0.458124i
\(195\) 0 0
\(196\) −2.47676 + 4.28987i −0.176911 + 0.306419i
\(197\) −0.638138 + 2.38157i −0.0454655 + 0.169680i −0.984926 0.172979i \(-0.944661\pi\)
0.939460 + 0.342659i \(0.111327\pi\)
\(198\) 0 0
\(199\) −18.1467 10.4770i −1.28639 0.742697i −0.308380 0.951263i \(-0.599787\pi\)
−0.978008 + 0.208567i \(0.933120\pi\)
\(200\) 2.54192 0.681106i 0.179741 0.0481615i
\(201\) 0 0
\(202\) 3.90236 + 3.90236i 0.274569 + 0.274569i
\(203\) 6.50928 + 1.74416i 0.456862 + 0.122416i
\(204\) 0 0
\(205\) 12.3950i 0.865702i
\(206\) −14.5621 3.90189i −1.01459 0.271858i
\(207\) 0 0
\(208\) −0.183180 3.60090i −0.0127013 0.249677i
\(209\) 1.33689 + 0.771857i 0.0924750 + 0.0533904i
\(210\) 0 0
\(211\) 7.06391 12.2350i 0.486299 0.842295i −0.513577 0.858044i \(-0.671680\pi\)
0.999876 + 0.0157485i \(0.00501311\pi\)
\(212\) −2.02719 −0.139228
\(213\) 0 0
\(214\) 12.1180 + 3.24702i 0.828372 + 0.221962i
\(215\) 0.646139 + 2.41142i 0.0440663 + 0.164458i
\(216\) 0 0
\(217\) 0.225054 0.389805i 0.0152777 0.0264617i
\(218\) 9.79673 0.663518
\(219\) 0 0
\(220\) −0.661392 + 0.381855i −0.0445911 + 0.0257447i
\(221\) 7.09484 + 3.62871i 0.477251 + 0.244094i
\(222\) 0 0
\(223\) −6.48118 + 6.48118i −0.434012 + 0.434012i −0.889991 0.455979i \(-0.849289\pi\)
0.455979 + 0.889991i \(0.349289\pi\)
\(224\) 1.23890 0.715277i 0.0827772 0.0477914i
\(225\) 0 0
\(226\) −10.1162 + 10.1162i −0.672923 + 0.672923i
\(227\) 6.83510 25.5089i 0.453661 1.69309i −0.238333 0.971184i \(-0.576601\pi\)
0.691994 0.721903i \(-0.256733\pi\)
\(228\) 0 0
\(229\) −3.68017 + 13.7346i −0.243193 + 0.907607i 0.731091 + 0.682280i \(0.239012\pi\)
−0.974283 + 0.225327i \(0.927655\pi\)
\(230\) 2.73254i 0.180179i
\(231\) 0 0
\(232\) 3.33096 + 3.33096i 0.218688 + 0.218688i
\(233\) −21.4490 −1.40517 −0.702586 0.711599i \(-0.747971\pi\)
−0.702586 + 0.711599i \(0.747971\pi\)
\(234\) 0 0
\(235\) −18.8622 −1.23043
\(236\) 1.98083 + 1.98083i 0.128941 + 0.128941i
\(237\) 0 0
\(238\) 3.16180i 0.204949i
\(239\) −2.03511 + 7.59513i −0.131640 + 0.491288i −0.999989 0.00466587i \(-0.998515\pi\)
0.868349 + 0.495954i \(0.165181\pi\)
\(240\) 0 0
\(241\) 4.79042 17.8781i 0.308578 1.15163i −0.621243 0.783618i \(-0.713372\pi\)
0.929821 0.368011i \(-0.119961\pi\)
\(242\) 7.60404 7.60404i 0.488806 0.488806i
\(243\) 0 0
\(244\) 5.88306 3.39659i 0.376624 0.217444i
\(245\) −5.39048 + 5.39048i −0.344385 + 0.344385i
\(246\) 0 0
\(247\) −10.6724 + 3.44958i −0.679066 + 0.219491i
\(248\) 0.272485 0.157320i 0.0173028 0.00998980i
\(249\) 0 0
\(250\) 11.7447 0.742803
\(251\) 11.0446 19.1298i 0.697127 1.20746i −0.272331 0.962204i \(-0.587795\pi\)
0.969458 0.245256i \(-0.0788722\pi\)
\(252\) 0 0
\(253\) −0.228053 0.851104i −0.0143375 0.0535084i
\(254\) −2.79667 0.749366i −0.175479 0.0470194i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 15.1040 26.1609i 0.942162 1.63187i 0.180825 0.983515i \(-0.442123\pi\)
0.761336 0.648357i \(-0.224544\pi\)
\(258\) 0 0
\(259\) 14.1376 + 8.16235i 0.878468 + 0.507183i
\(260\) 1.16198 5.42578i 0.0720631 0.336493i
\(261\) 0 0
\(262\) 12.6278 + 3.38360i 0.780147 + 0.209040i
\(263\) 5.51204i 0.339887i 0.985454 + 0.169943i \(0.0543585\pi\)
−0.985454 + 0.169943i \(0.945641\pi\)
\(264\) 0 0
\(265\) −3.01347 0.807457i −0.185116 0.0496017i
\(266\) −3.14670 3.14670i −0.192937 0.192937i
\(267\) 0 0
\(268\) 7.65232 2.05043i 0.467440 0.125250i
\(269\) 16.8180 + 9.70985i 1.02541 + 0.592020i 0.915666 0.401940i \(-0.131664\pi\)
0.109743 + 0.993960i \(0.464997\pi\)
\(270\) 0 0
\(271\) 5.79813 21.6389i 0.352212 1.31447i −0.531746 0.846904i \(-0.678464\pi\)
0.883957 0.467567i \(-0.154869\pi\)
\(272\) −1.10510 + 1.91408i −0.0670063 + 0.116058i
\(273\) 0 0
\(274\) 3.25601 + 5.63957i 0.196703 + 0.340699i
\(275\) 1.26143 0.337999i 0.0760669 0.0203821i
\(276\) 0 0
\(277\) −7.64138 + 4.41176i −0.459126 + 0.265077i −0.711677 0.702507i \(-0.752064\pi\)
0.252551 + 0.967584i \(0.418731\pi\)
\(278\) −11.7959 11.7959i −0.707470 0.707470i
\(279\) 0 0
\(280\) 2.12655 0.569808i 0.127086 0.0340525i
\(281\) 4.63444 + 17.2960i 0.276467 + 1.03179i 0.954852 + 0.297083i \(0.0960138\pi\)
−0.678384 + 0.734707i \(0.737320\pi\)
\(282\) 0 0
\(283\) −6.33288 3.65629i −0.376451 0.217344i 0.299822 0.953995i \(-0.403073\pi\)
−0.676273 + 0.736651i \(0.736406\pi\)
\(284\) 2.90902 + 10.8566i 0.172619 + 0.644222i
\(285\) 0 0
\(286\) −0.0909031 1.78694i −0.00537521 0.105664i
\(287\) 11.5218i 0.680111i
\(288\) 0 0
\(289\) 6.05752 + 10.4919i 0.356325 + 0.617173i
\(290\) 3.62479 + 6.27833i 0.212855 + 0.368676i
\(291\) 0 0
\(292\) −4.45270 + 4.45270i −0.260575 + 0.260575i
\(293\) −10.0863 + 10.0863i −0.589246 + 0.589246i −0.937427 0.348181i \(-0.886799\pi\)
