# Properties

 Label 700.6.a.b.1.1 Level $700$ Weight $6$ Character 700.1 Self dual yes Analytic conductor $112.269$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Learn more

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [700,6,Mod(1,700)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(700, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 6, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("700.1");

S:= CuspForms(chi, 6);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$700 = 2^{2} \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$6$$ Character orbit: $$[\chi]$$ $$=$$ 700.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$112.268673869$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 28) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 700.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-26.0000 q^{3} +49.0000 q^{7} +433.000 q^{9} +O(q^{10})$$ $$q-26.0000 q^{3} +49.0000 q^{7} +433.000 q^{9} +8.00000 q^{11} -684.000 q^{13} +2218.00 q^{17} -2698.00 q^{19} -1274.00 q^{21} -3344.00 q^{23} -4940.00 q^{27} -3254.00 q^{29} +4788.00 q^{31} -208.000 q^{33} +11470.0 q^{37} +17784.0 q^{39} +13350.0 q^{41} +928.000 q^{43} -1212.00 q^{47} +2401.00 q^{49} -57668.0 q^{51} -13110.0 q^{53} +70148.0 q^{57} +34702.0 q^{59} -1032.00 q^{61} +21217.0 q^{63} -10108.0 q^{67} +86944.0 q^{69} +62720.0 q^{71} +18926.0 q^{73} +392.000 q^{77} +11400.0 q^{79} +23221.0 q^{81} -88958.0 q^{83} +84604.0 q^{87} +19722.0 q^{89} -33516.0 q^{91} -124488. q^{93} -17062.0 q^{97} +3464.00 q^{99} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ −26.0000 −1.66790 −0.833950 0.551839i $$-0.813926\pi$$
−0.833950 + 0.551839i $$0.813926\pi$$
$$4$$ 0 0
$$5$$ 0 0
$$6$$ 0 0
$$7$$ 49.0000 0.377964
$$8$$ 0 0
$$9$$ 433.000 1.78189
$$10$$ 0 0
$$11$$ 8.00000 0.0199346 0.00996732 0.999950i $$-0.496827\pi$$
0.00996732 + 0.999950i $$0.496827\pi$$
$$12$$ 0 0
$$13$$ −684.000 −1.12253 −0.561265 0.827636i $$-0.689685\pi$$
−0.561265 + 0.827636i $$0.689685\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 2218.00 1.86140 0.930699 0.365786i $$-0.119200\pi$$
0.930699 + 0.365786i $$0.119200\pi$$
$$18$$ 0 0
$$19$$ −2698.00 −1.71458 −0.857290 0.514833i $$-0.827854\pi$$
−0.857290 + 0.514833i $$0.827854\pi$$
$$20$$ 0 0
$$21$$ −1274.00 −0.630407
$$22$$ 0 0
$$23$$ −3344.00 −1.31809 −0.659047 0.752101i $$-0.729040\pi$$
−0.659047 + 0.752101i $$0.729040\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ −4940.00 −1.30412
$$28$$ 0 0
$$29$$ −3254.00 −0.718493 −0.359247 0.933243i $$-0.616966\pi$$
−0.359247 + 0.933243i $$0.616966\pi$$
$$30$$ 0 0
$$31$$ 4788.00 0.894849 0.447425 0.894322i $$-0.352341\pi$$
0.447425 + 0.894322i $$0.352341\pi$$
$$32$$ 0 0
$$33$$ −208.000 −0.0332490
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 11470.0 1.37740 0.688698 0.725048i $$-0.258182\pi$$
0.688698 + 0.725048i $$0.258182\pi$$
$$38$$ 0 0
$$39$$ 17784.0 1.87227
$$40$$ 0 0
$$41$$ 13350.0 1.24029 0.620143 0.784489i $$-0.287075\pi$$
0.620143 + 0.784489i $$0.287075\pi$$
$$42$$ 0 0
$$43$$ 928.000 0.0765380 0.0382690 0.999267i $$-0.487816\pi$$
0.0382690 + 0.999267i $$0.487816\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ −1212.00 −0.0800310 −0.0400155 0.999199i $$-0.512741\pi$$
−0.0400155 + 0.999199i $$0.512741\pi$$
$$48$$ 0 0
$$49$$ 2401.00 0.142857
$$50$$ 0 0
$$51$$ −57668.0 −3.10463
$$52$$ 0 0
$$53$$ −13110.0 −0.641081 −0.320541 0.947235i $$-0.603865\pi$$
−0.320541 + 0.947235i $$0.603865\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 70148.0 2.85975
$$58$$ 0 0
$$59$$ 34702.0 1.29785 0.648925 0.760852i $$-0.275219\pi$$
0.648925 + 0.760852i $$0.275219\pi$$
$$60$$ 0 0
$$61$$ −1032.00 −0.0355104 −0.0177552 0.999842i $$-0.505652\pi$$
−0.0177552 + 0.999842i $$0.505652\pi$$
$$62$$ 0 0
$$63$$ 21217.0 0.673492
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ −10108.0 −0.275092 −0.137546 0.990495i $$-0.543922\pi$$
−0.137546 + 0.990495i $$0.543922\pi$$
$$68$$ 0 0
$$69$$ 86944.0 2.19845
$$70$$ 0 0
$$71$$ 62720.0 1.47659 0.738295 0.674477i $$-0.235631\pi$$
0.738295 + 0.674477i $$0.235631\pi$$
$$72$$ 0 0
$$73$$ 18926.0 0.415673 0.207836 0.978164i $$-0.433358\pi$$
