Properties

Label 700.6.e.d.449.2
Level $700$
Weight $6$
Character 700.449
Analytic conductor $112.269$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,6,Mod(449,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.449");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 700.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(112.268673869\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 700.449
Dual form 700.6.e.d.449.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{3} +49.0000i q^{7} +239.000 q^{9} +O(q^{10})\) \(q+2.00000i q^{3} +49.0000i q^{7} +239.000 q^{9} -720.000 q^{11} -572.000i q^{13} +1254.00i q^{17} +94.0000 q^{19} -98.0000 q^{21} -96.0000i q^{23} +964.000i q^{27} +4374.00 q^{29} -6244.00 q^{31} -1440.00i q^{33} -10798.0i q^{37} +1144.00 q^{39} +12006.0 q^{41} +9160.00i q^{43} -25836.0i q^{47} -2401.00 q^{49} -2508.00 q^{51} -1014.00i q^{53} +188.000i q^{57} -1242.00 q^{59} +7592.00 q^{61} +11711.0i q^{63} +41132.0i q^{67} +192.000 q^{69} -37632.0 q^{71} +13438.0i q^{73} -35280.0i q^{77} -6248.00 q^{79} +56149.0 q^{81} +25254.0i q^{83} +8748.00i q^{87} +45126.0 q^{89} +28028.0 q^{91} -12488.0i q^{93} +107222. i q^{97} -172080. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 478 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 478 q^{9} - 1440 q^{11} + 188 q^{19} - 196 q^{21} + 8748 q^{29} - 12488 q^{31} + 2288 q^{39} + 24012 q^{41} - 4802 q^{49} - 5016 q^{51} - 2484 q^{59} + 15184 q^{61} + 384 q^{69} - 75264 q^{71} - 12496 q^{79} + 112298 q^{81} + 90252 q^{89} + 56056 q^{91} - 344160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.00000i 0.128300i 0.997940 + 0.0641500i \(0.0204336\pi\)
−0.997940 + 0.0641500i \(0.979566\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 49.0000i 0.377964i
\(8\) 0 0
\(9\) 239.000 0.983539
\(10\) 0 0
\(11\) −720.000 −1.79412 −0.897059 0.441912i \(-0.854300\pi\)
−0.897059 + 0.441912i \(0.854300\pi\)
\(12\) 0 0
\(13\) − 572.000i − 0.938723i −0.883006 0.469362i \(-0.844484\pi\)
0.883006 0.469362i \(-0.155516\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1254.00i 1.05239i 0.850365 + 0.526193i \(0.176381\pi\)
−0.850365 + 0.526193i \(0.823619\pi\)
\(18\) 0 0
\(19\) 94.0000 0.0597371 0.0298685 0.999554i \(-0.490491\pi\)
0.0298685 + 0.999554i \(0.490491\pi\)
\(20\) 0 0
\(21\) −98.0000 −0.0484929
\(22\) 0 0
\(23\) − 96.0000i − 0.0378400i −0.999821 0.0189200i \(-0.993977\pi\)
0.999821 0.0189200i \(-0.00602279\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 964.000i 0.254488i
\(28\) 0 0
\(29\) 4374.00 0.965792 0.482896 0.875678i \(-0.339585\pi\)
0.482896 + 0.875678i \(0.339585\pi\)
\(30\) 0 0
\(31\) −6244.00 −1.16697 −0.583484 0.812125i \(-0.698311\pi\)
−0.583484 + 0.812125i \(0.698311\pi\)
\(32\) 0 0
\(33\) − 1440.00i − 0.230185i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 10798.0i − 1.29670i −0.761343 0.648349i \(-0.775460\pi\)
0.761343 0.648349i \(-0.224540\pi\)
\(38\) 0 0
\(39\) 1144.00 0.120438
\(40\) 0 0
\(41\) 12006.0 1.11542 0.557710 0.830036i \(-0.311680\pi\)
0.557710 + 0.830036i \(0.311680\pi\)
\(42\) 0 0
\(43\) 9160.00i 0.755482i 0.925911 + 0.377741i \(0.123299\pi\)
−0.925911 + 0.377741i \(0.876701\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 25836.0i − 1.70601i −0.521906 0.853003i \(-0.674779\pi\)
0.521906 0.853003i \(-0.325221\pi\)
\(48\) 0 0
\(49\) −2401.00 −0.142857
\(50\) 0 0
\(51\) −2508.00 −0.135021
\(52\) 0 0
\(53\) − 1014.00i − 0.0495848i −0.999693 0.0247924i \(-0.992108\pi\)
0.999693 0.0247924i \(-0.00789247\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 188.000i 0.00766427i
\(58\) 0 0
\(59\) −1242.00 −0.0464506 −0.0232253 0.999730i \(-0.507394\pi\)
−0.0232253 + 0.999730i \(0.507394\pi\)
\(60\) 0 0
\(61\) 7592.00 0.261235 0.130618 0.991433i \(-0.458304\pi\)
0.130618 + 0.991433i \(0.458304\pi\)
\(62\) 0 0
\(63\) 11711.0i 0.371743i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 41132.0i 1.11942i 0.828689 + 0.559710i \(0.189087\pi\)
−0.828689 + 0.559710i \(0.810913\pi\)
\(68\) 0 0
\(69\) 192.000 0.00485488
\(70\) 0 0
\(71\) −37632.0 −0.885955 −0.442977 0.896533i \(-0.646078\pi\)
−0.442977 + 0.896533i \(0.646078\pi\)
\(72\) 0 0
\(73\) 13438.0i 0.295140i 0.989052 + 0.147570i \(0.0471451\pi\)