0.348181 + 0.937427i \(0.386799\pi\)
\(294\) 0 0
\(295\) 2.15556 + 3.73354i 0.125502 + 0.217375i
\(296\) 5.70573 + 9.88261i 0.331639 + 0.574415i
\(297\) 0 0
\(298\) 10.5217i 0.609505i
\(299\) 5.69969 + 2.91515i 0.329622 + 0.168588i
\(300\) 0 0
\(301\) −0.600622 2.24155i −0.0346193 0.129201i
\(302\) 14.8845 + 8.59357i 0.856506 + 0.494504i
\(303\) 0 0
\(304\) −0.805124 3.00476i −0.0461770 0.172335i
\(305\) 10.0982 2.70581i 0.578223 0.154934i
\(306\) 0 0
\(307\) 15.5883 + 15.5883i 0.889669 + 0.889669i 0.994491 0.104822i \(-0.0334273\pi\)
−0.104822 + 0.994491i \(0.533427\pi\)
\(308\) 0.614801 0.354956i 0.0350316 0.0202255i
\(309\) 0 0
\(310\) 0.467719 0.125325i 0.0265646 0.00711798i
\(311\) 12.3786 + 21.4403i 0.701923 + 1.21577i 0.967790 + 0.251757i \(0.0810084\pi\)
−0.265867 + 0.964010i \(0.585658\pi\)
\(312\) 0 0
\(313\) 16.0705 27.8349i 0.908359 1.57332i 0.0920148 0.995758i \(-0.470669\pi\)
0.816344 0.577566i \(-0.195997\pi\)
\(314\) −5.66905 + 21.1572i −0.319923 + 1.19397i
\(315\) 0 0
\(316\) 8.26720 + 4.77307i 0.465066 + 0.268506i
\(317\) −28.9067 + 7.74554i −1.62356 + 0.435033i −0.952046 0.305956i \(-0.901024\pi\)
−0.671518 + 0.740988i \(0.734357\pi\)
\(318\) 0 0
\(319\) 1.65299 + 1.65299i 0.0925496 + 0.0925496i
\(320\) 1.48652 + 0.398313i 0.0830993 + 0.0222664i
\(321\) 0 0
\(322\) 2.54005i 0.141552i
\(323\) 6.64110 + 1.77948i 0.369521 + 0.0990128i
\(324\) 0 0
\(325\) −4.32057 + 8.44756i −0.239662 + 0.468586i
\(326\) −4.60538 2.65892i −0.255069 0.147264i
\(327\) 0 0
\(328\) 4.02705 6.97505i 0.222357 0.385133i
\(329\) 17.5334 0.966649
\(330\) 0 0
\(331\) −6.40799 1.71702i −0.352215 0.0943758i 0.0783735 0.996924i \(-0.475027\pi\)
−0.430589 + 0.902548i \(0.641694\pi\)
\(332\) −2.17883 8.13149i −0.119579 0.446273i
\(333\) 0 0
\(334\) 5.42465 9.39577i 0.296824 0.514113i
\(335\) 12.1921 0.666124
\(336\) 0 0
\(337\) −20.1675 + 11.6437i −1.09859 + 0.634274i −0.935851 0.352395i \(-0.885367\pi\)
−0.162743 + 0.986669i \(0.552034\pi\)
\(338\) 10.0778 + 8.21210i 0.548158 + 0.446679i
\(339\) 0 0
\(340\) −2.40516 + 2.40516i −0.130438 + 0.130438i
\(341\) 0.135221 0.0780698i 0.00732262 0.00422772i
\(342\) 0 0
\(343\) 12.0916 12.0916i 0.652886 0.652886i
\(344\) 0.419853 1.56691i 0.0226370 0.0844823i
\(345\) 0 0
\(346\) −0.415621 + 1.55112i −0.0223439 + 0.0833887i
\(347\) 20.1798i 1.08331i −0.840601 0.541655i \(-0.817798\pi\)
0.840601 0.541655i \(-0.182202\pi\)
\(348\) 0 0
\(349\) 17.7481 + 17.7481i 0.950033 + 0.950033i 0.998810 0.0487771i \(-0.0155324\pi\)
−0.0487771 + 0.998810i \(0.515532\pi\)
\(350\) −3.76463 −0.201228
\(351\) 0 0
\(352\) 0.496250 0.0264502
\(353\) −18.4478 18.4478i −0.981880 0.981880i 0.0179591 0.999839i \(-0.494283\pi\)
−0.999839 + 0.0179591i \(0.994283\pi\)
\(354\) 0 0
\(355\) 17.2973i 0.918047i
\(356\) −0.914251 + 3.41203i −0.0484552 + 0.180837i
\(357\) 0 0
\(358\) 2.60322 9.71534i 0.137584 0.513471i
\(359\) 23.1726 23.1726i 1.22300 1.22300i 0.256444 0.966559i \(-0.417449\pi\)
0.966559 0.256444i \(-0.0825509\pi\)
\(360\) 0 0
\(361\) 8.07411 4.66159i 0.424953 0.245347i
\(362\) −8.44878 + 8.44878i −0.444058 + 0.444058i
\(363\) 0 0
\(364\) −1.08013 + 5.04357i −0.0566141 + 0.264355i
\(365\) −8.39262 + 4.84548i −0.439290 + 0.253624i
\(366\) 0 0
\(367\) 0.585320 0.0305535 0.0152767 0.999883i \(-0.495137\pi\)
0.0152767 + 0.999883i \(0.495137\pi\)
\(368\) −0.887787 + 1.53769i −0.0462791 + 0.0801577i
\(369\) 0 0
\(370\) 4.54533 + 16.9634i 0.236301 + 0.881886i
\(371\) 2.80119 + 0.750577i 0.145431 + 0.0389680i
\(372\) 0 0
\(373\) 27.3780 1.41758 0.708790 0.705420i \(-0.249242\pi\)
0.708790 + 0.705420i \(0.249242\pi\)
\(374\) −0.548404 + 0.949863i −0.0283573 + 0.0491162i
\(375\) 0 0
\(376\) 10.6144 + 6.12820i 0.547393 + 0.316038i
\(377\) −16.9627 + 0.862906i −0.873624 + 0.0444419i
\(378\) 0 0
\(379\) 3.11912 + 0.835766i 0.160219 + 0.0429304i 0.338037 0.941133i \(-0.390237\pi\)
−0.177818 + 0.984063i \(0.556904\pi\)
\(380\) 4.78735i 0.245586i
\(381\) 0 0
\(382\) −21.1013 5.65407i −1.07963 0.289287i
\(383\) 9.97127 + 9.97127i 0.509508 + 0.509508i 0.914375 0.404867i \(-0.132682\pi\)
−0.404867 + 0.914375i \(0.632682\pi\)
\(384\) 0 0
\(385\) 1.05530 0.282767i 0.0537831 0.0144111i
\(386\) 11.3378 + 6.54589i 0.577080 + 0.333177i
\(387\) 0 0
\(388\) 1.90700 7.11700i 0.0968130 0.361311i
\(389\) 9.97462 17.2765i 0.505733 0.875956i −0.494245 0.869323i \(-0.664555\pi\)
0.999978 0.00663286i \(-0.00211132\pi\)
\(390\) 0 0
\(391\) −1.96218 3.39859i −0.0992317 0.171874i
\(392\) 4.78473 1.28206i 0.241665 0.0647540i
\(393\) 0 0
\(394\) 2.13525 1.23279i 0.107572 0.0621070i
\(395\) 10.3882 + 10.3882i 0.522688 + 0.522688i
\(396\) 0 0