0.207836 + 0.978164i $$0.433358\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 392.000 0.00753458
$$78$$ 0 0
$$79$$ 11400.0 0.205512 0.102756 0.994707i $$-0.467234\pi$$
0.102756 + 0.994707i $$0.467234\pi$$
$$80$$ 0 0
$$81$$ 23221.0 0.393250
$$82$$ 0 0
$$83$$ −88958.0 −1.41739 −0.708696 0.705514i $$-0.750716\pi$$
−0.708696 + 0.705514i $$0.750716\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 84604.0 1.19838
$$88$$ 0 0
$$89$$ 19722.0 0.263922 0.131961 0.991255i $$-0.457873\pi$$
0.131961 + 0.991255i $$0.457873\pi$$
$$90$$ 0 0
$$91$$ −33516.0 −0.424276
$$92$$ 0 0
$$93$$ −124488. −1.49252
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ −17062.0 −0.184120 −0.0920599 0.995753i $$-0.529345\pi$$
−0.0920599 + 0.995753i $$0.529345\pi$$
$$98$$ 0 0
$$99$$ 3464.00 0.0355214
$$100$$ 0 0
$$101$$ 45904.0 0.447762 0.223881 0.974617i $$-0.428127\pi$$
0.223881 + 0.974617i $$0.428127\pi$$
$$102$$ 0 0
$$103$$ 136012. 1.26324 0.631618 0.775280i $$-0.282391\pi$$
0.631618 + 0.775280i $$0.282391\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 69156.0 0.583943 0.291971 0.956427i $$-0.405689\pi$$
0.291971 + 0.956427i $$0.405689\pi$$
$$108$$ 0 0
$$109$$ −146414. −1.18037 −0.590183 0.807270i $$-0.700944\pi$$
−0.590183 + 0.807270i $$0.700944\pi$$
$$110$$ 0 0
$$111$$ −298220. −2.29736
$$112$$ 0 0
$$113$$ 80186.0 0.590748 0.295374 0.955382i $$-0.404556\pi$$
0.295374 + 0.955382i $$0.404556\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ −296172. −2.00023
$$118$$ 0 0
$$119$$ 108682. 0.703542
$$120$$ 0 0
$$121$$ −160987. −0.999603
$$122$$ 0 0
$$123$$ −347100. −2.06867
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ −274800. −1.51185 −0.755923 0.654661i $$-0.772811\pi$$
−0.755923 + 0.654661i $$0.772811\pi$$
$$128$$ 0 0
$$129$$ −24128.0 −0.127658
$$130$$ 0 0
$$131$$ 180742. 0.920197 0.460099 0.887868i $$-0.347814\pi$$
0.460099 + 0.887868i $$0.347814\pi$$
$$132$$ 0 0
$$133$$ −132202. −0.648051
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 209678. 0.954446 0.477223 0.878782i $$-0.341643\pi$$
0.477223 + 0.878782i $$0.341643\pi$$
$$138$$ 0 0
$$139$$ 17242.0 0.0756921 0.0378461 0.999284i $$-0.487950\pi$$
0.0378461 + 0.999284i $$0.487950\pi$$
$$140$$ 0 0
$$141$$ 31512.0 0.133484
$$142$$ 0 0
$$143$$ −5472.00 −0.0223772
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ −62426.0 −0.238272
$$148$$ 0 0
$$149$$ 59358.0 0.219035 0.109518 0.993985i $$-0.465069\pi$$
0.109518 + 0.993985i $$0.465069\pi$$
$$150$$ 0 0
$$151$$ −336344. −1.20044 −0.600221 0.799834i $$-0.704921\pi$$
−0.600221 + 0.799834i $$0.704921\pi$$
$$152$$ 0 0
$$153$$ 960394. 3.31681
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ −464588. −1.50425 −0.752123 0.659023i $$-0.770970\pi$$
−0.752123 + 0.659023i $$0.770970\pi$$
$$158$$ 0 0
$$159$$ 340860. 1.06926
$$160$$ 0 0
$$161$$ −163856. −0.498193
$$162$$ 0 0
$$163$$ −314792. −0.928014 −0.464007 0.885831i $$-0.653589\pi$$
−0.464007 + 0.885831i $$0.653589\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ −285724. −0.792785 −0.396393 0.918081i $$-0.629738\pi$$
−0.396393 + 0.918081i $$0.629738\pi$$
$$168$$ 0 0
$$169$$ 96563.0 0.260072
$$170$$ 0 0
$$171$$ −1.16823e6 −3.05520
$$172$$ 0 0
$$173$$ 709148. 1.80145 0.900724 0.434392i $$-0.143037\pi$$
0.900724 + 0.434392i $$0.143037\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ −902252. −2.16468
$$178$$ 0 0
$$179$$ −617148. −1.43965 −0.719825 0.694156i $$-0.755778\pi$$
−0.719825 + 0.694156i $$0.755778\pi$$
$$180$$ 0 0
$$181$$ 237828. 0.539593 0.269797 0.962917i $$-0.413044\pi$$
0.269797 + 0.962917i $$0.413044\pi$$
$$182$$ 0 0
$$183$$ 26832.0 0.0592278
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 17744.0 0.0371063
$$188$$ 0 0
$$189$$ −242060. −0.492911
$$190$$ 0 0
$$191$$ −133512. −0.264812 −0.132406 0.991196i $$-0.542270\pi$$
−0.132406 + 0.991196i $$0.542270\pi$$
$$192$$ 0 0
$$193$$ −270446. −0.522622 −0.261311 0.965255i $$-0.584155\pi$$
−0.261311 + 0.965255i $$0.584155\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ −875102. −1.60655 −0.803273 0.595611i $$-0.796910\pi$$
−0.803273 + 0.595611i $$0.796910\pi$$
$$198$$ 0 0
$$199$$ −347620. −0.622260 −0.311130 0.950367i $$-0.600708\pi$$
−0.311130 + 0.950367i $$0.600708\pi$$
$$200$$ 0 0
