Properties

Label 700.6.e.b.449.2
Level $700$
Weight $6$
Character 700.449
Analytic conductor $112.269$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,6,Mod(449,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.449");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 700.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(112.268673869\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 700.449
Dual form 700.6.e.b.449.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+26.0000i q^{3} +49.0000i q^{7} -433.000 q^{9} +O(q^{10})\) \(q+26.0000i q^{3} +49.0000i q^{7} -433.000 q^{9} +8.00000 q^{11} +684.000i q^{13} +2218.00i q^{17} +2698.00 q^{19} -1274.00 q^{21} +3344.00i q^{23} -4940.00i q^{27} +3254.00 q^{29} +4788.00 q^{31} +208.000i q^{33} +11470.0i q^{37} -17784.0 q^{39} +13350.0 q^{41} -928.000i q^{43} -1212.00i q^{47} -2401.00 q^{49} -57668.0 q^{51} +13110.0i q^{53} +70148.0i q^{57} -34702.0 q^{59} -1032.00 q^{61} -21217.0i q^{63} -10108.0i q^{67} -86944.0 q^{69} +62720.0 q^{71} -18926.0i q^{73} +392.000i q^{77} -11400.0 q^{79} +23221.0 q^{81} +88958.0i q^{83} +84604.0i q^{87} -19722.0 q^{89} -33516.0 q^{91} +124488. i q^{93} -17062.0i q^{97} -3464.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 866 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 866 q^{9} + 16 q^{11} + 5396 q^{19} - 2548 q^{21} + 6508 q^{29} + 9576 q^{31} - 35568 q^{39} + 26700 q^{41} - 4802 q^{49} - 115336 q^{51} - 69404 q^{59} - 2064 q^{61} - 173888 q^{69} + 125440 q^{71} - 22800 q^{79} + 46442 q^{81} - 39444 q^{89} - 67032 q^{91} - 6928 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 26.0000i 1.66790i 0.551839 + 0.833950i \(0.313926\pi\)
−0.551839 + 0.833950i \(0.686074\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 49.0000i 0.377964i
\(8\) 0 0
\(9\) −433.000 −1.78189
\(10\) 0 0
\(11\) 8.00000 0.0199346 0.00996732 0.999950i \(-0.496827\pi\)
0.00996732 + 0.999950i \(0.496827\pi\)
\(12\) 0 0
\(13\) 684.000i 1.12253i 0.827636 + 0.561265i \(0.189685\pi\)
−0.827636 + 0.561265i \(0.810315\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2218.00i 1.86140i 0.365786 + 0.930699i \(0.380800\pi\)
−0.365786 + 0.930699i \(0.619200\pi\)
\(18\) 0 0
\(19\) 2698.00 1.71458 0.857290 0.514833i \(-0.172146\pi\)
0.857290 + 0.514833i \(0.172146\pi\)
\(20\) 0 0
\(21\) −1274.00 −0.630407
\(22\) 0 0
\(23\) 3344.00i 1.31809i 0.752101 + 0.659047i \(0.229040\pi\)
−0.752101 + 0.659047i \(0.770960\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 4940.00i − 1.30412i
\(28\) 0 0
\(29\) 3254.00 0.718493 0.359247 0.933243i \(-0.383034\pi\)
0.359247 + 0.933243i \(0.383034\pi\)
\(30\) 0 0
\(31\) 4788.00 0.894849 0.447425 0.894322i \(-0.352341\pi\)
0.447425 + 0.894322i \(0.352341\pi\)
\(32\) 0 0
\(33\) 208.000i 0.0332490i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 11470.0i 1.37740i 0.725048 + 0.688698i \(0.241818\pi\)
−0.725048 + 0.688698i \(0.758182\pi\)
\(38\) 0 0
\(39\) −17784.0 −1.87227
\(40\) 0 0
\(41\) 13350.0 1.24029 0.620143 0.784489i \(-0.287075\pi\)
0.620143 + 0.784489i \(0.287075\pi\)
\(42\) 0 0
\(43\) − 928.000i − 0.0765380i −0.999267 0.0382690i \(-0.987816\pi\)
0.999267 0.0382690i \(-0.0121844\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 1212.00i − 0.0800310i −0.999199 0.0400155i \(-0.987259\pi\)
0.999199 0.0400155i \(-0.0127407\pi\)
\(48\) 0 0
\(49\) −2401.00 −0.142857
\(50\) 0 0
\(51\) −57668.0 −3.10463
\(52\) 0 0
\(53\) 13110.0i 0.641081i 0.947235 + 0.320541i \(0.103865\pi\)
−0.947235 + 0.320541i \(0.896135\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 70148.0i 2.85975i
\(58\) 0 0
\(59\) −34702.0 −1.29785 −0.648925 0.760852i \(-0.724781\pi\)
−0.648925 + 0.760852i \(0.724781\pi\)
\(60\) 0 0
\(61\) −1032.00 −0.0355104 −0.0177552 0.999842i \(-0.505652\pi\)
−0.0177552 + 0.999842i \(0.505652\pi\)
\(62\) 0 0
\(63\) − 21217.0i − 0.673492i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 10108.0i − 0.275092i −0.990495 0.137546i \(-0.956078\pi\)
0.990495 0.137546i \(-0.0439215\pi\)
\(68\) 0 0
\(69\) −86944.0 −2.19845
\(70\) 0 0
\(71\) 62720.0 1.47659 0.738295 0.674477i \(-0.235631\pi\)
0.738295 + 0.674477i \(0.235631\pi\)
\(72\) 0 0
\(73\) − 18926.0i − 0.415673i −0.978164 0.207836i \(-0.933358\pi\)