−0.989052 + 0.147570i \(0.952855\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 35280.0i − 0.678113i
\(78\) 0 0
\(79\) −6248.00 −0.112635 −0.0563175 0.998413i \(-0.517936\pi\)
−0.0563175 + 0.998413i \(0.517936\pi\)
\(80\) 0 0
\(81\) 56149.0 0.950888
\(82\) 0 0
\(83\) 25254.0i 0.402379i 0.979552 + 0.201189i \(0.0644806\pi\)
−0.979552 + 0.201189i \(0.935519\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 8748.00i 0.123911i
\(88\) 0 0
\(89\) 45126.0 0.603882 0.301941 0.953327i \(-0.402365\pi\)
0.301941 + 0.953327i \(0.402365\pi\)
\(90\) 0 0
\(91\) 28028.0 0.354804
\(92\) 0 0
\(93\) − 12488.0i − 0.149722i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 107222.i 1.15706i 0.815662 + 0.578528i \(0.196373\pi\)
−0.815662 + 0.578528i \(0.803627\pi\)
\(98\) 0 0
\(99\) −172080. −1.76458
\(100\) 0 0
\(101\) 47136.0 0.459779 0.229890 0.973217i \(-0.426163\pi\)
0.229890 + 0.973217i \(0.426163\pi\)
\(102\) 0 0
\(103\) − 122204.i − 1.13499i −0.823377 0.567495i \(-0.807912\pi\)
0.823377 0.567495i \(-0.192088\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 129636.i − 1.09463i −0.836928 0.547314i \(-0.815651\pi\)
0.836928 0.547314i \(-0.184349\pi\)
\(108\) 0 0
\(109\) 220558. 1.77810 0.889051 0.457809i \(-0.151365\pi\)
0.889051 + 0.457809i \(0.151365\pi\)
\(110\) 0 0
\(111\) 21596.0 0.166366
\(112\) 0 0
\(113\) − 170694.i − 1.25754i −0.777591 0.628770i \(-0.783559\pi\)
0.777591 0.628770i \(-0.216441\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 136708.i − 0.923271i
\(118\) 0 0
\(119\) −61446.0 −0.397765
\(120\) 0 0
\(121\) 357349. 2.21886
\(122\) 0 0
\(123\) 24012.0i 0.143109i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 249808.i − 1.37435i −0.726492 0.687175i \(-0.758851\pi\)
0.726492 0.687175i \(-0.241149\pi\)
\(128\) 0 0
\(129\) −18320.0 −0.0969284
\(130\) 0 0
\(131\) 12210.0 0.0621638 0.0310819 0.999517i \(-0.490105\pi\)
0.0310819 + 0.999517i \(0.490105\pi\)
\(132\) 0 0
\(133\) 4606.00i 0.0225785i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 13902.0i − 0.0632814i −0.999499 0.0316407i \(-0.989927\pi\)
0.999499 0.0316407i \(-0.0100732\pi\)
\(138\) 0 0
\(139\) 431794. 1.89557 0.947785 0.318911i \(-0.103317\pi\)
0.947785 + 0.318911i \(0.103317\pi\)
\(140\) 0 0
\(141\) 51672.0 0.218881
\(142\) 0 0
\(143\) 411840.i 1.68418i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 4802.00i − 0.0183286i
\(148\) 0 0
\(149\) −326814. −1.20597 −0.602983 0.797754i \(-0.706021\pi\)
−0.602983 + 0.797754i \(0.706021\pi\)
\(150\) 0 0
\(151\) 173480. 0.619166 0.309583 0.950872i \(-0.399811\pi\)
0.309583 + 0.950872i \(0.399811\pi\)
\(152\) 0 0
\(153\) 299706.i 1.03506i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 54532.0i − 0.176564i −0.996096 0.0882820i \(-0.971862\pi\)
0.996096 0.0882820i \(-0.0281377\pi\)
\(158\) 0 0
\(159\) 2028.00 0.00636173
\(160\) 0 0
\(161\) 4704.00 0.0143022
\(162\) 0 0
\(163\) − 104960.i − 0.309425i −0.987960 0.154712i \(-0.950555\pi\)
0.987960 0.154712i \(-0.0494451\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 160788.i 0.446131i 0.974803 + 0.223066i \(0.0716064\pi\)
−0.974803 + 0.223066i \(0.928394\pi\)
\(168\) 0 0
\(169\) 44109.0 0.118798
\(170\) 0 0
\(171\) 22466.0 0.0587537
\(172\) 0 0
\(173\) − 360564.i − 0.915940i −0.888968 0.457970i \(-0.848577\pi\)
0.888968 0.457970i \(-0.151423\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 2484.00i − 0.00595962i
\(178\) 0 0
\(179\) 312732. 0.729524 0.364762 0.931101i \(-0.381150\pi\)
0.364762 + 0.931101i \(0.381150\pi\)
\(180\) 0 0
\(181\) −123820. −0.280928 −0.140464 0.990086i \(-0.544859\pi\)
−0.140464 + 0.990086i \(0.544859\pi\)
\(182\) 0 0
\(183\) 15184.0i 0.0335165i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 902880.i − 1.88810i
\(188\) 0 0
\(189\) −47236.0 −0.0961875
\(190\) 0 0
\(191\) 323448. 0.641536 0.320768 0.947158i \(-0.396059\pi\)
0.320768 + 0.947158i \(0.396059\pi\)
\(192\) 0 0
\(193\) 619954.i 1.19803i 0.800739 + 0.599013i \(0.204440\pi\)
−0.800739 + 0.599013i \(0.795560\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 499362.i − 0.916748i −0.888759 0.458374i \(-0.848432\pi\)
0.888759 0.458374i \(-0.151568\pi\)
\(198\) 0 0
\(199\) 785932. 1.40686 0.703432 0.710762i \(-0.251650\pi\)
0.703432 + 0.710762i \(0.251650\pi\)
\(200\) 0 0
\(201\) −82264.0 −0.143622
\(202\) 0 0