\(397\) 17.9027 4.79700i 0.898509 0.240755i 0.220133 0.975470i \(-0.429351\pi\)
0.678376 + 0.734715i \(0.262684\pi\)
\(398\) 5.42331 + 20.2401i 0.271846 + 1.01454i
\(399\) 0 0
\(400\) −2.27902 1.31580i −0.113951 0.0657898i
\(401\) −4.08357 15.2401i −0.203924 0.761055i −0.989775 0.142639i \(-0.954441\pi\)
0.785851 0.618416i \(-0.212225\pi\)
\(402\) 0 0
\(403\) −0.237566 + 1.10929i −0.0118340 + 0.0552579i
\(404\) 5.51878i 0.274569i
\(405\) 0 0
\(406\) −3.36945 5.83606i −0.167223 0.289639i
\(407\) 2.83147 + 4.90424i 0.140351 + 0.243094i
\(408\) 0 0
\(409\) 7.86755 7.86755i 0.389025 0.389025i −0.485314 0.874340i \(-0.661295\pi\)
0.874340 + 0.485314i \(0.161295\pi\)
\(410\) 8.76456 8.76456i 0.432851 0.432851i
\(411\) 0 0
\(412\) 7.53787 + 13.0560i 0.371364 + 0.643222i
\(413\) −2.00371 3.47053i −0.0985963 0.170774i
\(414\) 0 0
\(415\) 12.9555i 0.635961i
\(416\) −2.41669 + 2.67575i −0.118488 + 0.131189i
\(417\) 0 0
\(418\) −0.399542 1.49111i −0.0195423 0.0729327i
\(419\) −0.396684 0.229025i −0.0193793 0.0111886i 0.490279 0.871566i \(-0.336895\pi\)
−0.509658 + 0.860377i \(0.670228\pi\)
\(420\) 0 0
\(421\) −1.17205 4.37413i −0.0571220 0.213182i 0.931466 0.363829i \(-0.118531\pi\)
−0.988588 + 0.150647i \(0.951864\pi\)
\(422\) −13.6464 + 3.65655i −0.664297 + 0.177998i
\(423\) 0 0
\(424\) 1.43344 + 1.43344i 0.0696140 + 0.0696140i
\(425\) 5.03708 2.90816i 0.244334 0.141067i
\(426\) 0 0
\(427\) −9.38686 + 2.51520i −0.454262 + 0.121719i
\(428\) −6.27276 10.8647i −0.303205 0.525167i
\(429\) 0 0
\(430\) 1.24824 2.16202i 0.0601957 0.104262i
\(431\) 3.86478 14.4235i 0.186160 0.694758i −0.808220 0.588881i \(-0.799569\pi\)
0.994379 0.105876i \(-0.0337648\pi\)
\(432\) 0 0
\(433\) −3.91621 2.26103i −0.188201 0.108658i 0.402939 0.915227i \(-0.367989\pi\)
−0.591140 + 0.806569i \(0.701322\pi\)
\(434\) −0.434771 + 0.116497i −0.0208697 + 0.00559201i
\(435\) 0 0
\(436\) −6.92733 6.92733i −0.331759 0.331759i
\(437\) 5.33518 + 1.42956i 0.255216 + 0.0683850i
\(438\) 0 0
\(439\) 13.3562i 0.637455i 0.947846 + 0.318728i \(0.103256\pi\)
−0.947846 + 0.318728i \(0.896744\pi\)
\(440\) 0.737687 + 0.197663i 0.0351679 + 0.00942320i
\(441\) 0 0
\(442\) −2.45092 7.58270i −0.116579 0.360672i
\(443\) −26.7016 15.4162i −1.26863 0.732445i −0.293903 0.955835i \(-0.594954\pi\)
−0.974729 + 0.223390i \(0.928288\pi\)
\(444\) 0 0
\(445\) −2.71811 + 4.70791i −0.128851 + 0.223176i
\(446\) 9.16578 0.434012
\(447\) 0 0
\(448\) −1.38181 0.370254i −0.0652843 0.0174929i
\(449\) 10.3894 + 38.7738i 0.490306 + 1.82985i 0.554874 + 0.831934i \(0.312766\pi\)
−0.0645682 + 0.997913i \(0.520567\pi\)
\(450\) 0 0
\(451\) 1.99842 3.46137i 0.0941020 0.162989i
\(452\) 14.3065 0.672923
\(453\) 0 0
\(454\) −22.8707 + 13.2044i −1.07337 + 0.619713i
\(455\) −3.61456 + 7.06716i −0.169453 + 0.331314i
\(456\) 0 0
\(457\) −11.6746 + 11.6746i −0.546115 + 0.546115i −0.925315 0.379199i \(-0.876199\pi\)
0.379199 + 0.925315i \(0.376199\pi\)
\(458\) 12.3141 7.10955i 0.575400 0.332207i
\(459\) 0 0
\(460\) −1.93220 + 1.93220i −0.0900893 + 0.0900893i
\(461\) −3.57300 + 13.3346i −0.166411 + 0.621055i 0.831445 + 0.555607i \(0.187514\pi\)
−0.997856 + 0.0654474i \(0.979153\pi\)
\(462\) 0 0
\(463\) −9.96318 + 37.1831i −0.463028 + 1.72805i 0.200316 + 0.979731i \(0.435803\pi\)
−0.663345 + 0.748314i \(0.730864\pi\)
\(464\) 4.71069i 0.218688i
\(465\) 0 0
\(466\) 15.1667 + 15.1667i 0.702586 + 0.702586i
\(467\) 8.54433 0.395385 0.197692 0.980264i \(-0.436655\pi\)
0.197692 + 0.980264i \(0.436655\pi\)
\(468\) 0 0
\(469\) −11.3332 −0.523319
\(470\) 13.3376 + 13.3376i 0.615216 + 0.615216i
\(471\) 0 0
\(472\) 2.80131i 0.128941i
\(473\) 0.208352 0.777580i 0.00958003 0.0357532i
\(474\) 0 0
\(475\) −2.11876 + 7.90731i −0.0972152 + 0.362812i
\(476\) 2.23573 2.23573i 0.102474 0.102474i
\(477\) 0 0
\(478\) 6.80960 3.93153i 0.311464 0.179824i
\(479\) 6.26732 6.26732i 0.286361 0.286361i −0.549278 0.835640i \(-0.685097\pi\)
0.835640 + 0.549278i \(0.185097\pi\)
\(480\) 0 0
\(481\) −40.2323 8.61612i −1.83444 0.392861i
\(482\) −16.0291 + 9.25438i −0.730104 + 0.421526i
\(483\) 0 0
\(484\) −10.7537 −0.488806
\(485\) 5.66959 9.82002i 0.257443 0.445904i
\(486\) 0 0
\(487\) −2.81256 10.4966i −0.127449 0.475648i 0.872466 0.488675i \(-0.162520\pi\)
−0.999915 + 0.0130276i \(0.995853\pi\)
\(488\) −6.56170 1.75820i −0.297034 0.0795901i
\(489\) 0 0
\(490\) 7.62328 0.344385
\(491\) 8.67309 15.0222i 0.391411 0.677944i −0.601225 0.799080i \(-0.705320\pi\)
0.992636 + 0.121136i \(0.0386537\pi\)
\(492\) 0 0
\(493\) 9.01666 + 5.20577i 0.406090 + 0.234456i
\(494\) 9.98571 + 5.10727i 0.449279 + 0.229787i
\(495\) 0 0
\(496\) −0.303918 0.0814346i −0.0136463 0.00365652i