0.978164 0.207836i \(-0.0666422\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 392.000i 0.00753458i
\(78\) 0 0
\(79\) −11400.0 −0.205512 −0.102756 0.994707i \(-0.532766\pi\)
−0.102756 + 0.994707i \(0.532766\pi\)
\(80\) 0 0
\(81\) 23221.0 0.393250
\(82\) 0 0
\(83\) 88958.0i 1.41739i 0.705514 + 0.708696i \(0.250716\pi\)
−0.705514 + 0.708696i \(0.749284\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 84604.0i 1.19838i
\(88\) 0 0
\(89\) −19722.0 −0.263922 −0.131961 0.991255i \(-0.542127\pi\)
−0.131961 + 0.991255i \(0.542127\pi\)
\(90\) 0 0
\(91\) −33516.0 −0.424276
\(92\) 0 0
\(93\) 124488.i 1.49252i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 17062.0i − 0.184120i −0.995753 0.0920599i \(-0.970655\pi\)
0.995753 0.0920599i \(-0.0293451\pi\)
\(98\) 0 0
\(99\) −3464.00 −0.0355214
\(100\) 0 0
\(101\) 45904.0 0.447762 0.223881 0.974617i \(-0.428127\pi\)
0.223881 + 0.974617i \(0.428127\pi\)
\(102\) 0 0
\(103\) − 136012.i − 1.26324i −0.775280 0.631618i \(-0.782391\pi\)
0.775280 0.631618i \(-0.217609\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 69156.0i 0.583943i 0.956427 + 0.291971i \(0.0943112\pi\)
−0.956427 + 0.291971i \(0.905689\pi\)
\(108\) 0 0
\(109\) 146414. 1.18037 0.590183 0.807270i \(-0.299056\pi\)
0.590183 + 0.807270i \(0.299056\pi\)
\(110\) 0 0
\(111\) −298220. −2.29736
\(112\) 0 0
\(113\) − 80186.0i − 0.590748i −0.955382 0.295374i \(-0.904556\pi\)
0.955382 0.295374i \(-0.0954443\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 296172.i − 2.00023i
\(118\) 0 0
\(119\) −108682. −0.703542
\(120\) 0 0
\(121\) −160987. −0.999603
\(122\) 0 0
\(123\) 347100.i 2.06867i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 274800.i − 1.51185i −0.654661 0.755923i \(-0.727189\pi\)
0.654661 0.755923i \(-0.272811\pi\)
\(128\) 0 0
\(129\) 24128.0 0.127658
\(130\) 0 0
\(131\) 180742. 0.920197 0.460099 0.887868i \(-0.347814\pi\)
0.460099 + 0.887868i \(0.347814\pi\)
\(132\) 0 0
\(133\) 132202.i 0.648051i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 209678.i 0.954446i 0.878782 + 0.477223i \(0.158357\pi\)
−0.878782 + 0.477223i \(0.841643\pi\)
\(138\) 0 0
\(139\) −17242.0 −0.0756921 −0.0378461 0.999284i \(-0.512050\pi\)
−0.0378461 + 0.999284i \(0.512050\pi\)
\(140\) 0 0
\(141\) 31512.0 0.133484
\(142\) 0 0
\(143\) 5472.00i 0.0223772i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 62426.0i − 0.238272i
\(148\) 0 0
\(149\) −59358.0 −0.219035 −0.109518 0.993985i \(-0.534931\pi\)
−0.109518 + 0.993985i \(0.534931\pi\)
\(150\) 0 0
\(151\) −336344. −1.20044 −0.600221 0.799834i \(-0.704921\pi\)
−0.600221 + 0.799834i \(0.704921\pi\)
\(152\) 0 0
\(153\) − 960394.i − 3.31681i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 464588.i − 1.50425i −0.659023 0.752123i \(-0.729030\pi\)
0.659023 0.752123i \(-0.270970\pi\)
\(158\) 0 0
\(159\) −340860. −1.06926
\(160\) 0 0
\(161\) −163856. −0.498193
\(162\) 0 0
\(163\) 314792.i 0.928014i 0.885831 + 0.464007i \(0.153589\pi\)
−0.885831 + 0.464007i \(0.846411\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 285724.i − 0.792785i −0.918081 0.396393i \(-0.870262\pi\)
0.918081 0.396393i \(-0.129738\pi\)
\(168\) 0 0
\(169\) −96563.0 −0.260072
\(170\) 0 0
\(171\) −1.16823e6 −3.05520
\(172\) 0 0
\(173\) − 709148.i − 1.80145i −0.434392 0.900724i \(-0.643037\pi\)
0.434392 0.900724i \(-0.356963\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 902252.i − 2.16468i
\(178\) 0 0
\(179\) 617148. 1.43965 0.719825 0.694156i \(-0.244222\pi\)
0.719825 + 0.694156i \(0.244222\pi\)
\(180\) 0 0
\(181\) 237828. 0.539593 0.269797 0.962917i \(-0.413044\pi\)
0.269797 + 0.962917i \(0.413044\pi\)
\(182\) 0 0
\(183\) − 26832.0i − 0.0592278i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 17744.0i 0.0371063i
\(188\) 0 0
\(189\) 242060. 0.492911
\(190\) 0 0
\(191\) −133512. −0.264812 −0.132406 0.991196i \(-0.542270\pi\)
−0.132406 + 0.991196i \(0.542270\pi\)
\(192\) 0 0
\(193\) 270446.i 0.522622i 0.965255 + 0.261311i \(0.0841547\pi\)
−0.965255 + 0.261311i \(0.915845\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 875102.i − 1.60655i −0.595611 0.803273i \(-0.703090\pi\)
0.595611 0.803273i \(-0.296910\pi\)
\(198\) 0 0
\(199\) 347620. 0.622260 0.311130 0.950367i \(-0.399292\pi\)
0.311130 + 0.950367i \(0.399292\pi\)
\(200\) 0 0
\(201\) 262808. 0.458826
\(202\) 0 0