\(203\) 214326.i 0.365035i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 22944.0i − 0.0372172i
\(208\) 0 0
\(209\) −67680.0 −0.107175
\(210\) 0 0
\(211\) 1.06276e6 1.64335 0.821676 0.569955i \(-0.193039\pi\)
0.821676 + 0.569955i \(0.193039\pi\)
\(212\) 0 0
\(213\) − 75264.0i − 0.113668i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 305956.i − 0.441072i
\(218\) 0 0
\(219\) −26876.0 −0.0378664
\(220\) 0 0
\(221\) 717288. 0.987900
\(222\) 0 0
\(223\) − 707720.i − 0.953014i −0.879171 0.476507i \(-0.841903\pi\)
0.879171 0.476507i \(-0.158097\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 1.04437e6i − 1.34520i −0.740005 0.672602i \(-0.765177\pi\)
0.740005 0.672602i \(-0.234823\pi\)
\(228\) 0 0
\(229\) 539716. 0.680106 0.340053 0.940406i \(-0.389555\pi\)
0.340053 + 0.940406i \(0.389555\pi\)
\(230\) 0 0
\(231\) 70560.0 0.0870019
\(232\) 0 0
\(233\) − 177114.i − 0.213729i −0.994274 0.106864i \(-0.965919\pi\)
0.994274 0.106864i \(-0.0340811\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 12496.0i − 0.0144511i
\(238\) 0 0
\(239\) 655464. 0.742257 0.371128 0.928582i \(-0.378971\pi\)
0.371128 + 0.928582i \(0.378971\pi\)
\(240\) 0 0
\(241\) 1.38709e6 1.53838 0.769189 0.639021i \(-0.220660\pi\)
0.769189 + 0.639021i \(0.220660\pi\)
\(242\) 0 0
\(243\) 346550.i 0.376487i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 53768.0i − 0.0560766i
\(248\) 0 0
\(249\) −50508.0 −0.0516252
\(250\) 0 0
\(251\) 1.88811e6 1.89166 0.945830 0.324663i \(-0.105251\pi\)
0.945830 + 0.324663i \(0.105251\pi\)
\(252\) 0 0
\(253\) 69120.0i 0.0678895i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 346194.i 0.326954i 0.986547 + 0.163477i \(0.0522710\pi\)
−0.986547 + 0.163477i \(0.947729\pi\)
\(258\) 0 0
\(259\) 529102. 0.490106
\(260\) 0 0
\(261\) 1.04539e6 0.949895
\(262\) 0 0
\(263\) 929088.i 0.828262i 0.910217 + 0.414131i \(0.135914\pi\)
−0.910217 + 0.414131i \(0.864086\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 90252.0i 0.0774780i
\(268\) 0 0
\(269\) −382068. −0.321929 −0.160964 0.986960i \(-0.551460\pi\)
−0.160964 + 0.986960i \(0.551460\pi\)
\(270\) 0 0
\(271\) −1.58056e6 −1.30734 −0.653669 0.756781i \(-0.726771\pi\)
−0.653669 + 0.756781i \(0.726771\pi\)
\(272\) 0 0
\(273\) 56056.0i 0.0455214i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 1.36911e6i − 1.07211i −0.844182 0.536056i \(-0.819914\pi\)
0.844182 0.536056i \(-0.180086\pi\)
\(278\) 0 0
\(279\) −1.49232e6 −1.14776
\(280\) 0 0
\(281\) −394854. −0.298312 −0.149156 0.988814i \(-0.547656\pi\)
−0.149156 + 0.988814i \(0.547656\pi\)
\(282\) 0 0
\(283\) − 673034.i − 0.499541i −0.968305 0.249770i \(-0.919645\pi\)
0.968305 0.249770i \(-0.0803551\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 588294.i 0.421589i
\(288\) 0 0
\(289\) −152659. −0.107517
\(290\) 0 0
\(291\) −214444. −0.148450
\(292\) 0 0
\(293\) − 1.83468e6i − 1.24851i −0.781222 0.624254i \(-0.785403\pi\)
0.781222 0.624254i \(-0.214597\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 694080.i − 0.456582i
\(298\) 0 0
\(299\) −54912.0 −0.0355213
\(300\) 0 0
\(301\) −448840. −0.285545
\(302\) 0 0
\(303\) 94272.0i 0.0589897i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 1.51056e6i − 0.914727i −0.889280 0.457363i \(-0.848794\pi\)
0.889280 0.457363i \(-0.151206\pi\)
\(308\) 0 0
\(309\) 244408. 0.145619
\(310\) 0 0
\(311\) −1.87529e6 −1.09943 −0.549714 0.835353i \(-0.685263\pi\)
−0.549714 + 0.835353i \(0.685263\pi\)
\(312\) 0 0
\(313\) 1.51076e6i 0.871636i 0.900035 + 0.435818i \(0.143541\pi\)
−0.900035 + 0.435818i \(0.856459\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.02709e6i 1.13299i 0.824065 + 0.566495i \(0.191701\pi\)
−0.824065 + 0.566495i \(0.808299\pi\)
\(318\) 0 0
\(319\) −3.14928e6 −1.73274
\(320\) 0 0
\(321\) 259272. 0.140441
\(322\) 0 0
\(323\) 117876.i 0.0628665i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 441116.i 0.228131i
\(328\) 0 0
\(329\) 1.26596e6 0.644810
\(330\) 0 0
\(331\) 1.54009e6 0.772637 0.386319 0.922365i \(-0.373747\pi\)
0.386319 + 0.922365i \(0.373747\pi\)
\(332\) 0 0
\(333\) − 2.58072e6i − 1.27535i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.01166e6i 0.485245i 0.970121 + 0.242622i \(0.0780076\pi\)
−0.970121 + 0.242622i \(0.921992\pi\)
\(338\) 0 0
\(339\) 341388. 0.161343
\(340\) 0 0