$$201$$ 262808. 0.458826
$$202$$ 0 0
$$203$$ −159446. −0.271565
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ −1.44795e6 −2.34870
$$208$$ 0 0
$$209$$ −21584.0 −0.0341795
$$210$$ 0 0
$$211$$ −425380. −0.657765 −0.328883 0.944371i $$-0.606672\pi$$
−0.328883 + 0.944371i $$0.606672\pi$$
$$212$$ 0 0
$$213$$ −1.63072e6 −2.46281
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 234612. 0.338221
$$218$$ 0 0
$$219$$ −492076. −0.693301
$$220$$ 0 0
$$221$$ −1.51711e6 −2.08947
$$222$$ 0 0
$$223$$ −481592. −0.648511 −0.324255 0.945970i $$-0.605114\pi$$
−0.324255 + 0.945970i $$0.605114\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 6042.00 0.00778245 0.00389122 0.999992i $$-0.498761\pi$$
0.00389122 + 0.999992i $$0.498761\pi$$
$$228$$ 0 0
$$229$$ 1804.00 0.00227325 0.00113663 0.999999i $$-0.499638\pi$$
0.00113663 + 0.999999i $$0.499638\pi$$
$$230$$ 0 0
$$231$$ −10192.0 −0.0125669
$$232$$ 0 0
$$233$$ 1.61153e6 1.94468 0.972339 0.233576i $$-0.0750427\pi$$
0.972339 + 0.233576i $$0.0750427\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ −296400. −0.342774
$$238$$ 0 0
$$239$$ −987096. −1.11780 −0.558901 0.829235i $$-0.688777\pi$$
−0.558901 + 0.829235i $$0.688777\pi$$
$$240$$ 0 0
$$241$$ 893510. 0.990962 0.495481 0.868619i $$-0.334992\pi$$
0.495481 + 0.868619i $$0.334992\pi$$
$$242$$ 0 0
$$243$$ 596674. 0.648219
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 1.84543e6 1.92467
$$248$$ 0 0
$$249$$ 2.31291e6 2.36407
$$250$$ 0 0
$$251$$ 365946. 0.366634 0.183317 0.983054i $$-0.441317\pi$$
0.183317 + 0.983054i $$0.441317\pi$$
$$252$$ 0 0
$$253$$ −26752.0 −0.0262757
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ −1.40459e6 −1.32653 −0.663266 0.748383i $$-0.730830\pi$$
−0.663266 + 0.748383i $$0.730830\pi$$
$$258$$ 0 0
$$259$$ 562030. 0.520607
$$260$$ 0 0
$$261$$ −1.40898e6 −1.28028
$$262$$ 0 0
$$263$$ −1.09968e6 −0.980341 −0.490170 0.871627i $$-0.663065\pi$$
−0.490170 + 0.871627i $$0.663065\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ −512772. −0.440196
$$268$$ 0 0
$$269$$ 814948. 0.686672 0.343336 0.939213i $$-0.388443\pi$$
0.343336 + 0.939213i $$0.388443\pi$$
$$270$$ 0 0
$$271$$ −1.69906e6 −1.40535 −0.702675 0.711511i $$-0.748011\pi$$
−0.702675 + 0.711511i $$0.748011\pi$$
$$272$$ 0 0
$$273$$ 871416. 0.707651
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 1.36508e6 1.06895 0.534477 0.845183i $$-0.320508\pi$$
0.534477 + 0.845183i $$0.320508\pi$$
$$278$$ 0 0
$$279$$ 2.07320e6 1.59453
$$280$$ 0 0
$$281$$ −715846. −0.540821 −0.270411 0.962745i $$-0.587159\pi$$
−0.270411 + 0.962745i $$0.587159\pi$$
$$282$$ 0 0
$$283$$ −217726. −0.161601 −0.0808005 0.996730i $$-0.525748\pi$$
−0.0808005 + 0.996730i $$0.525748\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 654150. 0.468784
$$288$$ 0 0
$$289$$ 3.49967e6 2.46480
$$290$$ 0 0
$$291$$ 443612. 0.307094
$$292$$ 0 0
$$293$$ −1.50708e6 −1.02557 −0.512787 0.858516i $$-0.671387\pi$$
−0.512787 + 0.858516i $$0.671387\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ −39520.0 −0.0259972
$$298$$ 0 0
$$299$$ 2.28730e6 1.47960
$$300$$ 0 0
$$301$$ 45472.0 0.0289286
$$302$$ 0 0
$$303$$ −1.19350e6 −0.746822
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ −12502.0 −0.00757066 −0.00378533 0.999993i $$-0.501205\pi$$
−0.00378533 + 0.999993i $$0.501205\pi$$
$$308$$ 0 0
$$309$$ −3.53631e6 −2.10695
$$310$$ 0 0
$$311$$ −647432. −0.379571 −0.189786 0.981826i $$-0.560779\pi$$
−0.189786 + 0.981826i $$0.560779\pi$$
$$312$$ 0 0
$$313$$ 935978. 0.540014 0.270007 0.962858i $$-0.412974\pi$$
0.270007 + 0.962858i $$0.412974\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −705942. −0.394567 −0.197284 0.980346i $$-0.563212\pi$$
−0.197284 + 0.980346i $$0.563212\pi$$
$$318$$ 0 0
$$319$$ −26032.0 −0.0143229
$$320$$ 0 0
$$321$$ −1.79806e6 −0.973959
$$322$$ 0 0
$$323$$ −5.98416e6 −3.19152
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ 3.80676e6 1.96873
$$328$$ 0 0
$$329$$ −59388.0 −0.0302489
$$330$$ 0 0
$$331$$ −1.14304e6 −0.573445 −0.286722 0.958014i $$-0.592566\pi$$
−0.286722 + 0.958014i $$0.592566\pi$$
$$332$$ 0 0
$$333$$ 4.96651e6 2.45437
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 2.36402e6 1.13390 0.566952 0.823751i $$-0.308123\pi$$