\(497\) 16.0788i 0.721235i
\(498\) 0 0
\(499\) 11.4069 + 3.05648i 0.510644 + 0.136827i 0.504936 0.863157i \(-0.331516\pi\)
0.00570844 + 0.999984i \(0.498183\pi\)
\(500\) −8.30479 8.30479i −0.371401 0.371401i
\(501\) 0 0
\(502\) −21.3365 + 5.71709i −0.952294 + 0.255166i
\(503\) −20.1247 11.6190i −0.897316 0.518066i −0.0209877 0.999780i \(-0.506681\pi\)
−0.876329 + 0.481714i \(0.840014\pi\)
\(504\) 0 0
\(505\) 2.19820 8.20380i 0.0978186 0.365064i
\(506\) −0.440564 + 0.763079i −0.0195855 + 0.0339230i
\(507\) 0 0
\(508\) 1.44766 + 2.50743i 0.0642297 + 0.111249i
\(509\) 3.45775 0.926500i 0.153262 0.0410664i −0.181372 0.983415i \(-0.558054\pi\)
0.334634 + 0.942348i \(0.391387\pi\)
\(510\) 0 0
\(511\) 7.80141 4.50415i 0.345114 0.199252i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) −29.1787 + 7.81841i −1.28702 + 0.344855i
\(515\) 6.00487 + 22.4105i 0.264606 + 0.987523i
\(516\) 0 0
\(517\) 5.26737 + 3.04112i 0.231659 + 0.133748i
\(518\) −4.22514 15.7684i −0.185642 0.692826i
\(519\) 0 0
\(520\) −4.65825 + 3.01496i −0.204278 + 0.132215i
\(521\) 4.89726i 0.214553i −0.994229 0.107277i \(-0.965787\pi\)
0.994229 0.107277i \(-0.0342130\pi\)
\(522\) 0 0
\(523\) 0.745466 + 1.29119i 0.0325970 + 0.0564596i 0.881864 0.471504i \(-0.156289\pi\)
−0.849267 + 0.527964i \(0.822956\pi\)
\(524\) −6.53662 11.3218i −0.285553 0.494593i
\(525\) 0 0
\(526\) 3.89760 3.89760i 0.169943 0.169943i
\(527\) 0.491731 0.491731i 0.0214202 0.0214202i
\(528\) 0 0
\(529\) 9.92367 + 17.1883i 0.431464 + 0.747317i
\(530\) 1.55989 + 2.70180i 0.0677572 + 0.117359i
\(531\) 0 0
\(532\) 4.45011i 0.192937i
\(533\) 8.93134 + 27.6319i 0.386859 + 1.19687i
\(534\) 0 0
\(535\) −4.99704 18.6492i −0.216041 0.806276i
\(536\) −6.86088 3.96113i −0.296345 0.171095i
\(537\) 0 0
\(538\) −5.02619 18.7580i −0.216694 0.808714i
\(539\) 2.37442 0.636224i 0.102274 0.0274041i
\(540\) 0 0
\(541\) −1.70268 1.70268i −0.0732039 0.0732039i 0.669557 0.742761i \(-0.266484\pi\)
−0.742761 + 0.669557i \(0.766484\pi\)
\(542\) −19.4009 + 11.2011i −0.833341 + 0.481130i
\(543\) 0 0
\(544\) 2.13488 0.572040i 0.0915323 0.0245260i
\(545\) −7.53840 13.0569i −0.322910 0.559296i
\(546\) 0 0
\(547\) 6.38104 11.0523i 0.272833 0.472561i −0.696753 0.717311i \(-0.745373\pi\)
0.969586 + 0.244750i \(0.0787059\pi\)
\(548\) 1.68543 6.29012i 0.0719981 0.268701i
\(549\) 0 0
\(550\) −1.13097 0.652963i −0.0482245 0.0278424i
\(551\) −14.1545 + 3.79269i −0.603003 + 0.161574i
\(552\) 0 0
\(553\) −9.65643 9.65643i −0.410633 0.410633i
\(554\) 8.52286 + 2.28369i 0.362102 + 0.0970248i
\(555\) 0 0
\(556\) 16.6819i 0.707470i
\(557\) −11.2158 3.00527i −0.475229 0.127337i 0.0132513 0.999912i \(-0.495782\pi\)
−0.488480 + 0.872575i \(0.662449\pi\)
\(558\) 0 0
\(559\) 3.17801 + 4.91016i 0.134415 + 0.207678i
\(560\) −1.90661 1.10078i −0.0805692 0.0465166i
\(561\) 0 0
\(562\) 8.95305 15.5071i 0.377661 0.654129i
\(563\) −40.8646 −1.72224 −0.861119 0.508403i \(-0.830236\pi\)
−0.861119 + 0.508403i \(0.830236\pi\)
\(564\) 0 0
\(565\) 21.2670 + 5.69848i 0.894710 + 0.239737i
\(566\) 1.89264 + 7.06341i 0.0795534 + 0.296897i
\(567\) 0 0
\(568\) 5.61980 9.73378i 0.235802 0.408420i
\(569\) 6.41366 0.268875 0.134437 0.990922i \(-0.457077\pi\)
0.134437 + 0.990922i \(0.457077\pi\)
\(570\) 0 0
\(571\) −11.8701 + 6.85319i −0.496747 + 0.286797i −0.727369 0.686246i \(-0.759257\pi\)
0.230622 + 0.973043i \(0.425924\pi\)
\(572\) −1.19928 + 1.32784i −0.0501445 + 0.0555197i
\(573\) 0 0
\(574\) −8.14715 + 8.14715i −0.340056 + 0.340056i
\(575\) 4.04658 2.33629i 0.168754 0.0974301i
\(576\) 0 0
\(577\) −10.8626 + 10.8626i −0.452214 + 0.452214i −0.896089 0.443875i \(-0.853604\pi\)
0.443875 + 0.896089i \(0.353604\pi\)
\(578\) 3.13561 11.7022i 0.130424 0.486749i
\(579\) 0 0
\(580\) 1.87633 7.00256i 0.0779104 0.290766i
\(581\) 12.0429i 0.499623i
\(582\) 0 0
\(583\) 0.711344 + 0.711344i 0.0294609 + 0.0294609i
\(584\) 6.29707 0.260575
\(585\) 0 0
\(586\) 14.2641 0.589246
\(587\) −1.80828 1.80828i −0.0746357 0.0746357i 0.668804 0.743439i \(-0.266807\pi\)
−0.743439 + 0.668804i \(0.766807\pi\)
\(588\) 0 0
\(589\) 0.978767i 0.0403294i
\(590\) 1.11580 4.16422i 0.0459368 0.171438i
\(591\) 0 0
\(592\) 2.95350 11.0226i 0.121388 0.453027i
\(593\) −15.9796 + 15.9796i −0.656204 + 0.656204i −0.954480 0.298276i \(-0.903588\pi\)
0.298276 + 0.954480i \(0.403588\pi\)
\(594\) 0 0
\(595\) 4.21399 2.43295i 0.172757 0.0997411i
\(596\) 7.43995 7.43995i 0.304752 0.304752i
\(597\) 0 0
\(598\) −1.96897 6.09161i −0.0805170 0.249105i
\(599\) −20.6867 + 11.9435i −0.845237 + 0.487998i −0.859041 0.511907i \(-0.828939\pi\)
0.0138036 + 0.999905i \(0.495606\pi\)
\(600\) 0 0