\(341\) 4.49568e6 2.09368
\(342\) 0 0
\(343\) − 117649.i − 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 2.15748e6i − 0.961885i −0.876752 0.480942i \(-0.840295\pi\)
0.876752 0.480942i \(-0.159705\pi\)
\(348\) 0 0
\(349\) 1.15798e6 0.508906 0.254453 0.967085i \(-0.418105\pi\)
0.254453 + 0.967085i \(0.418105\pi\)
\(350\) 0 0
\(351\) 551408. 0.238894
\(352\) 0 0
\(353\) 3.17566e6i 1.35643i 0.734863 + 0.678215i \(0.237246\pi\)
−0.734863 + 0.678215i \(0.762754\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 122892.i − 0.0510332i
\(358\) 0 0
\(359\) 74616.0 0.0305560 0.0152780 0.999883i \(-0.495137\pi\)
0.0152780 + 0.999883i \(0.495137\pi\)
\(360\) 0 0
\(361\) −2.46726e6 −0.996431
\(362\) 0 0
\(363\) 714698.i 0.284679i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 1.79807e6i − 0.696854i −0.937336 0.348427i \(-0.886716\pi\)
0.937336 0.348427i \(-0.113284\pi\)
\(368\) 0 0
\(369\) 2.86943e6 1.09706
\(370\) 0 0
\(371\) 49686.0 0.0187413
\(372\) 0 0
\(373\) − 2.20461e6i − 0.820463i −0.911981 0.410231i \(-0.865448\pi\)
0.911981 0.410231i \(-0.134552\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 2.50193e6i − 0.906612i
\(378\) 0 0
\(379\) 177568. 0.0634990 0.0317495 0.999496i \(-0.489892\pi\)
0.0317495 + 0.999496i \(0.489892\pi\)
\(380\) 0 0
\(381\) 499616. 0.176329
\(382\) 0 0
\(383\) 2.87468e6i 1.00137i 0.865630 + 0.500683i \(0.166918\pi\)
−0.865630 + 0.500683i \(0.833082\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.18924e6i 0.743046i
\(388\) 0 0
\(389\) 4.79965e6 1.60818 0.804091 0.594506i \(-0.202652\pi\)
0.804091 + 0.594506i \(0.202652\pi\)
\(390\) 0 0
\(391\) 120384. 0.0398223
\(392\) 0 0
\(393\) 24420.0i 0.00797562i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 2.81643e6i − 0.896855i −0.893819 0.448428i \(-0.851984\pi\)
0.893819 0.448428i \(-0.148016\pi\)
\(398\) 0 0
\(399\) −9212.00 −0.00289682
\(400\) 0 0
\(401\) −2.83797e6 −0.881347 −0.440673 0.897667i \(-0.645260\pi\)
−0.440673 + 0.897667i \(0.645260\pi\)
\(402\) 0 0
\(403\) 3.57157e6i 1.09546i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.77456e6i 2.32643i
\(408\) 0 0
\(409\) −154286. −0.0456056 −0.0228028 0.999740i \(-0.507259\pi\)
−0.0228028 + 0.999740i \(0.507259\pi\)
\(410\) 0 0
\(411\) 27804.0 0.00811900
\(412\) 0 0
\(413\) − 60858.0i − 0.0175567i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 863588.i 0.243202i
\(418\) 0 0
\(419\) −3.72865e6 −1.03757 −0.518783 0.854906i \(-0.673615\pi\)
−0.518783 + 0.854906i \(0.673615\pi\)
\(420\) 0 0
\(421\) −2.32623e6 −0.639658 −0.319829 0.947475i \(-0.603626\pi\)
−0.319829 + 0.947475i \(0.603626\pi\)
\(422\) 0 0
\(423\) − 6.17480e6i − 1.67792i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 372008.i 0.0987376i
\(428\) 0 0
\(429\) −823680. −0.216080
\(430\) 0 0
\(431\) −2.61482e6 −0.678031 −0.339015 0.940781i \(-0.610094\pi\)
−0.339015 + 0.940781i \(0.610094\pi\)
\(432\) 0 0
\(433\) 1.19226e6i 0.305598i 0.988257 + 0.152799i \(0.0488287\pi\)
−0.988257 + 0.152799i \(0.951171\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 9024.00i − 0.00226045i
\(438\) 0 0
\(439\) −1.05793e6 −0.261996 −0.130998 0.991383i \(-0.541818\pi\)
−0.130998 + 0.991383i \(0.541818\pi\)
\(440\) 0 0
\(441\) −573839. −0.140506
\(442\) 0 0
\(443\) − 4.12756e6i − 0.999272i −0.866235 0.499636i \(-0.833467\pi\)
0.866235 0.499636i \(-0.166533\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 653628.i − 0.154725i
\(448\) 0 0
\(449\) −3.75823e6 −0.879766 −0.439883 0.898055i \(-0.644980\pi\)
−0.439883 + 0.898055i \(0.644980\pi\)
\(450\) 0 0
\(451\) −8.64432e6 −2.00120
\(452\) 0 0
\(453\) 346960.i 0.0794390i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 451114.i − 0.101041i −0.998723 0.0505203i \(-0.983912\pi\)
0.998723 0.0505203i \(-0.0160880\pi\)
\(458\) 0 0
\(459\) −1.20886e6 −0.267820
\(460\) 0 0
\(461\) −1.95186e6 −0.427756 −0.213878 0.976860i \(-0.568610\pi\)
−0.213878 + 0.976860i \(0.568610\pi\)
\(462\) 0 0
\(463\) 7.20218e6i 1.56139i 0.624913 + 0.780695i \(0.285135\pi\)
−0.624913 + 0.780695i \(0.714865\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7.17801e6i 1.52304i 0.648140 + 0.761521i \(0.275547\pi\)
−0.648140 + 0.761521i \(0.724453\pi\)
\(468\) 0 0
\(469\) −2.01547e6 −0.423101
\(470\) 0 0
\(471\) 109064. 0.0226532