\(203\) 159446.i 0.271565i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 1.44795e6i − 2.34870i
\(208\) 0 0
\(209\) 21584.0 0.0341795
\(210\) 0 0
\(211\) −425380. −0.657765 −0.328883 0.944371i \(-0.606672\pi\)
−0.328883 + 0.944371i \(0.606672\pi\)
\(212\) 0 0
\(213\) 1.63072e6i 2.46281i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 234612.i 0.338221i
\(218\) 0 0
\(219\) 492076. 0.693301
\(220\) 0 0
\(221\) −1.51711e6 −2.08947
\(222\) 0 0
\(223\) 481592.i 0.648511i 0.945970 + 0.324255i \(0.105114\pi\)
−0.945970 + 0.324255i \(0.894886\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6042.00i 0.00778245i 0.999992 + 0.00389122i \(0.00123862\pi\)
−0.999992 + 0.00389122i \(0.998761\pi\)
\(228\) 0 0
\(229\) −1804.00 −0.00227325 −0.00113663 0.999999i \(-0.500362\pi\)
−0.00113663 + 0.999999i \(0.500362\pi\)
\(230\) 0 0
\(231\) −10192.0 −0.0125669
\(232\) 0 0
\(233\) − 1.61153e6i − 1.94468i −0.233576 0.972339i \(-0.575043\pi\)
0.233576 0.972339i \(-0.424957\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 296400.i − 0.342774i
\(238\) 0 0
\(239\) 987096. 1.11780 0.558901 0.829235i \(-0.311223\pi\)
0.558901 + 0.829235i \(0.311223\pi\)
\(240\) 0 0
\(241\) 893510. 0.990962 0.495481 0.868619i \(-0.334992\pi\)
0.495481 + 0.868619i \(0.334992\pi\)
\(242\) 0 0
\(243\) − 596674.i − 0.648219i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.84543e6i 1.92467i
\(248\) 0 0
\(249\) −2.31291e6 −2.36407
\(250\) 0 0
\(251\) 365946. 0.366634 0.183317 0.983054i \(-0.441317\pi\)
0.183317 + 0.983054i \(0.441317\pi\)
\(252\) 0 0
\(253\) 26752.0i 0.0262757i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 1.40459e6i − 1.32653i −0.748383 0.663266i \(-0.769170\pi\)
0.748383 0.663266i \(-0.230830\pi\)
\(258\) 0 0
\(259\) −562030. −0.520607
\(260\) 0 0
\(261\) −1.40898e6 −1.28028
\(262\) 0 0
\(263\) 1.09968e6i 0.980341i 0.871627 + 0.490170i \(0.163065\pi\)
−0.871627 + 0.490170i \(0.836935\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 512772.i − 0.440196i
\(268\) 0 0
\(269\) −814948. −0.686672 −0.343336 0.939213i \(-0.611557\pi\)
−0.343336 + 0.939213i \(0.611557\pi\)
\(270\) 0 0
\(271\) −1.69906e6 −1.40535 −0.702675 0.711511i \(-0.748011\pi\)
−0.702675 + 0.711511i \(0.748011\pi\)
\(272\) 0 0
\(273\) − 871416.i − 0.707651i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.36508e6i 1.06895i 0.845183 + 0.534477i \(0.179492\pi\)
−0.845183 + 0.534477i \(0.820508\pi\)
\(278\) 0 0
\(279\) −2.07320e6 −1.59453
\(280\) 0 0
\(281\) −715846. −0.540821 −0.270411 0.962745i \(-0.587159\pi\)
−0.270411 + 0.962745i \(0.587159\pi\)
\(282\) 0 0
\(283\) 217726.i 0.161601i 0.996730 + 0.0808005i \(0.0257477\pi\)
−0.996730 + 0.0808005i \(0.974252\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 654150.i 0.468784i
\(288\) 0 0
\(289\) −3.49967e6 −2.46480
\(290\) 0 0
\(291\) 443612. 0.307094
\(292\) 0 0
\(293\) 1.50708e6i 1.02557i 0.858516 + 0.512787i \(0.171387\pi\)
−0.858516 + 0.512787i \(0.828613\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 39520.0i − 0.0259972i
\(298\) 0 0
\(299\) −2.28730e6 −1.47960
\(300\) 0 0
\(301\) 45472.0 0.0289286
\(302\) 0 0
\(303\) 1.19350e6i 0.746822i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 12502.0i − 0.00757066i −0.999993 0.00378533i \(-0.998795\pi\)
0.999993 0.00378533i \(-0.00120491\pi\)
\(308\) 0 0
\(309\) 3.53631e6 2.10695
\(310\) 0 0
\(311\) −647432. −0.379571 −0.189786 0.981826i \(-0.560779\pi\)
−0.189786 + 0.981826i \(0.560779\pi\)
\(312\) 0 0
\(313\) − 935978.i − 0.540014i −0.962858 0.270007i \(-0.912974\pi\)
0.962858 0.270007i \(-0.0870260\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 705942.i − 0.394567i −0.980346 0.197284i \(-0.936788\pi\)
0.980346 0.197284i \(-0.0632120\pi\)
\(318\) 0 0
\(319\) 26032.0 0.0143229
\(320\) 0 0
\(321\) −1.79806e6 −0.973959
\(322\) 0 0
\(323\) 5.98416e6i 3.19152i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 3.80676e6i 1.96873i
\(328\) 0 0
\(329\) 59388.0 0.0302489
\(330\) 0 0
\(331\) −1.14304e6 −0.573445 −0.286722 0.958014i \(-0.592566\pi\)
−0.286722 + 0.958014i \(0.592566\pi\)
\(332\) 0 0
\(333\) − 4.96651e6i − 2.45437i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.36402e6i 1.13390i 0.823751 + 0.566952i \(0.191877\pi\)
−0.823751 + 0.566952i \(0.808123\pi\)
\(338\) 0 0