\(601\) −25.4119 −1.03657 −0.518287 0.855207i \(-0.673430\pi\)
−0.518287 + 0.855207i \(0.673430\pi\)
\(602\) −1.16031 + 2.00972i −0.0472908 + 0.0819101i
\(603\) 0 0
\(604\) −4.44836 16.6015i −0.181001 0.675505i
\(605\) −15.9857 4.28335i −0.649911 0.174143i
\(606\) 0 0
\(607\) 20.6007 0.836156 0.418078 0.908411i \(-0.362704\pi\)
0.418078 + 0.908411i \(0.362704\pi\)
\(608\) −1.55538 + 2.69400i −0.0630790 + 0.109256i
\(609\) 0 0
\(610\) −9.05382 5.22722i −0.366578 0.211644i
\(611\) −42.0491 + 13.5913i −1.70112 + 0.549847i
\(612\) 0 0
\(613\) −6.32348 1.69437i −0.255403 0.0684350i 0.128846 0.991665i \(-0.458873\pi\)
−0.384249 + 0.923230i \(0.625539\pi\)
\(614\) 22.0451i 0.889669i
\(615\) 0 0
\(616\) −0.685722 0.183739i −0.0276285 0.00740304i
\(617\) −11.2968 11.2968i −0.454794 0.454794i 0.442148 0.896942i \(-0.354216\pi\)
−0.896942 + 0.442148i \(0.854216\pi\)
\(618\) 0 0
\(619\) −21.8012 + 5.84160i −0.876263 + 0.234794i −0.668794 0.743448i \(-0.733189\pi\)
−0.207469 + 0.978242i \(0.566523\pi\)
\(620\) −0.419345 0.242109i −0.0168413 0.00972334i
\(621\) 0 0
\(622\) 6.40761 23.9135i 0.256922 0.958845i
\(623\) 2.52664 4.37627i 0.101228 0.175331i
\(624\) 0 0
\(625\) −2.45839 4.25805i −0.0983355 0.170322i
\(626\) −31.0458 + 8.31871i −1.24084 + 0.332482i
\(627\) 0 0
\(628\) 18.9690 10.9518i 0.756946 0.437023i
\(629\) 17.8343 + 17.8343i 0.711100 + 0.711100i
\(630\) 0 0
\(631\) −16.8737 + 4.52128i −0.671730 + 0.179989i −0.578534 0.815658i \(-0.696375\pi\)
−0.0931960 + 0.995648i \(0.529708\pi\)
\(632\) −2.47072 9.22086i −0.0982801 0.366786i
\(633\) 0 0
\(634\) 25.9171 + 14.9632i 1.02930 + 0.594266i
\(635\) 1.15325 + 4.30397i 0.0457652 + 0.170798i
\(636\) 0 0
\(637\) −8.13273 + 15.9011i −0.322230 + 0.630023i
\(638\) 2.33768i 0.0925496i
\(639\) 0 0
\(640\) −0.769482 1.33278i −0.0304164 0.0526828i
\(641\) 18.2842 + 31.6691i 0.722182 + 1.25086i 0.960123 + 0.279577i \(0.0901941\pi\)
−0.237941 + 0.971280i \(0.576473\pi\)
\(642\) 0 0
\(643\) 24.7378 24.7378i 0.975563 0.975563i −0.0241455 0.999708i \(-0.507687\pi\)
0.999708 + 0.0241455i \(0.00768651\pi\)
\(644\) 1.79609 1.79609i 0.0707758 0.0707758i
\(645\) 0 0
\(646\) −3.43769 5.95425i −0.135254 0.234267i
\(647\) −9.58684 16.6049i −0.376897 0.652806i 0.613712 0.789530i \(-0.289676\pi\)
−0.990609 + 0.136725i \(0.956342\pi\)
\(648\) 0 0
\(649\) 1.39015i 0.0545682i
\(650\) 9.02843 2.91822i 0.354124 0.114462i
\(651\) 0 0
\(652\) 1.37636 + 5.13664i 0.0539023 + 0.201166i
\(653\) −5.74222 3.31527i −0.224710 0.129737i 0.383419 0.923574i \(-0.374747\pi\)
−0.608129 + 0.793838i \(0.708080\pi\)
\(654\) 0 0
\(655\) −5.20724 19.4337i −0.203464 0.759337i
\(656\) −7.77966 + 2.08455i −0.303745 + 0.0813882i
\(657\) 0 0
\(658\) −12.3980 12.3980i −0.483325 0.483325i
\(659\) 18.7561 10.8289i 0.730636 0.421833i −0.0880190 0.996119i \(-0.528054\pi\)
0.818655 + 0.574286i \(0.194720\pi\)
\(660\) 0 0
\(661\) −9.98561 + 2.67564i −0.388395 + 0.104070i −0.447732 0.894168i \(-0.647768\pi\)
0.0593368 + 0.998238i \(0.481101\pi\)
\(662\) 3.31702 + 5.74525i 0.128920 + 0.223295i
\(663\) 0 0
\(664\) −4.20917 + 7.29049i −0.163347 + 0.282926i
\(665\) −1.77254 + 6.61519i −0.0687360 + 0.256526i
\(666\) 0 0
\(667\) 7.24360 + 4.18209i 0.280473 + 0.161931i
\(668\) −10.4796 + 2.80800i −0.405469 + 0.108645i
\(669\) 0 0
\(670\) −8.62110 8.62110i −0.333062 0.333062i
\(671\) −3.25624 0.872508i −0.125706 0.0336828i
\(672\) 0 0
\(673\) 26.3007i 1.01382i −0.862000 0.506908i \(-0.830788\pi\)
0.862000 0.506908i \(-0.169212\pi\)
\(674\) 22.4939 + 6.02723i 0.866434 + 0.232160i
\(675\) 0 0
\(676\) −1.31923 12.9329i −0.0507394 0.497419i
\(677\) 0.260338 + 0.150306i 0.0100056 + 0.00577673i 0.504994 0.863123i \(-0.331495\pi\)
−0.494989 + 0.868899i \(0.664828\pi\)
\(678\) 0 0
\(679\) −5.27020 + 9.12826i −0.202252 + 0.350310i
\(680\) 3.40141 0.130438
\(681\) 0 0
\(682\) −0.150819 0.0404119i −0.00577517 0.00154745i
\(683\) 0.894421 + 3.33802i 0.0342241 + 0.127726i 0.980924 0.194390i \(-0.0622727\pi\)
−0.946700 + 0.322116i \(0.895606\pi\)
\(684\) 0 0
\(685\) 5.01088 8.67909i 0.191456 0.331611i
\(686\) −17.1001 −0.652886
\(687\) 0 0
\(688\) −1.40486 + 0.811094i −0.0535596 + 0.0309227i
\(689\) −7.29970 + 0.371341i −0.278097 + 0.0141470i
\(690\) 0 0
\(691\) 23.6513 23.6513i 0.899738 0.899738i −0.0956749 0.995413i \(-0.530501\pi\)
0.995413 + 0.0956749i \(0.0305009\pi\)
\(692\) 1.39070 0.802919i 0.0528663 0.0305224i
\(693\) 0 0
\(694\) −14.2693 + 14.2693i −0.541655 + 0.541655i
\(695\) −6.64462 + 24.7981i −0.252045 + 0.940644i
\(696\) 0 0
\(697\) 4.60727 17.1946i 0.174513 0.651290i
\(698\) 25.0996i 0.950033i
\(699\) 0 0
\(700\) 2.66200 + 2.66200i 0.100614 + 0.100614i
