Properties

Label 7018.2.a.c
Level $7018$
Weight $2$
Character orbit 7018.a
Self dual yes
Analytic conductor $56.039$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 7018 = 2 \cdot 11^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7018.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(56.0390121385\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} - 3 q^{3} + q^{4} - 3 q^{5} - 3 q^{6} + 2 q^{7} + q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - 3 q^{3} + q^{4} - 3 q^{5} - 3 q^{6} + 2 q^{7} + q^{8} + 6 q^{9} - 3 q^{10} - 3 q^{12} - 3 q^{13} + 2 q^{14} + 9 q^{15} + q^{16} + 4 q^{17} + 6 q^{18} + 8 q^{19} - 3 q^{20} - 6 q^{21} - 3 q^{24} + 4 q^{25} - 3 q^{26} - 9 q^{27} + 2 q^{28} + q^{29} + 9 q^{30} + 3 q^{31} + q^{32} + 4 q^{34} - 6 q^{35} + 6 q^{36} - 8 q^{37} + 8 q^{38} + 9 q^{39} - 3 q^{40} + 2 q^{41} - 6 q^{42} - 7 q^{43} - 18 q^{45} + 11 q^{47} - 3 q^{48} - 3 q^{49} + 4 q^{50} - 12 q^{51} - 3 q^{52} + q^{53} - 9 q^{54} + 2 q^{56} - 24 q^{57} + q^{58} - 4 q^{59} + 9 q^{60} - 4 q^{61} + 3 q^{62} + 12 q^{63} + q^{64} + 9 q^{65} - 4 q^{67} + 4 q^{68} - 6 q^{70} - 2 q^{71} + 6 q^{72} + 12 q^{73} - 8 q^{74} - 12 q^{75} + 8 q^{76} + 9 q^{78} + 7 q^{79} - 3 q^{80} + 9 q^{81} + 2 q^{82} - 6 q^{84} - 12 q^{85} - 7 q^{86} - 3 q^{87} - 6 q^{89} - 18 q^{90} - 6 q^{91} - 9 q^{93} + 11 q^{94} - 24 q^{95} - 3 q^{96} - 6 q^{97} - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −3.00000 1.00000 −3.00000 −3.00000 2.00000 1.00000 6.00000 −3.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(11\) \(-1\)
\(29\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7018.2.a.c 1
11.b odd 2 1 58.2.a.a 1
33.d even 2 1 522.2.a.k 1
44.c even 2 1 464.2.a.f 1
55.d odd 2 1 1450.2.a.i 1
55.e even 4 2 1450.2.b.f 2
77.b even 2 1 2842.2.a.d 1
88.b odd 2 1 1856.2.a.p 1
88.g even 2 1 1856.2.a.b 1
132.d odd 2 1 4176.2.a.bh 1
143.d odd 2 1 9802.2.a.d 1
319.d odd 2 1 1682.2.a.j 1
319.f even 4 2 1682.2.b.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
58.2.a.a 1 11.b odd 2 1
464.2.a.f 1 44.c even 2 1
522.2.a.k 1 33.d even 2 1
1450.2.a.i 1 55.d odd 2 1
1450.2.b.f 2 55.e even 4 2
1682.2.a.j 1 319.d odd 2 1
1682.2.b.e 2 319.f even 4 2
1856.2.a.b 1 88.g even 2 1
1856.2.a.p 1 88.b odd 2 1
2842.2.a.d 1 77.b even 2 1
4176.2.a.bh 1 132.d odd 2 1
7018.2.a.c 1 1.a even 1 1 trivial
9802.2.a.d 1 143.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7018))\):

\( T_{3} + 3 \) Copy content Toggle raw display
\( T_{5} + 3 \) Copy content Toggle raw display
\( T_{7} - 2 \) Copy content Toggle raw display
\( T_{13} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T + 3 \) Copy content Toggle raw display
$5$ \( T + 3 \) Copy content Toggle raw display
$7$ \( T - 2 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 3 \) Copy content Toggle raw display
$17$ \( T - 4 \) Copy content Toggle raw display
$19$ \( T - 8 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T - 1 \) Copy content Toggle raw display
$31$ \( T - 3 \) Copy content Toggle raw display
$37$ \( T + 8 \) Copy content Toggle raw display
$41$ \( T - 2 \) Copy content Toggle raw display
$43$ \( T + 7 \) Copy content Toggle raw display
$47$ \( T - 11 \) Copy content Toggle raw display
$53$ \( T - 1 \) Copy content Toggle raw display
$59$ \( T + 4 \) Copy content Toggle raw display
$61$ \( T + 4 \) Copy content Toggle raw display
$67$ \( T + 4 \) Copy content Toggle raw display
$71$ \( T + 2 \) Copy content Toggle raw display
$73$ \( T - 12 \) Copy content Toggle raw display
$79$ \( T - 7 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 6 \) Copy content Toggle raw display
$97$ \( T + 6 \) Copy content Toggle raw display
show more
show less