\(339\) 2.08484e6 0.985309
\(340\) 0 0
\(341\) 38304.0 0.0178385
\(342\) 0 0
\(343\) − 117649.i − 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 726240.i − 0.323785i −0.986808 0.161892i \(-0.948240\pi\)
0.986808 0.161892i \(-0.0517598\pi\)
\(348\) 0 0
\(349\) −136180. −0.0598480 −0.0299240 0.999552i \(-0.509527\pi\)
−0.0299240 + 0.999552i \(0.509527\pi\)
\(350\) 0 0
\(351\) 3.37896e6 1.46391
\(352\) 0 0
\(353\) − 1.16907e6i − 0.499349i −0.968330 0.249674i \(-0.919676\pi\)
0.968330 0.249674i \(-0.0803235\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 2.82573e6i − 1.17344i
\(358\) 0 0
\(359\) 4280.00 0.00175270 0.000876350 1.00000i \(-0.499721\pi\)
0.000876350 1.00000i \(0.499721\pi\)
\(360\) 0 0
\(361\) 4.80310e6 1.93979
\(362\) 0 0
\(363\) − 4.18566e6i − 1.66724i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 2.44796e6i − 0.948722i −0.880330 0.474361i \(-0.842679\pi\)
0.880330 0.474361i \(-0.157321\pi\)
\(368\) 0 0
\(369\) −5.78055e6 −2.21006
\(370\) 0 0
\(371\) −642390. −0.242306
\(372\) 0 0
\(373\) − 904514.i − 0.336623i −0.985734 0.168311i \(-0.946169\pi\)
0.985734 0.168311i \(-0.0538314\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.22574e6i 0.806530i
\(378\) 0 0
\(379\) 4.23034e6 1.51279 0.756393 0.654117i \(-0.226960\pi\)
0.756393 + 0.654117i \(0.226960\pi\)
\(380\) 0 0
\(381\) 7.14480e6 2.52161
\(382\) 0 0
\(383\) 4.55400e6i 1.58634i 0.609002 + 0.793169i \(0.291570\pi\)
−0.609002 + 0.793169i \(0.708430\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 401824.i 0.136382i
\(388\) 0 0
\(389\) 3.98541e6 1.33536 0.667680 0.744448i \(-0.267287\pi\)
0.667680 + 0.744448i \(0.267287\pi\)
\(390\) 0 0
\(391\) −7.41699e6 −2.45350
\(392\) 0 0
\(393\) 4.69929e6i 1.53480i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 552420.i − 0.175911i −0.996124 0.0879555i \(-0.971967\pi\)
0.996124 0.0879555i \(-0.0280333\pi\)
\(398\) 0 0
\(399\) −3.43725e6 −1.08088
\(400\) 0 0
\(401\) 38190.0 0.0118601 0.00593006 0.999982i \(-0.498112\pi\)
0.00593006 + 0.999982i \(0.498112\pi\)
\(402\) 0 0
\(403\) 3.27499e6i 1.00449i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 91760.0i 0.0274579i
\(408\) 0 0
\(409\) 3.92475e6 1.16012 0.580062 0.814573i \(-0.303028\pi\)
0.580062 + 0.814573i \(0.303028\pi\)
\(410\) 0 0
\(411\) −5.45163e6 −1.59192
\(412\) 0 0
\(413\) − 1.70040e6i − 0.490541i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 448292.i − 0.126247i
\(418\) 0 0
\(419\) −598386. −0.166512 −0.0832562 0.996528i \(-0.526532\pi\)
−0.0832562 + 0.996528i \(0.526532\pi\)
\(420\) 0 0
\(421\) 4.61597e6 1.26928 0.634641 0.772807i \(-0.281148\pi\)
0.634641 + 0.772807i \(0.281148\pi\)
\(422\) 0 0
\(423\) 524796.i 0.142607i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 50568.0i − 0.0134217i
\(428\) 0 0
\(429\) −142272. −0.0373230
\(430\) 0 0
\(431\) −61560.0 −0.0159627 −0.00798133 0.999968i \(-0.502541\pi\)
−0.00798133 + 0.999968i \(0.502541\pi\)
\(432\) 0 0
\(433\) − 3.79727e6i − 0.973310i −0.873594 0.486655i \(-0.838217\pi\)
0.873594 0.486655i \(-0.161783\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9.02211e6i 2.25998i
\(438\) 0 0
\(439\) 2.28852e6 0.566752 0.283376 0.959009i \(-0.408545\pi\)
0.283376 + 0.959009i \(0.408545\pi\)
\(440\) 0 0
\(441\) 1.03963e6 0.254556
\(442\) 0 0
\(443\) − 4.75976e6i − 1.15233i −0.817335 0.576163i \(-0.804549\pi\)
0.817335 0.576163i \(-0.195451\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 1.54331e6i − 0.365329i
\(448\) 0 0
\(449\) 4.36715e6 1.02231 0.511155 0.859489i \(-0.329218\pi\)
0.511155 + 0.859489i \(0.329218\pi\)
\(450\) 0 0
\(451\) 106800. 0.0247246
\(452\) 0 0
\(453\) − 8.74494e6i − 2.00222i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 5.44994e6i − 1.22068i −0.792140 0.610339i \(-0.791033\pi\)
0.792140 0.610339i \(-0.208967\pi\)
\(458\) 0 0
\(459\) 1.09569e7 2.42749
\(460\) 0 0
\(461\) 1.66966e6 0.365911 0.182956 0.983121i \(-0.441434\pi\)
0.182956 + 0.983121i \(0.441434\pi\)
\(462\) 0 0
\(463\) 70768.0i 0.0153421i 0.999971 + 0.00767104i \(0.00244179\pi\)
−0.999971 + 0.00767104i \(0.997558\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 5.66083e6i − 1.20112i −0.799578 0.600562i \(-0.794944\pi\)
0.799578 0.600562i \(-0.205056\pi\)
\(468\) 0 0
\(469\) 495292. 0.103975
\(470\) 0 0
\(471\) 1.20793e7 2.50893