0.566952 + 0.823751i $$0.308123\pi$$
$$338$$ 0 0
$$339$$ −2.08484e6 −0.985309
$$340$$ 0 0
$$341$$ 38304.0 0.0178385
$$342$$ 0 0
$$343$$ 117649. 0.0539949
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ −726240. −0.323785 −0.161892 0.986808i $$-0.551760\pi$$
−0.161892 + 0.986808i $$0.551760\pi$$
$$348$$ 0 0
$$349$$ 136180. 0.0598480 0.0299240 0.999552i $$-0.490473\pi$$
0.0299240 + 0.999552i $$0.490473\pi$$
$$350$$ 0 0
$$351$$ 3.37896e6 1.46391
$$352$$ 0 0
$$353$$ 1.16907e6 0.499349 0.249674 0.968330i $$-0.419676\pi$$
0.249674 + 0.968330i $$0.419676\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ −2.82573e6 −1.17344
$$358$$ 0 0
$$359$$ −4280.00 −0.00175270 −0.000876350 1.00000i $$-0.500279\pi$$
−0.000876350 1.00000i $$0.500279\pi$$
$$360$$ 0 0
$$361$$ 4.80310e6 1.93979
$$362$$ 0 0
$$363$$ 4.18566e6 1.66724
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ −2.44796e6 −0.948722 −0.474361 0.880330i $$-0.657321\pi$$
−0.474361 + 0.880330i $$0.657321\pi$$
$$368$$ 0 0
$$369$$ 5.78055e6 2.21006
$$370$$ 0 0
$$371$$ −642390. −0.242306
$$372$$ 0 0
$$373$$ 904514. 0.336623 0.168311 0.985734i $$-0.446169\pi$$
0.168311 + 0.985734i $$0.446169\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 2.22574e6 0.806530
$$378$$ 0 0
$$379$$ −4.23034e6 −1.51279 −0.756393 0.654117i $$-0.773040\pi$$
−0.756393 + 0.654117i $$0.773040\pi$$
$$380$$ 0 0
$$381$$ 7.14480e6 2.52161
$$382$$ 0 0
$$383$$ −4.55400e6 −1.58634 −0.793169 0.609002i $$-0.791570\pi$$
−0.793169 + 0.609002i $$0.791570\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 401824. 0.136382
$$388$$ 0 0
$$389$$ −3.98541e6 −1.33536 −0.667680 0.744448i $$-0.732713\pi$$
−0.667680 + 0.744448i $$0.732713\pi$$
$$390$$ 0 0
$$391$$ −7.41699e6 −2.45350
$$392$$ 0 0
$$393$$ −4.69929e6 −1.53480
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ −552420. −0.175911 −0.0879555 0.996124i $$-0.528033\pi$$
−0.0879555 + 0.996124i $$0.528033\pi$$
$$398$$ 0 0
$$399$$ 3.43725e6 1.08088
$$400$$ 0 0
$$401$$ 38190.0 0.0118601 0.00593006 0.999982i $$-0.498112\pi$$
0.00593006 + 0.999982i $$0.498112\pi$$
$$402$$ 0 0
$$403$$ −3.27499e6 −1.00449
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 91760.0 0.0274579
$$408$$ 0 0
$$409$$ −3.92475e6 −1.16012 −0.580062 0.814573i $$-0.696972\pi$$
−0.580062 + 0.814573i $$0.696972\pi$$
$$410$$ 0 0
$$411$$ −5.45163e6 −1.59192
$$412$$ 0 0
$$413$$ 1.70040e6 0.490541
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ −448292. −0.126247
$$418$$ 0 0
$$419$$ 598386. 0.166512 0.0832562 0.996528i $$-0.473468\pi$$
0.0832562 + 0.996528i $$0.473468\pi$$
$$420$$ 0 0
$$421$$ 4.61597e6 1.26928 0.634641 0.772807i $$-0.281148\pi$$
0.634641 + 0.772807i $$0.281148\pi$$
$$422$$ 0 0
$$423$$ −524796. −0.142607
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ −50568.0 −0.0134217
$$428$$ 0 0
$$429$$ 142272. 0.0373230
$$430$$ 0 0
$$431$$ −61560.0 −0.0159627 −0.00798133 0.999968i $$-0.502541\pi$$
−0.00798133 + 0.999968i $$0.502541\pi$$
$$432$$ 0 0
$$433$$ 3.79727e6 0.973310 0.486655 0.873594i $$-0.338217\pi$$
0.486655 + 0.873594i $$0.338217\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 9.02211e6 2.25998
$$438$$ 0 0
$$439$$ −2.28852e6 −0.566752 −0.283376 0.959009i $$-0.591455\pi$$
−0.283376 + 0.959009i $$0.591455\pi$$
$$440$$ 0 0
$$441$$ 1.03963e6 0.254556
$$442$$ 0 0
$$443$$ 4.75976e6 1.15233 0.576163 0.817335i $$-0.304549\pi$$
0.576163 + 0.817335i $$0.304549\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ −1.54331e6 −0.365329
$$448$$ 0 0
$$449$$ −4.36715e6 −1.02231 −0.511155 0.859489i $$-0.670782\pi$$
−0.511155 + 0.859489i $$0.670782\pi$$
$$450$$ 0 0
$$451$$ 106800. 0.0247246
$$452$$ 0 0
$$453$$ 8.74494e6 2.00222
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −5.44994e6 −1.22068 −0.610339 0.792140i $$-0.708967\pi$$
−0.610339 + 0.792140i $$0.708967\pi$$
$$458$$ 0 0
$$459$$ −1.09569e7 −2.42749
$$460$$ 0 0
$$461$$ 1.66966e6 0.365911 0.182956 0.983121i $$-0.441434\pi$$
0.182956 + 0.983121i $$0.441434\pi$$
$$462$$ 0 0
$$463$$ −70768.0 −0.0153421 −0.00767104 0.999971i $$-0.502442\pi$$
−0.00767104 + 0.999971i $$0.502442\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ −5.66083e6 −1.20112 −0.600562 0.799578i $$-0.705056\pi$$