\(472\) 0 0
\(473\) − 6.59520e6i − 1.35542i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 242346.i − 0.0487686i
\(478\) 0 0
\(479\) −6.17632e6 −1.22996 −0.614980 0.788543i \(-0.710836\pi\)
−0.614980 + 0.788543i \(0.710836\pi\)
\(480\) 0 0
\(481\) −6.17646e6 −1.21724
\(482\) 0 0
\(483\) 9408.00i 0.00183497i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 7.59330e6i 1.45080i 0.688327 + 0.725401i \(0.258345\pi\)
−0.688327 + 0.725401i \(0.741655\pi\)
\(488\) 0 0
\(489\) 209920. 0.0396992
\(490\) 0 0
\(491\) −1.51878e6 −0.284309 −0.142155 0.989844i \(-0.545403\pi\)
−0.142155 + 0.989844i \(0.545403\pi\)
\(492\) 0 0
\(493\) 5.48500e6i 1.01639i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 1.84397e6i − 0.334859i
\(498\) 0 0
\(499\) −1.47576e6 −0.265316 −0.132658 0.991162i \(-0.542351\pi\)
−0.132658 + 0.991162i \(0.542351\pi\)
\(500\) 0 0
\(501\) −321576. −0.0572386
\(502\) 0 0
\(503\) 1.31309e6i 0.231406i 0.993284 + 0.115703i \(0.0369120\pi\)
−0.993284 + 0.115703i \(0.963088\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 88218.0i 0.0152418i
\(508\) 0 0
\(509\) −4.40932e6 −0.754357 −0.377178 0.926141i \(-0.623106\pi\)
−0.377178 + 0.926141i \(0.623106\pi\)
\(510\) 0 0
\(511\) −658462. −0.111552
\(512\) 0 0
\(513\) 90616.0i 0.0152024i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.86019e7i 3.06078i
\(518\) 0 0
\(519\) 721128. 0.117515
\(520\) 0 0
\(521\) 2.97629e6 0.480376 0.240188 0.970726i \(-0.422791\pi\)
0.240188 + 0.970726i \(0.422791\pi\)
\(522\) 0 0
\(523\) − 6.34627e6i − 1.01453i −0.861790 0.507265i \(-0.830657\pi\)
0.861790 0.507265i \(-0.169343\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 7.82998e6i − 1.22810i
\(528\) 0 0
\(529\) 6.42713e6 0.998568
\(530\) 0 0
\(531\) −296838. −0.0456860
\(532\) 0 0
\(533\) − 6.86743e6i − 1.04707i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 625464.i 0.0935980i
\(538\) 0 0
\(539\) 1.72872e6 0.256302
\(540\) 0 0
\(541\) −1.36667e6 −0.200756 −0.100378 0.994949i \(-0.532005\pi\)
−0.100378 + 0.994949i \(0.532005\pi\)
\(542\) 0 0
\(543\) − 247640.i − 0.0360430i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 9.55818e6i − 1.36586i −0.730483 0.682931i \(-0.760705\pi\)
0.730483 0.682931i \(-0.239295\pi\)
\(548\) 0 0
\(549\) 1.81449e6 0.256935
\(550\) 0 0
\(551\) 411156. 0.0576936
\(552\) 0 0
\(553\) − 306152.i − 0.0425720i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6.94287e6i 0.948202i 0.880470 + 0.474101i \(0.157227\pi\)
−0.880470 + 0.474101i \(0.842773\pi\)
\(558\) 0 0
\(559\) 5.23952e6 0.709189
\(560\) 0 0
\(561\) 1.80576e6 0.242244
\(562\) 0 0
\(563\) − 5.24662e6i − 0.697604i −0.937196 0.348802i \(-0.886589\pi\)
0.937196 0.348802i \(-0.113411\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2.75130e6i 0.359402i
\(568\) 0 0
\(569\) −3.46551e6 −0.448731 −0.224366 0.974505i \(-0.572031\pi\)
−0.224366 + 0.974505i \(0.572031\pi\)
\(570\) 0 0
\(571\) 4.90069e6 0.629023 0.314512 0.949254i \(-0.398159\pi\)
0.314512 + 0.949254i \(0.398159\pi\)
\(572\) 0 0
\(573\) 646896.i 0.0823091i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 2.28346e6i 0.285531i 0.989757 + 0.142766i \(0.0455995\pi\)
−0.989757 + 0.142766i \(0.954401\pi\)
\(578\) 0 0
\(579\) −1.23991e6 −0.153707
\(580\) 0 0
\(581\) −1.23745e6 −0.152085
\(582\) 0 0
\(583\) 730080.i 0.0889609i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.03157e7i 1.23568i 0.786305 + 0.617838i \(0.211991\pi\)
−0.786305 + 0.617838i \(0.788009\pi\)
\(588\) 0 0
\(589\) −586936. −0.0697112
\(590\) 0 0
\(591\) 998724. 0.117619
\(592\) 0 0
\(593\) − 3.52838e6i − 0.412039i −0.978548 0.206020i \(-0.933949\pi\)
0.978548 0.206020i \(-0.0660510\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.57186e6i 0.180501i
\(598\) 0 0
\(599\) −2.92260e6 −0.332815 −0.166407 0.986057i \(-0.553217\pi\)
−0.166407 + 0.986057i \(0.553217\pi\)
\(600\) 0 0
\(601\) −1.17567e7 −1.32770 −0.663849 0.747866i \(-0.731078\pi\)
−0.663849 + 0.747866i \(0.731078\pi\)
\(602\) 0 0
\(603\) 9.83055e6i 1.10099i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 4.71491e6i − 0.519400i −0.965689 0.259700i \(-0.916376\pi\)
0.965689 0.259700i \(-0.0836237\pi\)
\(608\) 0 0
\(609\) −428652. −0.0468340
\(610\) 0 0
\(611\) −1.47782e7 −1.60147
\(612\) 0 0