\(472\) 0 0
\(473\) − 7424.00i − 0.00152576i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 5.67663e6i − 1.14234i
\(478\) 0 0
\(479\) 1.44948e6 0.288652 0.144326 0.989530i \(-0.453899\pi\)
0.144326 + 0.989530i \(0.453899\pi\)
\(480\) 0 0
\(481\) −7.84548e6 −1.54617
\(482\) 0 0
\(483\) − 4.26026e6i − 0.830937i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 4.07504e6i − 0.778591i −0.921113 0.389296i \(-0.872718\pi\)
0.921113 0.389296i \(-0.127282\pi\)
\(488\) 0 0
\(489\) −8.18459e6 −1.54784
\(490\) 0 0
\(491\) 986100. 0.184594 0.0922969 0.995732i \(-0.470579\pi\)
0.0922969 + 0.995732i \(0.470579\pi\)
\(492\) 0 0
\(493\) 7.21737e6i 1.33740i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.07328e6i 0.558099i
\(498\) 0 0
\(499\) −5.98342e6 −1.07572 −0.537859 0.843035i \(-0.680767\pi\)
−0.537859 + 0.843035i \(0.680767\pi\)
\(500\) 0 0
\(501\) 7.42882e6 1.32229
\(502\) 0 0
\(503\) − 3.49373e6i − 0.615700i −0.951435 0.307850i \(-0.900391\pi\)
0.951435 0.307850i \(-0.0996095\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 2.51064e6i − 0.433775i
\(508\) 0 0
\(509\) −2.15711e6 −0.369043 −0.184522 0.982828i \(-0.559074\pi\)
−0.184522 + 0.982828i \(0.559074\pi\)
\(510\) 0 0
\(511\) 927374. 0.157110
\(512\) 0 0
\(513\) − 1.33281e7i − 2.23602i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 9696.00i − 0.00159539i
\(518\) 0 0
\(519\) 1.84378e7 3.00464
\(520\) 0 0
\(521\) −6.65817e6 −1.07463 −0.537317 0.843380i \(-0.680562\pi\)
−0.537317 + 0.843380i \(0.680562\pi\)
\(522\) 0 0
\(523\) 5.95223e6i 0.951537i 0.879571 + 0.475768i \(0.157830\pi\)
−0.879571 + 0.475768i \(0.842170\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.06198e7i 1.66567i
\(528\) 0 0
\(529\) −4.74599e6 −0.737374
\(530\) 0 0
\(531\) 1.50260e7 2.31263
\(532\) 0 0
\(533\) 9.13140e6i 1.39226i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 1.60458e7i 2.40119i
\(538\) 0 0
\(539\) −19208.0 −0.00284780
\(540\) 0 0
\(541\) −6.39681e6 −0.939659 −0.469830 0.882757i \(-0.655685\pi\)
−0.469830 + 0.882757i \(0.655685\pi\)
\(542\) 0 0
\(543\) 6.18353e6i 0.899988i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 5.51851e6i 0.788594i 0.918983 + 0.394297i \(0.129012\pi\)
−0.918983 + 0.394297i \(0.870988\pi\)
\(548\) 0 0
\(549\) 446856. 0.0632757
\(550\) 0 0
\(551\) 8.77929e6 1.23191
\(552\) 0 0
\(553\) − 558600.i − 0.0776762i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 2.02159e6i − 0.276093i −0.990426 0.138046i \(-0.955918\pi\)
0.990426 0.138046i \(-0.0440823\pi\)
\(558\) 0 0
\(559\) 634752. 0.0859161
\(560\) 0 0
\(561\) −461344. −0.0618896
\(562\) 0 0
\(563\) 8.14678e6i 1.08322i 0.840631 + 0.541608i \(0.182184\pi\)
−0.840631 + 0.541608i \(0.817816\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.13783e6i 0.148634i
\(568\) 0 0
\(569\) 1.19824e7 1.55154 0.775772 0.631013i \(-0.217361\pi\)
0.775772 + 0.631013i \(0.217361\pi\)
\(570\) 0 0
\(571\) 1.39582e6 0.179159 0.0895793 0.995980i \(-0.471448\pi\)
0.0895793 + 0.995980i \(0.471448\pi\)
\(572\) 0 0
\(573\) − 3.47131e6i − 0.441679i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 1.96784e6i − 0.246065i −0.992403 0.123033i \(-0.960738\pi\)
0.992403 0.123033i \(-0.0392620\pi\)
\(578\) 0 0
\(579\) −7.03160e6 −0.871681
\(580\) 0 0
\(581\) −4.35894e6 −0.535724
\(582\) 0 0
\(583\) 104880.i 0.0127797i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.18897e6i 0.381993i 0.981591 + 0.190997i \(0.0611720\pi\)
−0.981591 + 0.190997i \(0.938828\pi\)
\(588\) 0 0
\(589\) 1.29180e7 1.53429
\(590\) 0 0
\(591\) 2.27527e7 2.67956
\(592\) 0 0
\(593\) 1.67500e6i 0.195604i 0.995206 + 0.0978022i \(0.0311813\pi\)
−0.995206 + 0.0978022i \(0.968819\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 9.03812e6i 1.03787i
\(598\) 0 0
\(599\) 1.00635e7 1.14599 0.572994 0.819559i \(-0.305782\pi\)
0.572994 + 0.819559i \(0.305782\pi\)
\(600\) 0 0
\(601\) 1.72798e6 0.195143 0.0975713 0.995229i \(-0.468893\pi\)
0.0975713 + 0.995229i \(0.468893\pi\)
\(602\) 0 0
\(603\) 4.37676e6i 0.490185i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1.69523e7i 1.86748i 0.357953 + 0.933740i \(0.383475\pi\)
−0.357953 + 0.933740i \(0.616525\pi\)
\(608\) 0 0
\(609\) −4.14560e6 −0.452943
\(610\) 0 0
\(611\) 829008. 0.0898371
\(612\) 0 0