−0.600562 + 0.799578i $$0.705056\pi$$
$$468$$ 0 0
$$469$$ −495292. −0.103975
$$470$$ 0 0
$$471$$ 1.20793e7 2.50893
$$472$$ 0 0
$$473$$ 7424.00 0.00152576
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ −5.67663e6 −1.14234
$$478$$ 0 0
$$479$$ −1.44948e6 −0.288652 −0.144326 0.989530i $$-0.546101\pi$$
−0.144326 + 0.989530i $$0.546101\pi$$
$$480$$ 0 0
$$481$$ −7.84548e6 −1.54617
$$482$$ 0 0
$$483$$ 4.26026e6 0.830937
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ −4.07504e6 −0.778591 −0.389296 0.921113i $$-0.627282\pi$$
−0.389296 + 0.921113i $$0.627282\pi$$
$$488$$ 0 0
$$489$$ 8.18459e6 1.54784
$$490$$ 0 0
$$491$$ 986100. 0.184594 0.0922969 0.995732i $$-0.470579\pi$$
0.0922969 + 0.995732i $$0.470579\pi$$
$$492$$ 0 0
$$493$$ −7.21737e6 −1.33740
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 3.07328e6 0.558099
$$498$$ 0 0
$$499$$ 5.98342e6 1.07572 0.537859 0.843035i $$-0.319233\pi$$
0.537859 + 0.843035i $$0.319233\pi$$
$$500$$ 0 0
$$501$$ 7.42882e6 1.32229
$$502$$ 0 0
$$503$$ 3.49373e6 0.615700 0.307850 0.951435i $$-0.400391\pi$$
0.307850 + 0.951435i $$0.400391\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ −2.51064e6 −0.433775
$$508$$ 0 0
$$509$$ 2.15711e6 0.369043 0.184522 0.982828i $$-0.440926\pi$$
0.184522 + 0.982828i $$0.440926\pi$$
$$510$$ 0 0
$$511$$ 927374. 0.157110
$$512$$ 0 0
$$513$$ 1.33281e7 2.23602
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ −9696.00 −0.00159539
$$518$$ 0 0
$$519$$ −1.84378e7 −3.00464
$$520$$ 0 0
$$521$$ −6.65817e6 −1.07463 −0.537317 0.843380i $$-0.680562\pi$$
−0.537317 + 0.843380i $$0.680562\pi$$
$$522$$ 0 0
$$523$$ −5.95223e6 −0.951537 −0.475768 0.879571i $$-0.657830\pi$$
−0.475768 + 0.879571i $$0.657830\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 1.06198e7 1.66567
$$528$$ 0 0
$$529$$ 4.74599e6 0.737374
$$530$$ 0 0
$$531$$ 1.50260e7 2.31263
$$532$$ 0 0
$$533$$ −9.13140e6 −1.39226
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 1.60458e7 2.40119
$$538$$ 0 0
$$539$$ 19208.0 0.00284780
$$540$$ 0 0
$$541$$ −6.39681e6 −0.939659 −0.469830 0.882757i $$-0.655685\pi$$
−0.469830 + 0.882757i $$0.655685\pi$$
$$542$$ 0 0
$$543$$ −6.18353e6 −0.899988
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ 5.51851e6 0.788594 0.394297 0.918983i $$-0.370988\pi$$
0.394297 + 0.918983i $$0.370988\pi$$
$$548$$ 0 0
$$549$$ −446856. −0.0632757
$$550$$ 0 0
$$551$$ 8.77929e6 1.23191
$$552$$ 0 0
$$553$$ 558600. 0.0776762
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ −2.02159e6 −0.276093 −0.138046 0.990426i $$-0.544082\pi$$
−0.138046 + 0.990426i $$0.544082\pi$$
$$558$$ 0 0
$$559$$ −634752. −0.0859161
$$560$$ 0 0
$$561$$ −461344. −0.0618896
$$562$$ 0 0
$$563$$ −8.14678e6 −1.08322 −0.541608 0.840631i $$-0.682184\pi$$
−0.541608 + 0.840631i $$0.682184\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ 1.13783e6 0.148634
$$568$$ 0 0
$$569$$ −1.19824e7 −1.55154 −0.775772 0.631013i $$-0.782639\pi$$
−0.775772 + 0.631013i $$0.782639\pi$$
$$570$$ 0 0
$$571$$ 1.39582e6 0.179159 0.0895793 0.995980i $$-0.471448\pi$$
0.0895793 + 0.995980i $$0.471448\pi$$
$$572$$ 0 0
$$573$$ 3.47131e6 0.441679
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ −1.96784e6 −0.246065 −0.123033 0.992403i $$-0.539262\pi$$
−0.123033 + 0.992403i $$0.539262\pi$$
$$578$$ 0 0
$$579$$ 7.03160e6 0.871681
$$580$$ 0 0
$$581$$ −4.35894e6 −0.535724
$$582$$ 0 0
$$583$$ −104880. −0.0127797
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 3.18897e6 0.381993 0.190997 0.981591i $$-0.438828\pi$$
0.190997 + 0.981591i $$0.438828\pi$$
$$588$$ 0 0
$$589$$ −1.29180e7 −1.53429
$$590$$ 0 0
$$591$$ 2.27527e7 2.67956
$$592$$ 0 0
$$593$$ −1.67500e6 −0.195604 −0.0978022 0.995206i $$-0.531181\pi$$
−0.0978022 + 0.995206i $$0.531181\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 9.03812e6 1.03787
$$598$$ 0 0
$$599$$ −1.00635e7 −1.14599 −0.572994 0.819559i $$-0.694218\pi$$
−0.572994 + 0.819559i $$0.694218\pi$$
$$600$$ 0 0
$$601$$ 1.72798e6 0.195143 0.0975713 0.995229i $$-0.468893\pi$$
0.0975713 + 0.995229i $$0.468893\pi$$
$$602$$ 0 0
$$603$$ −4.37676e6 −0.490185
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 1.69523e7 1.86748 0.933740 0.357953i $$-0.116525\pi$$