\(701\) 14.8908 0.562418 0.281209 0.959647i \(-0.409265\pi\)
0.281209 + 0.959647i \(0.409265\pi\)
\(702\) 0 0
\(703\) −35.4983 −1.33884
\(704\) −0.350901 0.350901i −0.0132251 0.0132251i
\(705\) 0 0
\(706\) 26.0892i 0.981880i
\(707\) −2.04335 + 7.62589i −0.0768481 + 0.286801i
\(708\) 0 0
\(709\) −6.37553 + 23.7938i −0.239438 + 0.893595i 0.736660 + 0.676264i \(0.236402\pi\)
−0.976098 + 0.217332i \(0.930265\pi\)
\(710\) 12.2311 12.2311i 0.459024 0.459024i
\(711\) 0 0
\(712\) 3.05914 1.76620i 0.114646 0.0661910i
\(713\) 0.395036 0.395036i 0.0147942 0.0147942i
\(714\) 0 0
\(715\) −2.31166 + 1.49617i −0.0864510 + 0.0559537i
\(716\) −8.71053 + 5.02903i −0.325528 + 0.187944i
\(717\) 0 0
\(718\) −32.7710 −1.22300
\(719\) −17.8371 + 30.8948i −0.665213 + 1.15218i 0.314014 + 0.949418i \(0.398326\pi\)
−0.979227 + 0.202765i \(0.935007\pi\)
\(720\) 0 0
\(721\) −5.58186 20.8318i −0.207879 0.775816i
\(722\) −9.00550 2.41302i −0.335150 0.0898031i
\(723\) 0 0
\(724\) 11.9484 0.444058
\(725\) −6.19831 + 10.7358i −0.230199 + 0.398717i
\(726\) 0 0
\(727\) 8.14708 + 4.70372i 0.302159 + 0.174451i 0.643412 0.765520i \(-0.277518\pi\)
−0.341254 + 0.939971i \(0.610851\pi\)
\(728\) 4.33011 2.80258i 0.160484 0.103870i
\(729\) 0 0
\(730\) 9.36075 + 2.50821i 0.346457 + 0.0928328i
\(731\) 3.58535i 0.132609i
\(732\) 0 0
\(733\) 31.2706 + 8.37893i 1.15501 + 0.309483i 0.784970 0.619534i \(-0.212678\pi\)
0.370037 + 0.929017i \(0.379345\pi\)
\(734\) −0.413884 0.413884i −0.0152767 0.0152767i
\(735\) 0 0
\(736\) 1.71507 0.459552i 0.0632184 0.0169393i
\(737\) −3.40471 1.96571i −0.125414 0.0724079i
\(738\) 0 0
\(739\) 7.68766 28.6907i 0.282795 1.05541i −0.667640 0.744484i \(-0.732696\pi\)
0.950436 0.310922i \(-0.100638\pi\)
\(740\) 8.78091 15.2090i 0.322793 0.559093i
\(741\) 0 0
\(742\) −1.45000 2.51148i −0.0532313 0.0921993i
\(743\) 23.8066 6.37897i 0.873381 0.234022i 0.205832 0.978587i \(-0.434010\pi\)
0.667549 + 0.744566i \(0.267343\pi\)
\(744\) 0 0
\(745\) 14.0231 8.09624i 0.513767 0.296623i
\(746\) −19.3592 19.3592i −0.708790 0.708790i
\(747\) 0 0
\(748\) 1.05943 0.283875i 0.0387368 0.0103795i
\(749\) 4.64503 + 17.3355i 0.169726 + 0.633425i
\(750\) 0 0
\(751\) −19.1669 11.0660i −0.699411 0.403805i 0.107717 0.994182i \(-0.465646\pi\)
−0.807128 + 0.590376i \(0.798979\pi\)
\(752\) −3.17219 11.8388i −0.115678 0.431716i
\(753\) 0 0
\(754\) 12.6046 + 11.3843i 0.459033 + 0.414591i
\(755\) 26.4504i 0.962628i
\(756\) 0 0
\(757\) 25.1440 + 43.5507i 0.913875 + 1.58288i 0.808540 + 0.588442i \(0.200258\pi\)
0.105336 + 0.994437i \(0.466408\pi\)
\(758\) −1.61458 2.79653i −0.0586440 0.101574i
\(759\) 0 0
\(760\) −3.38516 + 3.38516i −0.122793 + 0.122793i
\(761\) −5.92790 + 5.92790i −0.214886 + 0.214886i −0.806339 0.591453i \(-0.798554\pi\)
0.591453 + 0.806339i \(0.298554\pi\)
\(762\) 0 0
\(763\) 7.00737 + 12.1371i 0.253684 + 0.439393i
\(764\) 10.9228 + 18.9189i 0.395174 + 0.684461i
\(765\) 0 0
\(766\) 14.1015i 0.509508i
\(767\) 7.49560 + 6.76990i 0.270650 + 0.244447i
\(768\) 0 0
\(769\) −4.01166 14.9717i −0.144664 0.539894i −0.999770 0.0214405i \(-0.993175\pi\)
0.855106 0.518453i \(-0.173492\pi\)
\(770\) −0.946157 0.546264i −0.0340971 0.0196860i
\(771\) 0 0
\(772\) −3.38840 12.6457i −0.121951 0.455128i
\(773\) −6.28210 + 1.68328i −0.225951 + 0.0605435i −0.370018 0.929024i \(-0.620649\pi\)
0.144067 + 0.989568i \(0.453982\pi\)
\(774\) 0 0
\(775\) 0.585485 + 0.585485i 0.0210313 + 0.0210313i
\(776\) −6.38093 + 3.68403i −0.229062 + 0.132249i
\(777\) 0 0
\(778\) −19.2695 + 5.16324i −0.690844 + 0.185111i
\(779\) 12.5272 + 21.6977i 0.448833 + 0.777401i
\(780\) 0 0
\(781\) 2.78882 4.83038i 0.0997919 0.172845i
\(782\) −1.01570 + 3.79064i −0.0363213 + 0.135553i
\(783\) 0 0
\(784\) −4.28987 2.47676i −0.153210 0.0884557i
\(785\) 32.5601 8.72447i 1.16212 0.311390i
\(786\) 0 0
\(787\) −37.8815 37.8815i −1.35033 1.35033i −0.885290 0.465040i \(-0.846040\pi\)
−0.465040 0.885290i \(-0.653960\pi\)
\(788\) −2.38157 0.638138i −0.0848398 0.0227327i
\(789\) 0 0
\(790\) 14.6912i 0.522688i
\(791\) −19.7689 5.29706i −0.702901 0.188342i
\(792\) 0 0
\(793\) 20.5621 13.3084i 0.730182 0.472596i
\(794\) −16.0511 9.26710i −0.569632 0.328877i
\(795\) 0 0
\(796\) 10.4770 18.1467i 0.371348 0.643194i
\(797\) 46.6716 1.65319 0.826597 0.562794i \(-0.190274\pi\)
0.826597 + 0.562794i \(0.190274\pi\)
\(798\) 0 0
\(799\) 26.1660 + 7.01115i 0.925685 + 0.248037i
\(800\) 0.681106 + 2.54192i 0.0240807 + 0.0898705i
\(801\) 0 0
\(802\) −7.88886 + 13.6639i −0.278565 + 0.482489i
\(803\) 3.12492 0.110276
\(804\) 0 0
\(805\) 3.38533 1.95452i 0.119317 0.0688879i
\(806\) 0.952374 0.616405i 0.0335459 0.0217119i
\(807\) 0 0
