gp: [N,k,chi] = [702,2,Mod(1,702)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(702, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("702.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [1,1,0,1,-2,0,4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
3 3 3
− 1 -1 − 1
13 13 1 3
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 702 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(702)) S 2 n e w ( Γ 0 ( 7 0 2 ) ) :
T 5 + 2 T_{5} + 2 T 5 + 2
T5 + 2
T 7 − 4 T_{7} - 4 T 7 − 4
T7 - 4
T 11 + 2 T_{11} + 2 T 1 1 + 2
T11 + 2
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T − 1 T - 1 T − 1
T - 1
3 3 3
T T T
T
5 5 5
T + 2 T + 2 T + 2
T + 2
7 7 7
T − 4 T - 4 T − 4
T - 4
11 11 1 1
T + 2 T + 2 T + 2
T + 2
13 13 1 3
T − 1 T - 1 T − 1
T - 1
17 17 1 7
T − 4 T - 4 T − 4
T - 4
19 19 1 9
T − 7 T - 7 T − 7
T - 7
23 23 2 3
T T T
T
29 29 2 9
T − 9 T - 9 T − 9
T - 9
31 31 3 1
T + 10 T + 10 T + 1 0
T + 10
37 37 3 7
T − 7 T - 7 T − 7
T - 7
41 41 4 1
T + 5 T + 5 T + 5
T + 5
43 43 4 3
T + 2 T + 2 T + 2
T + 2
47 47 4 7
T − 1 T - 1 T − 1
T - 1
53 53 5 3
T + 14 T + 14 T + 1 4
T + 14
59 59 5 9
T − 8 T - 8 T − 8
T - 8
61 61 6 1
T − 10 T - 10 T − 1 0
T - 10
67 67 6 7
T + 4 T + 4 T + 4
T + 4
71 71 7 1
T + 1 T + 1 T + 1
T + 1
73 73 7 3
T + 4 T + 4 T + 4
T + 4
79 79 7 9
T + 7 T + 7 T + 7
T + 7
83 83 8 3
T T T
T
89 89 8 9
T + 17 T + 17 T + 1 7
T + 17
97 97 9 7
T + 8 T + 8 T + 8
T + 8
show more
show less