0.933740 + 0.357953i $$0.116525\pi$$
$$608$$ 0 0
$$609$$ 4.14560e6 0.452943
$$610$$ 0 0
$$611$$ 829008. 0.0898371
$$612$$ 0 0
$$613$$ −1.01942e7 −1.09572 −0.547861 0.836569i $$-0.684558\pi$$
−0.547861 + 0.836569i $$0.684558\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −1.57452e7 −1.66508 −0.832540 0.553965i $$-0.813114\pi$$
−0.832540 + 0.553965i $$0.813114\pi$$
$$618$$ 0 0
$$619$$ −332690. −0.0348990 −0.0174495 0.999848i $$-0.505555\pi$$
−0.0174495 + 0.999848i $$0.505555\pi$$
$$620$$ 0 0
$$621$$ 1.65194e7 1.71895
$$622$$ 0 0
$$623$$ 966378. 0.0997532
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ 561184. 0.0570081
$$628$$ 0 0
$$629$$ 2.54405e7 2.56388
$$630$$ 0 0
$$631$$ 3.59720e6 0.359659 0.179830 0.983698i $$-0.442445\pi$$
0.179830 + 0.983698i $$0.442445\pi$$
$$632$$ 0 0
$$633$$ 1.10599e7 1.09709
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ −1.64228e6 −0.160361
$$638$$ 0 0
$$639$$ 2.71578e7 2.63113
$$640$$ 0 0
$$641$$ −1.46389e7 −1.40723 −0.703614 0.710583i $$-0.748431\pi$$
−0.703614 + 0.710583i $$0.748431\pi$$
$$642$$ 0 0
$$643$$ 1.38386e7 1.31997 0.659987 0.751277i $$-0.270562\pi$$
0.659987 + 0.751277i $$0.270562\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 1.40358e7 1.31819 0.659093 0.752061i $$-0.270940\pi$$
0.659093 + 0.752061i $$0.270940\pi$$
$$648$$ 0 0
$$649$$ 277616. 0.0258722
$$650$$ 0 0
$$651$$ −6.09991e6 −0.564119
$$652$$ 0 0
$$653$$ −1.61063e7 −1.47813 −0.739064 0.673635i $$-0.764732\pi$$
−0.739064 + 0.673635i $$0.764732\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 8.19496e6 0.740685
$$658$$ 0 0
$$659$$ 4.80075e6 0.430622 0.215311 0.976546i $$-0.430924\pi$$
0.215311 + 0.976546i $$0.430924\pi$$
$$660$$ 0 0
$$661$$ −1.76565e7 −1.57181 −0.785905 0.618347i $$-0.787803\pi$$
−0.785905 + 0.618347i $$0.787803\pi$$
$$662$$ 0 0
$$663$$ 3.94449e7 3.48504
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 1.08814e7 0.947042
$$668$$ 0 0
$$669$$ 1.25214e7 1.08165
$$670$$ 0 0
$$671$$ −8256.00 −0.000707886 0
$$672$$ 0 0
$$673$$ −6.59225e6 −0.561043 −0.280521 0.959848i $$-0.590507\pi$$
−0.280521 + 0.959848i $$0.590507\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ −9.77178e6 −0.819411 −0.409706 0.912218i $$-0.634369\pi$$
−0.409706 + 0.912218i $$0.634369\pi$$
$$678$$ 0 0
$$679$$ −836038. −0.0695908
$$680$$ 0 0
$$681$$ −157092. −0.0129803
$$682$$ 0 0
$$683$$ 1.88663e7 1.54752 0.773758 0.633481i $$-0.218374\pi$$
0.773758 + 0.633481i $$0.218374\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ −46904.0 −0.00379156
$$688$$ 0 0
$$689$$ 8.96724e6 0.719632
$$690$$ 0 0
$$691$$ 8.67018e6 0.690769 0.345385 0.938461i $$-0.387748\pi$$
0.345385 + 0.938461i $$0.387748\pi$$
$$692$$ 0 0
$$693$$ 169736. 0.0134258
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 2.96103e7 2.30866
$$698$$ 0 0
$$699$$ −4.18997e7 −3.24353
$$700$$ 0 0
$$701$$ 7.93482e6 0.609877 0.304938 0.952372i $$-0.401364\pi$$
0.304938 + 0.952372i $$0.401364\pi$$
$$702$$ 0 0
$$703$$ −3.09461e7 −2.36166
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 2.24930e6 0.169238
$$708$$ 0 0
$$709$$ 2.62600e7 1.96191 0.980956 0.194228i $$-0.0622202\pi$$
0.980956 + 0.194228i $$0.0622202\pi$$
$$710$$ 0 0
$$711$$ 4.93620e6 0.366200
$$712$$ 0 0
$$713$$ −1.60111e7 −1.17950
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 2.56645e7 1.86438
$$718$$ 0 0
$$719$$ 2.20763e7 1.59259 0.796295 0.604909i $$-0.206790\pi$$
0.796295 + 0.604909i $$0.206790\pi$$
$$720$$ 0 0
$$721$$ 6.66459e6 0.477458
$$722$$ 0 0
$$723$$ −2.32313e7 −1.65283
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ −8.49245e6 −0.595933 −0.297966 0.954576i $$-0.596308\pi$$
−0.297966 + 0.954576i $$0.596308\pi$$
$$728$$ 0 0
$$729$$ −2.11562e7 −1.47441
$$730$$ 0 0
$$731$$ 2.05830e6 0.142468
$$732$$ 0 0
$$733$$ 1.90713e7 1.31105 0.655526 0.755172i $$-0.272447\pi$$
0.655526 + 0.755172i $$0.272447\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ −80864.0 −0.00548386
$$738$$ 0 0
$$739$$ −1.46832e7 −0.989032 −0.494516 0.869169i $$-0.664655\pi$$
−0.494516 + 0.869169i $$0.664655\pi$$
$$740$$ 0 0
$$741$$ −4.79812e7 −3.21015
$$742$$ 0 0
$$743$$ −1.64265e7 −1.09162 −0.545812 0.837908i $$-0.683779\pi$$