\(808\) −3.90236 + 3.90236i −0.137285 + 0.137285i
\(809\) 3.13155 1.80800i 0.110099 0.0635659i −0.443939 0.896057i \(-0.646419\pi\)
0.554039 + 0.832491i \(0.313086\pi\)
\(810\) 0 0
\(811\) 0.430194 0.430194i 0.0151062 0.0151062i −0.699513 0.714620i \(-0.746600\pi\)
0.714620 + 0.699513i \(0.246600\pi\)
\(812\) −1.74416 + 6.50928i −0.0612078 + 0.228431i
\(813\) 0 0
\(814\) 1.46567 5.46997i 0.0513719 0.191722i
\(815\) 8.18396i 0.286672i
\(816\) 0 0
\(817\) 3.56823 + 3.56823i 0.124837 + 0.124837i
\(818\) −11.1264 −0.389025
\(819\) 0 0
\(820\) −12.3950 −0.432851
\(821\) −36.5520 36.5520i −1.27567 1.27567i −0.943065 0.332608i \(-0.892071\pi\)
−0.332608 0.943065i \(-0.607929\pi\)
\(822\) 0 0
\(823\) 18.6304i 0.649413i 0.945815 + 0.324707i \(0.105266\pi\)
−0.945815 + 0.324707i \(0.894734\pi\)
\(824\) 3.90189 14.5621i 0.135929 0.507293i
\(825\) 0 0
\(826\) −1.03720 + 3.87088i −0.0360888 + 0.134685i
\(827\) −23.9908 + 23.9908i −0.834244 + 0.834244i −0.988094 0.153851i \(-0.950833\pi\)
0.153851 + 0.988094i \(0.450833\pi\)
\(828\) 0 0
\(829\) −11.0843 + 6.39953i −0.384974 + 0.222265i −0.679980 0.733230i \(-0.738012\pi\)
0.295006 + 0.955495i \(0.404678\pi\)
\(830\) −9.16093 + 9.16093i −0.317981 + 0.317981i
\(831\) 0 0
\(832\) 3.60090 0.183180i 0.124839 0.00635063i
\(833\) 9.48144 5.47411i 0.328513 0.189667i
\(834\) 0 0
\(835\) −16.6967 −0.577812
\(836\) −0.771857 + 1.33689i −0.0266952 + 0.0462375i
\(837\) 0 0
\(838\) 0.118552 + 0.442443i 0.00409532 + 0.0152839i
\(839\) 20.3835 + 5.46173i 0.703715 + 0.188560i 0.592894 0.805280i \(-0.297985\pi\)
0.110821 + 0.993840i \(0.464652\pi\)
\(840\) 0 0
\(841\) 6.80936 0.234806
\(842\) −2.26422 + 3.92174i −0.0780301 + 0.135152i
\(843\) 0 0
\(844\) 12.2350 + 7.06391i 0.421148 + 0.243150i
\(845\) 3.19028 19.7505i 0.109749 0.679439i
\(846\) 0 0
\(847\) 14.8596 + 3.98162i 0.510582 + 0.136810i
\(848\) 2.02719i 0.0696140i
\(849\) 0 0
\(850\) −5.61814 1.50537i −0.192700 0.0516339i
\(851\) 14.3273 + 14.3273i 0.491134 + 0.491134i
\(852\) 0 0
\(853\) 9.10083 2.43856i 0.311606 0.0834947i −0.0996268 0.995025i \(-0.531765\pi\)
0.411233 + 0.911530i \(0.365098\pi\)
\(854\) 8.41603 + 4.85900i 0.287991 + 0.166272i
\(855\) 0 0
\(856\) −3.24702 + 12.1180i −0.110981 + 0.414186i
\(857\) 7.45337 12.9096i 0.254602 0.440984i −0.710185 0.704015i \(-0.751389\pi\)
0.964787 + 0.263031i \(0.0847221\pi\)
\(858\) 0 0
\(859\) 17.7711 + 30.7804i 0.606341 + 1.05021i 0.991838 + 0.127504i \(0.0406967\pi\)
−0.385497 + 0.922709i \(0.625970\pi\)
\(860\) −2.41142 + 0.646139i −0.0822288 + 0.0220331i
\(861\) 0 0
\(862\) −12.9318 + 7.46617i −0.440459 + 0.254299i
\(863\) −0.118264 0.118264i −0.00402577 0.00402577i 0.705091 0.709117i \(-0.250906\pi\)
−0.709117 + 0.705091i \(0.750906\pi\)
\(864\) 0 0
\(865\) 2.38712 0.639626i 0.0811644 0.0217479i
\(866\) 1.17039 + 4.36797i 0.0397716 + 0.148430i
\(867\) 0 0
\(868\) 0.389805 + 0.225054i 0.0132308 + 0.00763883i
\(869\) −1.22610 4.57585i −0.0415924 0.155225i
\(870\) 0 0
\(871\) 27.1796 8.78515i 0.920946 0.297673i
\(872\) 9.79673i 0.331759i
\(873\) 0 0
\(874\) −2.76169 4.78339i −0.0934156 0.161801i
\(875\) 8.40074 + 14.5505i 0.283997 + 0.491897i
\(876\) 0 0
\(877\) 30.2480 30.2480i 1.02140 1.02140i 0.0216349 0.999766i \(-0.493113\pi\)
0.999766 0.0216349i \(-0.00688713\pi\)
\(878\) 9.44424 9.44424i 0.318728 0.318728i
\(879\) 0 0
\(880\) −0.381855 0.661392i −0.0128723 0.0222955i
\(881\) −13.3432 23.1111i −0.449544 0.778633i 0.548812 0.835946i \(-0.315080\pi\)
−0.998356 + 0.0573124i \(0.981747\pi\)
\(882\) 0 0
\(883\) 11.8585i 0.399071i 0.979891 + 0.199536i \(0.0639433\pi\)
−0.979891 + 0.199536i \(0.936057\pi\)
\(884\) −3.62871 + 7.09484i −0.122047 + 0.238625i
\(885\) 0 0
\(886\) 7.98000 + 29.7818i 0.268093 + 1.00054i
\(887\) −45.7185 26.3956i −1.53508 0.886277i −0.999116 0.0420331i \(-0.986617\pi\)
−0.535960 0.844243i \(-0.680050\pi\)
\(888\) 0 0
\(889\) −1.07201 4.00079i −0.0359540 0.134182i
\(890\) 5.25099 1.40700i 0.176014 0.0471627i
\(891\) 0 0
\(892\) −6.48118 6.48118i −0.217006 0.217006i
\(893\) −33.0187 + 19.0634i −1.10493 + 0.637931i
\(894\) 0 0
\(895\) −14.9515 + 4.00626i −0.499775 + 0.133914i
\(896\) 0.715277 + 1.23890i 0.0238957 + 0.0413886i
\(897\) 0 0
\(898\) 20.0708 34.7636i 0.669771 1.16008i
\(899\) −0.383613 + 1.43167i −0.0127942 + 0.0477487i
\(900\) 0 0
\(901\) 3.88021 + 2.24024i 0.129269 + 0.0746333i
\(902\) −3.86065 + 1.03446i −0.128546 + 0.0344437i
\(903\) 0 0
\(904\) −10.1162 10.1162i −0.336461 0.336461i
\(905\) 17.7616 + 4.75920i 0.590414 + 0.158201i
\(906\) 0 0
\(907\) 18.4318i 0.612019i 0.952028 + 0.306009i \(0.0989939\pi\)
−0.952028 + 0.306009i \(0.901006\pi\)
\(908\) 25.5089 + 6.83510i 0.846544 + 0.226831i