\(613\) 1.01942e7i 1.09572i 0.836569 + 0.547861i \(0.184558\pi\)
−0.836569 + 0.547861i \(0.815442\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 1.57452e7i − 1.66508i −0.553965 0.832540i \(-0.686886\pi\)
0.553965 0.832540i \(-0.313114\pi\)
\(618\) 0 0
\(619\) 332690. 0.0348990 0.0174495 0.999848i \(-0.494445\pi\)
0.0174495 + 0.999848i \(0.494445\pi\)
\(620\) 0 0
\(621\) 1.65194e7 1.71895
\(622\) 0 0
\(623\) − 966378.i − 0.0997532i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 561184.i 0.0570081i
\(628\) 0 0
\(629\) −2.54405e7 −2.56388
\(630\) 0 0
\(631\) 3.59720e6 0.359659 0.179830 0.983698i \(-0.442445\pi\)
0.179830 + 0.983698i \(0.442445\pi\)
\(632\) 0 0
\(633\) − 1.10599e7i − 1.09709i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 1.64228e6i − 0.160361i
\(638\) 0 0
\(639\) −2.71578e7 −2.63113
\(640\) 0 0
\(641\) −1.46389e7 −1.40723 −0.703614 0.710583i \(-0.748431\pi\)
−0.703614 + 0.710583i \(0.748431\pi\)
\(642\) 0 0
\(643\) − 1.38386e7i − 1.31997i −0.751277 0.659987i \(-0.770562\pi\)
0.751277 0.659987i \(-0.229438\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.40358e7i 1.31819i 0.752061 + 0.659093i \(0.229060\pi\)
−0.752061 + 0.659093i \(0.770940\pi\)
\(648\) 0 0
\(649\) −277616. −0.0258722
\(650\) 0 0
\(651\) −6.09991e6 −0.564119
\(652\) 0 0
\(653\) 1.61063e7i 1.47813i 0.673635 + 0.739064i \(0.264732\pi\)
−0.673635 + 0.739064i \(0.735268\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 8.19496e6i 0.740685i
\(658\) 0 0
\(659\) −4.80075e6 −0.430622 −0.215311 0.976546i \(-0.569076\pi\)
−0.215311 + 0.976546i \(0.569076\pi\)
\(660\) 0 0
\(661\) −1.76565e7 −1.57181 −0.785905 0.618347i \(-0.787803\pi\)
−0.785905 + 0.618347i \(0.787803\pi\)
\(662\) 0 0
\(663\) − 3.94449e7i − 3.48504i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.08814e7i 0.947042i
\(668\) 0 0
\(669\) −1.25214e7 −1.08165
\(670\) 0 0
\(671\) −8256.00 −0.000707886 0
\(672\) 0 0
\(673\) 6.59225e6i 0.561043i 0.959848 + 0.280521i \(0.0905074\pi\)
−0.959848 + 0.280521i \(0.909493\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 9.77178e6i − 0.819411i −0.912218 0.409706i \(-0.865631\pi\)
0.912218 0.409706i \(-0.134369\pi\)
\(678\) 0 0
\(679\) 836038. 0.0695908
\(680\) 0 0
\(681\) −157092. −0.0129803
\(682\) 0 0
\(683\) − 1.88663e7i − 1.54752i −0.633481 0.773758i \(-0.718374\pi\)
0.633481 0.773758i \(-0.281626\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 46904.0i − 0.00379156i
\(688\) 0 0
\(689\) −8.96724e6 −0.719632
\(690\) 0 0
\(691\) 8.67018e6 0.690769 0.345385 0.938461i \(-0.387748\pi\)
0.345385 + 0.938461i \(0.387748\pi\)
\(692\) 0 0
\(693\) − 169736.i − 0.0134258i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.96103e7i 2.30866i
\(698\) 0 0
\(699\) 4.18997e7 3.24353
\(700\) 0 0
\(701\) 7.93482e6 0.609877 0.304938 0.952372i \(-0.401364\pi\)
0.304938 + 0.952372i \(0.401364\pi\)
\(702\) 0 0
\(703\) 3.09461e7i 2.36166i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.24930e6i 0.169238i
\(708\) 0 0
\(709\) −2.62600e7 −1.96191 −0.980956 0.194228i \(-0.937780\pi\)
−0.980956 + 0.194228i \(0.937780\pi\)
\(710\) 0 0
\(711\) 4.93620e6 0.366200
\(712\) 0 0
\(713\) 1.60111e7i 1.17950i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2.56645e7i 1.86438i
\(718\) 0 0
\(719\) −2.20763e7 −1.59259 −0.796295 0.604909i \(-0.793210\pi\)
−0.796295 + 0.604909i \(0.793210\pi\)
\(720\) 0 0
\(721\) 6.66459e6 0.477458
\(722\) 0 0
\(723\) 2.32313e7i 1.65283i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 8.49245e6i − 0.595933i −0.954576 0.297966i \(-0.903692\pi\)
0.954576 0.297966i \(-0.0963083\pi\)
\(728\) 0 0
\(729\) 2.11562e7 1.47441
\(730\) 0 0
\(731\) 2.05830e6 0.142468
\(732\) 0 0
\(733\) − 1.90713e7i − 1.31105i −0.755172 0.655526i \(-0.772447\pi\)
0.755172 0.655526i \(-0.227553\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 80864.0i − 0.00548386i
\(738\) 0 0
\(739\) 1.46832e7 0.989032 0.494516 0.869169i \(-0.335345\pi\)
0.494516 + 0.869169i \(0.335345\pi\)
\(740\) 0 0
\(741\) −4.79812e7 −3.21015
\(742\) 0 0
\(743\) 1.64265e7i 1.09162i 0.837908 + 0.545812i \(0.183779\pi\)
−0.837908 + 0.545812i \(0.816221\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 3.85188e7i − 2.52564i
\(748\) 0 0
\(749\) −3.38864e6 −0.220710
\(750\) 0 0
\(751\) −2.44357e7 −1.58097 −0.790486 0.612479i \(-0.790172\pi\)