\(613\) − 213842.i − 0.0229849i −0.999934 0.0114924i \(-0.996342\pi\)
0.999934 0.0114924i \(-0.00365823\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 336666.i − 0.0356030i −0.999842 0.0178015i \(-0.994333\pi\)
0.999842 0.0178015i \(-0.00566669\pi\)
\(618\) 0 0
\(619\) −1.42655e7 −1.49645 −0.748223 0.663447i \(-0.769093\pi\)
−0.748223 + 0.663447i \(0.769093\pi\)
\(620\) 0 0
\(621\) 92544.0 0.00962984
\(622\) 0 0
\(623\) 2.21117e6i 0.228246i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 135360.i − 0.0137506i
\(628\) 0 0
\(629\) 1.35407e7 1.36463
\(630\) 0 0
\(631\) −6.59637e6 −0.659525 −0.329763 0.944064i \(-0.606969\pi\)
−0.329763 + 0.944064i \(0.606969\pi\)
\(632\) 0 0
\(633\) 2.12553e6i 0.210842i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.37337e6i 0.134103i
\(638\) 0 0
\(639\) −8.99405e6 −0.871371
\(640\) 0 0
\(641\) −1.02490e7 −0.985225 −0.492613 0.870249i \(-0.663958\pi\)
−0.492613 + 0.870249i \(0.663958\pi\)
\(642\) 0 0
\(643\) 4.16543e6i 0.397312i 0.980069 + 0.198656i \(0.0636577\pi\)
−0.980069 + 0.198656i \(0.936342\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 3.35051e6i − 0.314666i −0.987546 0.157333i \(-0.949710\pi\)
0.987546 0.157333i \(-0.0502896\pi\)
\(648\) 0 0
\(649\) 894240. 0.0833379
\(650\) 0 0
\(651\) 611912. 0.0565896
\(652\) 0 0
\(653\) 9.05408e6i 0.830924i 0.909611 + 0.415462i \(0.136380\pi\)
−0.909611 + 0.415462i \(0.863620\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 3.21168e6i 0.290281i
\(658\) 0 0
\(659\) −6.45382e6 −0.578899 −0.289450 0.957193i \(-0.593472\pi\)
−0.289450 + 0.957193i \(0.593472\pi\)
\(660\) 0 0
\(661\) 1.43167e7 1.27450 0.637250 0.770657i \(-0.280072\pi\)
0.637250 + 0.770657i \(0.280072\pi\)
\(662\) 0 0
\(663\) 1.43458e6i 0.126748i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 419904.i − 0.0365456i
\(668\) 0 0
\(669\) 1.41544e6 0.122272
\(670\) 0 0
\(671\) −5.46624e6 −0.468686
\(672\) 0 0
\(673\) − 2.27250e7i − 1.93404i −0.254701 0.967020i \(-0.581977\pi\)
0.254701 0.967020i \(-0.418023\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 8.53249e6i − 0.715491i −0.933819 0.357746i \(-0.883546\pi\)
0.933819 0.357746i \(-0.116454\pi\)
\(678\) 0 0
\(679\) −5.25388e6 −0.437326
\(680\) 0 0
\(681\) 2.08873e6 0.172590
\(682\) 0 0
\(683\) 2.24921e7i 1.84492i 0.386090 + 0.922461i \(0.373825\pi\)
−0.386090 + 0.922461i \(0.626175\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1.07943e6i 0.0872576i
\(688\) 0 0
\(689\) −580008. −0.0465464
\(690\) 0 0
\(691\) −1.26894e7 −1.01099 −0.505495 0.862830i \(-0.668690\pi\)
−0.505495 + 0.862830i \(0.668690\pi\)
\(692\) 0 0
\(693\) − 8.43192e6i − 0.666950i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1.50555e7i 1.17385i
\(698\) 0 0
\(699\) 354228. 0.0274214
\(700\) 0 0
\(701\) −5.13939e6 −0.395018 −0.197509 0.980301i \(-0.563285\pi\)
−0.197509 + 0.980301i \(0.563285\pi\)
\(702\) 0 0
\(703\) − 1.01501e6i − 0.0774610i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.30966e6i 0.173780i
\(708\) 0 0
\(709\) 1.16065e7 0.867132 0.433566 0.901122i \(-0.357255\pi\)
0.433566 + 0.901122i \(0.357255\pi\)
\(710\) 0 0
\(711\) −1.49327e6 −0.110781
\(712\) 0 0
\(713\) 599424.i 0.0441581i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.31093e6i 0.0952316i
\(718\) 0 0
\(719\) −1.50998e7 −1.08930 −0.544650 0.838663i \(-0.683338\pi\)
−0.544650 + 0.838663i \(0.683338\pi\)
\(720\) 0 0
\(721\) 5.98800e6 0.428986
\(722\) 0 0
\(723\) 2.77419e6i 0.197374i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 2.32536e7i − 1.63175i −0.578229 0.815874i \(-0.696256\pi\)
0.578229 0.815874i \(-0.303744\pi\)
\(728\) 0 0
\(729\) 1.29511e7 0.902585
\(730\) 0 0
\(731\) −1.14866e7 −0.795059
\(732\) 0 0
\(733\) − 2.37814e7i − 1.63485i −0.576038 0.817423i \(-0.695402\pi\)
0.576038 0.817423i \(-0.304598\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 2.96150e7i − 2.00837i
\(738\) 0 0
\(739\) 2.51392e6 0.169333 0.0846663 0.996409i \(-0.473018\pi\)
0.0846663 + 0.996409i \(0.473018\pi\)
\(740\) 0 0
\(741\) 107536. 0.00719463
\(742\) 0 0
\(743\) 2.22646e7i 1.47959i 0.672830 + 0.739797i \(0.265078\pi\)
−0.672830 + 0.739797i \(0.734922\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 6.03571e6i 0.395755i
\(748\) 0 0
\(749\) 6.35216e6 0.413730
\(750\) 0 0
\(751\) 2.30108e7 1.48878 0.744392 0.667743i \(-0.232740\pi\)