−0.545812 + 0.837908i $$0.683779\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ −3.85188e7 −2.52564
$$748$$ 0 0
$$749$$ 3.38864e6 0.220710
$$750$$ 0 0
$$751$$ −2.44357e7 −1.58097 −0.790486 0.612479i $$-0.790172\pi$$
−0.790486 + 0.612479i $$0.790172\pi$$
$$752$$ 0 0
$$753$$ −9.51460e6 −0.611509
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ 295566. 0.0187463 0.00937313 0.999956i $$-0.497016\pi$$
0.00937313 + 0.999956i $$0.497016\pi$$
$$758$$ 0 0
$$759$$ 695552. 0.0438253
$$760$$ 0 0
$$761$$ −473842. −0.0296601 −0.0148300 0.999890i $$-0.504721\pi$$
−0.0148300 + 0.999890i $$0.504721\pi$$
$$762$$ 0 0
$$763$$ −7.17429e6 −0.446136
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ −2.37362e7 −1.45687
$$768$$ 0 0
$$769$$ 2.33241e7 1.42229 0.711145 0.703045i $$-0.248177\pi$$
0.711145 + 0.703045i $$0.248177\pi$$
$$770$$ 0 0
$$771$$ 3.65194e7 2.21253
$$772$$ 0 0
$$773$$ −1.55583e7 −0.936511 −0.468255 0.883593i $$-0.655117\pi$$
−0.468255 + 0.883593i $$0.655117\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ −1.46128e7 −0.868321
$$778$$ 0 0
$$779$$ −3.60183e7 −2.12657
$$780$$ 0 0
$$781$$ 501760. 0.0294353
$$782$$ 0 0
$$783$$ 1.60748e7 0.937001
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ −6.66843e6 −0.383784 −0.191892 0.981416i $$-0.561462\pi$$
−0.191892 + 0.981416i $$0.561462\pi$$
$$788$$ 0 0
$$789$$ 2.85917e7 1.63511
$$790$$ 0 0
$$791$$ 3.92911e6 0.223282
$$792$$ 0 0
$$793$$ 705888. 0.0398614
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 1.22461e7 0.682892 0.341446 0.939901i $$-0.389083\pi$$
0.341446 + 0.939901i $$0.389083\pi$$
$$798$$ 0 0
$$799$$ −2.68822e6 −0.148969
$$800$$ 0 0
$$801$$ 8.53963e6 0.470281
$$802$$ 0 0
$$803$$ 151408. 0.00828629
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ −2.11886e7 −1.14530
$$808$$ 0 0
$$809$$ −2.91495e7 −1.56588 −0.782941 0.622095i $$-0.786282\pi$$
−0.782941 + 0.622095i $$0.786282\pi$$
$$810$$ 0 0
$$811$$ 7.58849e6 0.405138 0.202569 0.979268i $$-0.435071\pi$$
0.202569 + 0.979268i $$0.435071\pi$$
$$812$$ 0 0
$$813$$ 4.41755e7 2.34398
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ −2.50374e6 −0.131230
$$818$$ 0 0
$$819$$ −1.45124e7 −0.756015
$$820$$ 0 0
$$821$$ −5.98849e6 −0.310070 −0.155035 0.987909i $$-0.549549\pi$$
−0.155035 + 0.987909i $$0.549549\pi$$
$$822$$ 0 0
$$823$$ −817960. −0.0420952 −0.0210476 0.999778i $$-0.506700\pi$$
−0.0210476 + 0.999778i $$0.506700\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ −2.51963e6 −0.128107 −0.0640535 0.997946i $$-0.520403\pi$$
−0.0640535 + 0.997946i $$0.520403\pi$$
$$828$$ 0 0
$$829$$ −1.61006e7 −0.813684 −0.406842 0.913499i $$-0.633370\pi$$
−0.406842 + 0.913499i $$0.633370\pi$$
$$830$$ 0 0
$$831$$ −3.54921e7 −1.78291
$$832$$ 0 0
$$833$$ 5.32542e6 0.265914
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ −2.36527e7 −1.16699
$$838$$ 0 0
$$839$$ −2.58167e7 −1.26618 −0.633091 0.774077i $$-0.718214\pi$$
−0.633091 + 0.774077i $$0.718214\pi$$
$$840$$ 0 0
$$841$$ −9.92263e6 −0.483768
$$842$$ 0 0
$$843$$ 1.86120e7 0.902036
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ −7.88836e6 −0.377814
$$848$$ 0 0
$$849$$ 5.66088e6 0.269535
$$850$$ 0 0
$$851$$ −3.83557e7 −1.81554
$$852$$ 0 0
$$853$$ 1.54270e7 0.725954 0.362977 0.931798i $$-0.381760\pi$$
0.362977 + 0.931798i $$0.381760\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ −3.60517e6 −0.167677 −0.0838384 0.996479i $$-0.526718\pi$$
−0.0838384 + 0.996479i $$0.526718\pi$$
$$858$$ 0 0
$$859$$ 4.06995e6 0.188194 0.0940970 0.995563i $$-0.470004\pi$$
0.0940970 + 0.995563i $$0.470004\pi$$
$$860$$ 0 0
$$861$$ −1.70079e7 −0.781885
$$862$$ 0 0
$$863$$ −7.25111e6 −0.331419 −0.165710 0.986175i $$-0.552991\pi$$
−0.165710 + 0.986175i $$0.552991\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ −9.09913e7 −4.11105
$$868$$ 0 0
$$869$$ 91200.0 0.00409681
$$870$$ 0 0
$$871$$ 6.91387e6 0.308799
$$872$$ 0 0
$$873$$ −7.38785e6 −0.328082
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ −2.37414e6 −0.104233 −0.0521167 0.998641i $$-0.516597\pi$$
−0.0521167 + 0.998641i $$0.516597\pi$$
$$878$$ 0 0
$$879$$ 3.91841e7 1.71056
$$880$$ 0 0
$$881$$ 3.03558e7 1.31766 0.658828 0.752293i $$-0.271052\pi$$