−0.790486 + 0.612479i \(0.790172\pi\)
\(752\) 0 0
\(753\) 9.51460e6i 0.611509i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 295566.i 0.0187463i 0.999956 + 0.00937313i \(0.00298360\pi\)
−0.999956 + 0.00937313i \(0.997016\pi\)
\(758\) 0 0
\(759\) −695552. −0.0438253
\(760\) 0 0
\(761\) −473842. −0.0296601 −0.0148300 0.999890i \(-0.504721\pi\)
−0.0148300 + 0.999890i \(0.504721\pi\)
\(762\) 0 0
\(763\) 7.17429e6i 0.446136i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 2.37362e7i − 1.45687i
\(768\) 0 0
\(769\) −2.33241e7 −1.42229 −0.711145 0.703045i \(-0.751823\pi\)
−0.711145 + 0.703045i \(0.751823\pi\)
\(770\) 0 0
\(771\) 3.65194e7 2.21253
\(772\) 0 0
\(773\) 1.55583e7i 0.936511i 0.883593 + 0.468255i \(0.155117\pi\)
−0.883593 + 0.468255i \(0.844883\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 1.46128e7i − 0.868321i
\(778\) 0 0
\(779\) 3.60183e7 2.12657
\(780\) 0 0
\(781\) 501760. 0.0294353
\(782\) 0 0
\(783\) − 1.60748e7i − 0.937001i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 6.66843e6i − 0.383784i −0.981416 0.191892i \(-0.938538\pi\)
0.981416 0.191892i \(-0.0614623\pi\)
\(788\) 0 0
\(789\) −2.85917e7 −1.63511
\(790\) 0 0
\(791\) 3.92911e6 0.223282
\(792\) 0 0
\(793\) − 705888.i − 0.0398614i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.22461e7i 0.682892i 0.939901 + 0.341446i \(0.110917\pi\)
−0.939901 + 0.341446i \(0.889083\pi\)
\(798\) 0 0
\(799\) 2.68822e6 0.148969
\(800\) 0 0
\(801\) 8.53963e6 0.470281
\(802\) 0 0
\(803\) − 151408.i − 0.00828629i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 2.11886e7i − 1.14530i
\(808\) 0 0
\(809\) 2.91495e7 1.56588 0.782941 0.622095i \(-0.213718\pi\)
0.782941 + 0.622095i \(0.213718\pi\)
\(810\) 0 0
\(811\) 7.58849e6 0.405138 0.202569 0.979268i \(-0.435071\pi\)
0.202569 + 0.979268i \(0.435071\pi\)
\(812\) 0 0
\(813\) − 4.41755e7i − 2.34398i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 2.50374e6i − 0.131230i
\(818\) 0 0
\(819\) 1.45124e7 0.756015
\(820\) 0 0
\(821\) −5.98849e6 −0.310070 −0.155035 0.987909i \(-0.549549\pi\)
−0.155035 + 0.987909i \(0.549549\pi\)
\(822\) 0 0
\(823\) 817960.i 0.0420952i 0.999778 + 0.0210476i \(0.00670015\pi\)
−0.999778 + 0.0210476i \(0.993300\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 2.51963e6i − 0.128107i −0.997946 0.0640535i \(-0.979597\pi\)
0.997946 0.0640535i \(-0.0204028\pi\)
\(828\) 0 0
\(829\) 1.61006e7 0.813684 0.406842 0.913499i \(-0.366630\pi\)
0.406842 + 0.913499i \(0.366630\pi\)
\(830\) 0 0
\(831\) −3.54921e7 −1.78291
\(832\) 0 0
\(833\) − 5.32542e6i − 0.265914i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 2.36527e7i − 1.16699i
\(838\) 0 0
\(839\) 2.58167e7 1.26618 0.633091 0.774077i \(-0.281786\pi\)
0.633091 + 0.774077i \(0.281786\pi\)
\(840\) 0 0
\(841\) −9.92263e6 −0.483768
\(842\) 0 0
\(843\) − 1.86120e7i − 0.902036i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 7.88836e6i − 0.377814i
\(848\) 0 0
\(849\) −5.66088e6 −0.269535
\(850\) 0 0
\(851\) −3.83557e7 −1.81554
\(852\) 0 0
\(853\) − 1.54270e7i − 0.725954i −0.931798 0.362977i \(-0.881760\pi\)
0.931798 0.362977i \(-0.118240\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 3.60517e6i − 0.167677i −0.996479 0.0838384i \(-0.973282\pi\)
0.996479 0.0838384i \(-0.0267180\pi\)
\(858\) 0 0
\(859\) −4.06995e6 −0.188194 −0.0940970 0.995563i \(-0.529996\pi\)
−0.0940970 + 0.995563i \(0.529996\pi\)
\(860\) 0 0
\(861\) −1.70079e7 −0.781885
\(862\) 0 0
\(863\) 7.25111e6i 0.331419i 0.986175 + 0.165710i \(0.0529914\pi\)
−0.986175 + 0.165710i \(0.947009\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 9.09913e7i − 4.11105i
\(868\) 0 0
\(869\) −91200.0 −0.00409681
\(870\) 0 0
\(871\) 6.91387e6 0.308799
\(872\) 0 0
\(873\) 7.38785e6i 0.328082i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 2.37414e6i − 0.104233i −0.998641 0.0521167i \(-0.983403\pi\)
0.998641 0.0521167i \(-0.0165968\pi\)
\(878\) 0 0
\(879\) −3.91841e7 −1.71056
\(880\) 0 0
\(881\) 3.03558e7 1.31766 0.658828 0.752293i \(-0.271052\pi\)
0.658828 + 0.752293i \(0.271052\pi\)
\(882\) 0 0
\(883\) 1.53338e6i 0.0661832i 0.999452 + 0.0330916i \(0.0105353\pi\)
−0.999452 + 0.0330916i \(0.989465\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.92379e7i 1.24778i 0.781514 + 0.623888i \(0.214448\pi\)