0.744392 + 0.667743i \(0.232740\pi\)
\(752\) 0 0
\(753\) 3.77622e6i 0.242700i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.59335e7i 1.01058i 0.862950 + 0.505290i \(0.168614\pi\)
−0.862950 + 0.505290i \(0.831386\pi\)
\(758\) 0 0
\(759\) −138240. −0.00871022
\(760\) 0 0
\(761\) 1.68629e7 1.05553 0.527764 0.849391i \(-0.323031\pi\)
0.527764 + 0.849391i \(0.323031\pi\)
\(762\) 0 0
\(763\) 1.08073e7i 0.672059i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 710424.i 0.0436043i
\(768\) 0 0
\(769\) 2.75402e7 1.67939 0.839694 0.543060i \(-0.182735\pi\)
0.839694 + 0.543060i \(0.182735\pi\)
\(770\) 0 0
\(771\) −692388. −0.0419482
\(772\) 0 0
\(773\) − 2.26820e7i − 1.36532i −0.730738 0.682658i \(-0.760824\pi\)
0.730738 0.682658i \(-0.239176\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1.05820e6i 0.0628806i
\(778\) 0 0
\(779\) 1.12856e6 0.0666320
\(780\) 0 0
\(781\) 2.70950e7 1.58951
\(782\) 0 0
\(783\) 4.21654e6i 0.245783i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 2.34266e7i − 1.34826i −0.738614 0.674129i \(-0.764519\pi\)
0.738614 0.674129i \(-0.235481\pi\)
\(788\) 0 0
\(789\) −1.85818e6 −0.106266
\(790\) 0 0
\(791\) 8.36401e6 0.475306
\(792\) 0 0
\(793\) − 4.34262e6i − 0.245228i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 1.82051e7i − 1.01519i −0.861596 0.507594i \(-0.830535\pi\)
0.861596 0.507594i \(-0.169465\pi\)
\(798\) 0 0
\(799\) 3.23983e7 1.79538
\(800\) 0 0
\(801\) 1.07851e7 0.593941
\(802\) 0 0
\(803\) − 9.67536e6i − 0.529515i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 764136.i − 0.0413035i
\(808\) 0 0
\(809\) −1.47411e7 −0.791878 −0.395939 0.918277i \(-0.629581\pi\)
−0.395939 + 0.918277i \(0.629581\pi\)
\(810\) 0 0
\(811\) 1.69629e7 0.905625 0.452812 0.891606i \(-0.350421\pi\)
0.452812 + 0.891606i \(0.350421\pi\)
\(812\) 0 0
\(813\) − 3.16112e6i − 0.167731i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 861040.i 0.0451303i
\(818\) 0 0
\(819\) 6.69869e6 0.348964
\(820\) 0 0
\(821\) 8.03929e6 0.416255 0.208128 0.978102i \(-0.433263\pi\)
0.208128 + 0.978102i \(0.433263\pi\)
\(822\) 0 0
\(823\) − 386648.i − 0.0198983i −0.999951 0.00994915i \(-0.996833\pi\)
0.999951 0.00994915i \(-0.00316697\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.55021e7i 1.80505i 0.430635 + 0.902526i \(0.358290\pi\)
−0.430635 + 0.902526i \(0.641710\pi\)
\(828\) 0 0
\(829\) −2.48814e7 −1.25745 −0.628723 0.777630i \(-0.716422\pi\)
−0.628723 + 0.777630i \(0.716422\pi\)
\(830\) 0 0
\(831\) 2.73823e6 0.137552
\(832\) 0 0
\(833\) − 3.01085e6i − 0.150341i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 6.01922e6i − 0.296979i
\(838\) 0 0
\(839\) −3.41458e7 −1.67468 −0.837340 0.546682i \(-0.815891\pi\)
−0.837340 + 0.546682i \(0.815891\pi\)
\(840\) 0 0
\(841\) −1.37927e6 −0.0672450
\(842\) 0 0
\(843\) − 789708.i − 0.0382734i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1.75101e7i 0.838649i
\(848\) 0 0
\(849\) 1.34607e6 0.0640911
\(850\) 0 0
\(851\) −1.03661e6 −0.0490671
\(852\) 0 0
\(853\) − 2.50701e7i − 1.17973i −0.807502 0.589865i \(-0.799181\pi\)
0.807502 0.589865i \(-0.200819\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 1.81938e7i − 0.846199i −0.906083 0.423099i \(-0.860942\pi\)
0.906083 0.423099i \(-0.139058\pi\)
\(858\) 0 0
\(859\) −6.91797e6 −0.319886 −0.159943 0.987126i \(-0.551131\pi\)
−0.159943 + 0.987126i \(0.551131\pi\)
\(860\) 0 0
\(861\) −1.17659e6 −0.0540899
\(862\) 0 0
\(863\) 2.78069e7i 1.27094i 0.772125 + 0.635471i \(0.219194\pi\)
−0.772125 + 0.635471i \(0.780806\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 305318.i − 0.0137945i
\(868\) 0 0
\(869\) 4.49856e6 0.202080
\(870\) 0 0
\(871\) 2.35275e7 1.05083
\(872\) 0 0
\(873\) 2.56261e7i 1.13801i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 3.79587e6i 0.166653i 0.996522 + 0.0833263i \(0.0265544\pi\)
−0.996522 + 0.0833263i \(0.973446\pi\)
\(878\) 0 0
\(879\) 3.66936e6 0.160184
\(880\) 0 0
\(881\) 2.48904e7 1.08042 0.540210 0.841530i \(-0.318345\pi\)
0.540210 + 0.841530i \(0.318345\pi\)
\(882\) 0 0
\(883\) 3.13568e6i 0.135341i 0.997708 + 0.0676705i \(0.0215567\pi\)
−0.997708 + 0.0676705i \(0.978443\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 2.02437e7i − 0.863933i −0.901890 0.431966i \(-0.857820\pi\)