\(909\) 0 0
\(910\) 7.55312 2.44136i 0.250383 0.0809303i
\(911\) 37.3282 + 21.5514i 1.23674 + 0.714030i 0.968426 0.249302i \(-0.0802011\pi\)
0.268311 + 0.963332i \(0.413534\pi\)
\(912\) 0 0
\(913\) −2.08880 + 3.61790i −0.0691291 + 0.119735i
\(914\) 16.5104 0.546115
\(915\) 0 0
\(916\) −13.7346 3.68017i −0.453804 0.121596i
\(917\) 4.84042 + 18.0647i 0.159845 + 0.596549i
\(918\) 0 0
\(919\) −25.3781 + 43.9562i −0.837147 + 1.44998i 0.0551224 + 0.998480i \(0.482445\pi\)
−0.892270 + 0.451502i \(0.850888\pi\)
\(920\) 2.73254 0.0900893
\(921\) 0 0
\(922\) 11.9555 6.90250i 0.393733 0.227322i
\(923\) 12.4638 + 38.5607i 0.410251 + 1.26924i
\(924\) 0 0
\(925\) −21.2346 + 21.2346i −0.698190 + 0.698190i
\(926\) 33.3375 19.2474i 1.09554 0.632508i
\(927\) 0 0
\(928\) −3.33096 + 3.33096i −0.109344 + 0.109344i
\(929\) 12.0290 44.8930i 0.394660 1.47289i −0.427698 0.903922i \(-0.640675\pi\)
0.822358 0.568970i \(-0.192658\pi\)
\(930\) 0 0
\(931\) −3.98820 + 14.8841i −0.130708 + 0.487808i
\(932\) 21.4490i 0.702586i
\(933\) 0 0
\(934\) −6.04176 6.04176i −0.197692 0.197692i
\(935\) 1.68795 0.0552018
\(936\) 0 0
\(937\) −13.9838 −0.456832 −0.228416 0.973564i \(-0.573355\pi\)
−0.228416 + 0.973564i \(0.573355\pi\)
\(938\) 8.01380 + 8.01380i 0.261660 + 0.261660i
\(939\) 0 0
\(940\) 18.8622i 0.615216i
\(941\) −6.63944 + 24.7787i −0.216440 + 0.807764i 0.769215 + 0.638990i \(0.220647\pi\)
−0.985655 + 0.168774i \(0.946019\pi\)
\(942\) 0 0
\(943\) 3.70128 13.8134i 0.120530 0.449825i
\(944\) −1.98083 + 1.98083i −0.0644704 + 0.0644704i
\(945\) 0 0
\(946\) −0.697159 + 0.402505i −0.0226666 + 0.0130866i
\(947\) 1.95156 1.95156i 0.0634171 0.0634171i −0.674687 0.738104i \(-0.735721\pi\)
0.738104 + 0.674687i \(0.235721\pi\)
\(948\) 0 0
\(949\) −15.2181 + 16.8494i −0.493999 + 0.546953i
\(950\) 7.08950 4.09312i 0.230014 0.132798i
\(951\) 0 0
\(952\) −3.16180 −0.102474
\(953\) 14.2452 24.6735i 0.461448 0.799252i −0.537585 0.843210i \(-0.680663\pi\)
0.999033 + 0.0439575i \(0.0139966\pi\)
\(954\) 0 0
\(955\) 8.70140 + 32.4741i 0.281571 + 1.05084i
\(956\) −7.59513 2.03511i −0.245644 0.0658201i
\(957\) 0 0
\(958\) −8.86333 −0.286361
\(959\) −4.65789 + 8.06770i −0.150411 + 0.260520i
\(960\) 0 0
\(961\) −26.7611 15.4505i −0.863260 0.498403i
\(962\) 22.3560 + 34.5411i 0.720787 + 1.11365i
\(963\) 0 0
\(964\) 17.8781 + 4.79042i 0.575815 + 0.154289i
\(965\) 20.1478i 0.648580i
\(966\) 0 0
\(967\) 10.1930 + 2.73120i 0.327783 + 0.0878293i 0.418958 0.908006i \(-0.362395\pi\)
−0.0911745 + 0.995835i \(0.529062\pi\)
\(968\) 7.60404 + 7.60404i 0.244403 + 0.244403i
\(969\) 0 0
\(970\) −10.9528 + 2.93480i −0.351674 + 0.0942306i
\(971\) −36.5800 21.1195i −1.17391 0.677756i −0.219310 0.975655i \(-0.570381\pi\)
−0.954597 + 0.297899i \(0.903714\pi\)
\(972\) 0 0
\(973\) 6.17655 23.0512i 0.198011 0.738987i
\(974\) −5.43346 + 9.41102i −0.174099 + 0.301549i
\(975\) 0 0
\(976\) 3.39659 + 5.88306i 0.108722 + 0.188312i
\(977\) 50.9962 13.6644i 1.63151 0.437162i 0.677157 0.735838i \(-0.263212\pi\)
0.954355 + 0.298676i \(0.0965450\pi\)
\(978\) 0 0
\(979\) 1.51810 0.876475i 0.0485186 0.0280122i
\(980\) −5.39048 5.39048i −0.172192 0.172192i
\(981\) 0 0
\(982\) −16.7551 + 4.48952i −0.534678 + 0.143266i
\(983\) −8.76515 32.7120i −0.279565 1.04335i −0.952720 0.303849i \(-0.901728\pi\)
0.673155 0.739501i \(-0.264939\pi\)
\(984\) 0 0
\(985\) −3.28608 1.89722i −0.104703 0.0604504i
\(986\) −2.69470 10.0568i −0.0858169 0.320273i
\(987\) 0 0
\(988\) −3.44958 10.6724i −0.109746 0.339533i
\(989\) 2.88031i 0.0915887i
\(990\) 0 0
\(991\) 20.3156 + 35.1877i 0.645347 + 1.11777i 0.984221 + 0.176942i \(0.0566205\pi\)
−0.338874 + 0.940832i \(0.610046\pi\)
\(992\) 0.157320 + 0.272485i 0.00499490 + 0.00865142i
\(993\) 0 0
\(994\) −11.3695 + 11.3695i −0.360617 + 0.360617i
\(995\) 22.8024 22.8024i 0.722886 0.722886i
\(996\) 0 0
\(997\) −7.67103 13.2866i −0.242944 0.420791i 0.718608 0.695416i \(-0.244780\pi\)
−0.961552 + 0.274624i \(0.911446\pi\)
\(998\) −5.90466 10.2272i −0.186909 0.323735i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.bb.a.197.2 56
3.2 odd 2 234.2.y.a.119.12 yes 56
9.4 even 3 234.2.z.a.41.8 yes 56
9.5 odd 6 702.2.bc.a.665.2 56
13.7 odd 12 702.2.bc.a.683.2 56
39.20 even 12 234.2.z.a.137.8 yes 56
117.59 even 12 inner 702.2.bb.a.449.2 56
117.85 odd 12 234.2.y.a.59.12 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.y.a.59.12 56 117.85 odd 12
234.2.y.a.119.12 yes 56 3.2 odd 2
234.2.z.a.41.8 yes 56 9.4 even 3
234.2.z.a.137.8 yes 56 39.20 even 12
702.2.bb.a.197.2 56 1.1 even 1 trivial
702.2.bb.a.449.2 56 117.59 even 12 inner
702.2.bc.a.665.2 56 9.5 odd 6
702.2.bc.a.683.2 56 13.7 odd 12