−0.781514 + 0.623888i \(0.785552\pi\)
\(888\) 0 0
\(889\) 1.34652e7 0.571424
\(890\) 0 0
\(891\) 185768. 0.00783929
\(892\) 0 0
\(893\) − 3.26998e6i − 0.137220i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 5.94697e7i − 2.46783i
\(898\) 0 0
\(899\) 1.55802e7 0.642943
\(900\) 0 0
\(901\) −2.90780e7 −1.19331
\(902\) 0 0
\(903\) 1.18227e6i 0.0482501i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 4.48227e7i − 1.80917i −0.426289 0.904587i \(-0.640179\pi\)
0.426289 0.904587i \(-0.359821\pi\)
\(908\) 0 0
\(909\) −1.98764e7 −0.797864
\(910\) 0 0
\(911\) −3.62906e7 −1.44877 −0.724384 0.689397i \(-0.757876\pi\)
−0.724384 + 0.689397i \(0.757876\pi\)
\(912\) 0 0
\(913\) 711664.i 0.0282552i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 8.85636e6i 0.347802i
\(918\) 0 0
\(919\) −3.25350e7 −1.27076 −0.635378 0.772201i \(-0.719156\pi\)
−0.635378 + 0.772201i \(0.719156\pi\)
\(920\) 0 0
\(921\) 325052. 0.0126271
\(922\) 0 0
\(923\) 4.29005e7i 1.65752i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 5.88932e7i 2.25095i
\(928\) 0 0
\(929\) 4.46676e7 1.69806 0.849030 0.528344i \(-0.177187\pi\)
0.849030 + 0.528344i \(0.177187\pi\)
\(930\) 0 0
\(931\) −6.47790e6 −0.244940
\(932\) 0 0
\(933\) − 1.68332e7i − 0.633087i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 1.56680e7i − 0.582995i −0.956572 0.291498i \(-0.905846\pi\)
0.956572 0.291498i \(-0.0941536\pi\)
\(938\) 0 0
\(939\) 2.43354e7 0.900689
\(940\) 0 0
\(941\) −2.01175e7 −0.740627 −0.370313 0.928907i \(-0.620750\pi\)
−0.370313 + 0.928907i \(0.620750\pi\)
\(942\) 0 0
\(943\) 4.46424e7i 1.63481i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8.84518e6i 0.320503i 0.987076 + 0.160251i \(0.0512305\pi\)
−0.987076 + 0.160251i \(0.948769\pi\)
\(948\) 0 0
\(949\) 1.29454e7 0.466605
\(950\) 0 0
\(951\) 1.83545e7 0.658099
\(952\) 0 0
\(953\) − 3.14364e7i − 1.12124i −0.828072 0.560622i \(-0.810562\pi\)
0.828072 0.560622i \(-0.189438\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 676832.i 0.0238892i
\(958\) 0 0
\(959\) −1.02742e7 −0.360747
\(960\) 0 0
\(961\) −5.70421e6 −0.199245
\(962\) 0 0
\(963\) − 2.99445e7i − 1.04052i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 9.52158e6i 0.327449i 0.986506 + 0.163724i \(0.0523507\pi\)
−0.986506 + 0.163724i \(0.947649\pi\)
\(968\) 0 0
\(969\) −1.55588e8 −5.32313
\(970\) 0 0
\(971\) 1.06520e7 0.362564 0.181282 0.983431i \(-0.441975\pi\)
0.181282 + 0.983431i \(0.441975\pi\)
\(972\) 0 0
\(973\) − 844858.i − 0.0286089i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 2.72931e7i − 0.914779i −0.889266 0.457389i \(-0.848785\pi\)
0.889266 0.457389i \(-0.151215\pi\)
\(978\) 0 0
\(979\) −157776. −0.00526119
\(980\) 0 0
\(981\) −6.33973e7 −2.10328
\(982\) 0 0
\(983\) 1.04764e7i 0.345802i 0.984939 + 0.172901i \(0.0553140\pi\)
−0.984939 + 0.172901i \(0.944686\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 1.54409e6i 0.0504521i
\(988\) 0 0
\(989\) 3.10323e6 0.100884
\(990\) 0 0
\(991\) 1.88230e6 0.0608843 0.0304422 0.999537i \(-0.490308\pi\)
0.0304422 + 0.999537i \(0.490308\pi\)
\(992\) 0 0
\(993\) − 2.97190e7i − 0.956449i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 2.71518e7i − 0.865090i −0.901612 0.432545i \(-0.857616\pi\)
0.901612 0.432545i \(-0.142384\pi\)
\(998\) 0 0
\(999\) 5.66618e7 1.79629
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.6.e.b.449.2 2
5.2 odd 4 28.6.a.b.1.1 1
5.3 odd 4 700.6.a.b.1.1 1
5.4 even 2 inner 700.6.e.b.449.1 2
15.2 even 4 252.6.a.a.1.1 1
20.7 even 4 112.6.a.b.1.1 1
35.2 odd 12 196.6.e.a.165.1 2
35.12 even 12 196.6.e.i.165.1 2
35.17 even 12 196.6.e.i.177.1 2
35.27 even 4 196.6.a.a.1.1 1
35.32 odd 12 196.6.e.a.177.1 2
40.27 even 4 448.6.a.o.1.1 1
40.37 odd 4 448.6.a.b.1.1 1
60.47 odd 4 1008.6.a.l.1.1 1
140.27 odd 4 784.6.a.m.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.6.a.b.1.1 1 5.2 odd 4
112.6.a.b.1.1 1 20.7 even 4
196.6.a.a.1.1 1 35.27 even 4
196.6.e.a.165.1 2 35.2 odd 12
196.6.e.a.177.1 2 35.32 odd 12
196.6.e.i.165.1 2 35.12 even 12
196.6.e.i.177.1 2 35.17 even 12
252.6.a.a.1.1 1 15.2 even 4
448.6.a.b.1.1 1 40.37 odd 4
448.6.a.o.1.1 1 40.27 even 4
700.6.a.b.1.1 1 5.3 odd 4
700.6.e.b.449.1 2 5.4 even 2 inner
700.6.e.b.449.2 2 1.1 even 1 trivial
784.6.a.m.1.1 1 140.27 odd 4
1008.6.a.l.1.1 1 60.47 odd 4