0.901890 0.431966i \(-0.142180\pi\)
\(888\) 0 0
\(889\) 1.22406e7 0.519455
\(890\) 0 0
\(891\) −4.04273e7 −1.70600
\(892\) 0 0
\(893\) − 2.42858e6i − 0.101912i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 109824.i − 0.00455739i
\(898\) 0 0
\(899\) −2.73113e7 −1.12705
\(900\) 0 0
\(901\) 1.27156e6 0.0521823
\(902\) 0 0
\(903\) − 897680.i − 0.0366355i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 6.86324e6i − 0.277020i −0.990361 0.138510i \(-0.955769\pi\)
0.990361 0.138510i \(-0.0442313\pi\)
\(908\) 0 0
\(909\) 1.12655e7 0.452211
\(910\) 0 0
\(911\) −9.40661e6 −0.375523 −0.187762 0.982215i \(-0.560123\pi\)
−0.187762 + 0.982215i \(0.560123\pi\)
\(912\) 0 0
\(913\) − 1.81829e7i − 0.721914i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 598290.i 0.0234957i
\(918\) 0 0
\(919\) 2.10280e7 0.821313 0.410656 0.911790i \(-0.365300\pi\)
0.410656 + 0.911790i \(0.365300\pi\)
\(920\) 0 0
\(921\) 3.02112e6 0.117360
\(922\) 0 0
\(923\) 2.15255e7i 0.831666i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 2.92068e7i − 1.11631i
\(928\) 0 0
\(929\) 4.30928e7 1.63819 0.819096 0.573656i \(-0.194475\pi\)
0.819096 + 0.573656i \(0.194475\pi\)
\(930\) 0 0
\(931\) −225694. −0.00853387
\(932\) 0 0
\(933\) − 3.75058e6i − 0.141057i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 3.85862e6i − 0.143576i −0.997420 0.0717882i \(-0.977129\pi\)
0.997420 0.0717882i \(-0.0228706\pi\)
\(938\) 0 0
\(939\) −3.02152e6 −0.111831
\(940\) 0 0
\(941\) 1.59601e7 0.587572 0.293786 0.955871i \(-0.405085\pi\)
0.293786 + 0.955871i \(0.405085\pi\)
\(942\) 0 0
\(943\) − 1.15258e6i − 0.0422076i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 4.66831e6i − 0.169155i −0.996417 0.0845775i \(-0.973046\pi\)
0.996417 0.0845775i \(-0.0269541\pi\)
\(948\) 0 0
\(949\) 7.68654e6 0.277054
\(950\) 0 0
\(951\) −4.05419e6 −0.145363
\(952\) 0 0
\(953\) 3.43457e7i 1.22501i 0.790466 + 0.612505i \(0.209838\pi\)
−0.790466 + 0.612505i \(0.790162\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 6.29856e6i − 0.222311i
\(958\) 0 0
\(959\) 681198. 0.0239181
\(960\) 0 0
\(961\) 1.03584e7 0.361813
\(962\) 0 0
\(963\) − 3.09830e7i − 1.07661i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 2.28181e7i − 0.784718i −0.919812 0.392359i \(-0.871659\pi\)
0.919812 0.392359i \(-0.128341\pi\)
\(968\) 0 0
\(969\) −235752. −0.00806577
\(970\) 0 0
\(971\) 4.94042e7 1.68157 0.840786 0.541367i \(-0.182093\pi\)
0.840786 + 0.541367i \(0.182093\pi\)
\(972\) 0 0
\(973\) 2.11579e7i 0.716458i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 7.17542e6i 0.240498i 0.992744 + 0.120249i \(0.0383692\pi\)
−0.992744 + 0.120249i \(0.961631\pi\)
\(978\) 0 0
\(979\) −3.24907e7 −1.08343
\(980\) 0 0
\(981\) 5.27134e7 1.74883
\(982\) 0 0
\(983\) 4.22279e6i 0.139385i 0.997569 + 0.0696924i \(0.0222018\pi\)
−0.997569 + 0.0696924i \(0.977798\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 2.53193e6i 0.0827291i
\(988\) 0 0
\(989\) 879360. 0.0285875
\(990\) 0 0
\(991\) 1.65645e7 0.535789 0.267895 0.963448i \(-0.413672\pi\)
0.267895 + 0.963448i \(0.413672\pi\)
\(992\) 0 0
\(993\) 3.08018e6i 0.0991294i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 4.40973e7i − 1.40499i −0.711687 0.702496i \(-0.752069\pi\)
0.711687 0.702496i \(-0.247931\pi\)
\(998\) 0 0
\(999\) 1.04093e7 0.329994
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.6.e.d.449.2 2
5.2 odd 4 700.6.a.d.1.1 1
5.3 odd 4 28.6.a.a.1.1 1
5.4 even 2 inner 700.6.e.d.449.1 2
15.8 even 4 252.6.a.d.1.1 1
20.3 even 4 112.6.a.e.1.1 1
35.3 even 12 196.6.e.e.177.1 2
35.13 even 4 196.6.a.d.1.1 1
35.18 odd 12 196.6.e.f.177.1 2
35.23 odd 12 196.6.e.f.165.1 2
35.33 even 12 196.6.e.e.165.1 2
40.3 even 4 448.6.a.h.1.1 1
40.13 odd 4 448.6.a.i.1.1 1
60.23 odd 4 1008.6.a.bb.1.1 1
140.83 odd 4 784.6.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.6.a.a.1.1 1 5.3 odd 4
112.6.a.e.1.1 1 20.3 even 4
196.6.a.d.1.1 1 35.13 even 4
196.6.e.e.165.1 2 35.33 even 12
196.6.e.e.177.1 2 35.3 even 12
196.6.e.f.165.1 2 35.23 odd 12
196.6.e.f.177.1 2 35.18 odd 12
252.6.a.d.1.1 1 15.8 even 4
448.6.a.h.1.1 1 40.3 even 4
448.6.a.i.1.1 1 40.13 odd 4
700.6.a.d.1.1 1 5.2 odd 4
700.6.e.d.449.1 2 5.4 even 2 inner
700.6.e.d.449.2 2 1.1 even 1 trivial
784.6.a.f.1.1 1 140.83 odd 4
1008.6.a.bb.1.1 1 60.23 odd 4