0.658828 + 0.752293i $$0.271052\pi$$
$$882$$ 0 0
$$883$$ −1.53338e6 −0.0661832 −0.0330916 0.999452i $$-0.510535\pi$$
−0.0330916 + 0.999452i $$0.510535\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 2.92379e7 1.24778 0.623888 0.781514i $$-0.285552\pi$$
0.623888 + 0.781514i $$0.285552\pi$$
$$888$$ 0 0
$$889$$ −1.34652e7 −0.571424
$$890$$ 0 0
$$891$$ 185768. 0.00783929
$$892$$ 0 0
$$893$$ 3.26998e6 0.137220
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ −5.94697e7 −2.46783
$$898$$ 0 0
$$899$$ −1.55802e7 −0.642943
$$900$$ 0 0
$$901$$ −2.90780e7 −1.19331
$$902$$ 0 0
$$903$$ −1.18227e6 −0.0482501
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ −4.48227e7 −1.80917 −0.904587 0.426289i $$-0.859821\pi$$
−0.904587 + 0.426289i $$0.859821\pi$$
$$908$$ 0 0
$$909$$ 1.98764e7 0.797864
$$910$$ 0 0
$$911$$ −3.62906e7 −1.44877 −0.724384 0.689397i $$-0.757876\pi$$
−0.724384 + 0.689397i $$0.757876\pi$$
$$912$$ 0 0
$$913$$ −711664. −0.0282552
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 8.85636e6 0.347802
$$918$$ 0 0
$$919$$ 3.25350e7 1.27076 0.635378 0.772201i $$-0.280844\pi$$
0.635378 + 0.772201i $$0.280844\pi$$
$$920$$ 0 0
$$921$$ 325052. 0.0126271
$$922$$ 0 0
$$923$$ −4.29005e7 −1.65752
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ 5.88932e7 2.25095
$$928$$ 0 0
$$929$$ −4.46676e7 −1.69806 −0.849030 0.528344i $$-0.822813\pi$$
−0.849030 + 0.528344i $$0.822813\pi$$
$$930$$ 0 0
$$931$$ −6.47790e6 −0.244940
$$932$$ 0 0
$$933$$ 1.68332e7 0.633087
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ −1.56680e7 −0.582995 −0.291498 0.956572i $$-0.594154\pi$$
−0.291498 + 0.956572i $$0.594154\pi$$
$$938$$ 0 0
$$939$$ −2.43354e7 −0.900689
$$940$$ 0 0
$$941$$ −2.01175e7 −0.740627 −0.370313 0.928907i $$-0.620750\pi$$
−0.370313 + 0.928907i $$0.620750\pi$$
$$942$$ 0 0
$$943$$ −4.46424e7 −1.63481
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 8.84518e6 0.320503 0.160251 0.987076i $$-0.448769\pi$$
0.160251 + 0.987076i $$0.448769\pi$$
$$948$$ 0 0
$$949$$ −1.29454e7 −0.466605
$$950$$ 0 0
$$951$$ 1.83545e7 0.658099
$$952$$ 0 0
$$953$$ 3.14364e7 1.12124 0.560622 0.828072i $$-0.310562\pi$$
0.560622 + 0.828072i $$0.310562\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 676832. 0.0238892
$$958$$ 0 0
$$959$$ 1.02742e7 0.360747
$$960$$ 0 0
$$961$$ −5.70421e6 −0.199245
$$962$$ 0 0
$$963$$ 2.99445e7 1.04052
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ 9.52158e6 0.327449 0.163724 0.986506i $$-0.447649\pi$$
0.163724 + 0.986506i $$0.447649\pi$$
$$968$$ 0 0
$$969$$ 1.55588e8 5.32313
$$970$$ 0 0
$$971$$ 1.06520e7 0.362564 0.181282 0.983431i $$-0.441975\pi$$
0.181282 + 0.983431i $$0.441975\pi$$
$$972$$ 0 0
$$973$$ 844858. 0.0286089
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ −2.72931e7 −0.914779 −0.457389 0.889266i $$-0.651215\pi$$
−0.457389 + 0.889266i $$0.651215\pi$$
$$978$$ 0 0
$$979$$ 157776. 0.00526119
$$980$$ 0 0
$$981$$ −6.33973e7 −2.10328
$$982$$ 0 0
$$983$$ −1.04764e7 −0.345802 −0.172901 0.984939i $$-0.555314\pi$$
−0.172901 + 0.984939i $$0.555314\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 1.54409e6 0.0504521
$$988$$ 0 0
$$989$$ −3.10323e6 −0.100884
$$990$$ 0 0
$$991$$ 1.88230e6 0.0608843 0.0304422 0.999537i $$-0.490308\pi$$
0.0304422 + 0.999537i $$0.490308\pi$$
$$992$$ 0 0
$$993$$ 2.97190e7 0.956449
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ −2.71518e7 −0.865090 −0.432545 0.901612i $$-0.642384\pi$$
−0.432545 + 0.901612i $$0.642384\pi$$
$$998$$ 0 0
$$999$$ −5.66618e7 −1.79629
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.6.a.b.1.1 1
5.2 odd 4 700.6.e.b.449.2 2
5.3 odd 4 700.6.e.b.449.1 2
5.4 even 2 28.6.a.b.1.1 1
15.14 odd 2 252.6.a.a.1.1 1
20.19 odd 2 112.6.a.b.1.1 1
35.4 even 6 196.6.e.a.177.1 2
35.9 even 6 196.6.e.a.165.1 2
35.19 odd 6 196.6.e.i.165.1 2
35.24 odd 6 196.6.e.i.177.1 2
35.34 odd 2 196.6.a.a.1.1 1
40.19 odd 2 448.6.a.o.1.1 1
40.29 even 2 448.6.a.b.1.1 1
60.59 even 2 1008.6.a.l.1.1 1
140.139 even 2 784.6.a.m.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
28.6.a.b.1.1 1 5.4 even 2
112.6.a.b.1.1 1 20.19 odd 2
196.6.a.a.1.1 1 35.34 odd 2
196.6.e.a.165.1 2 35.9 even 6
196.6.e.a.177.1 2 35.4 even 6
196.6.e.i.165.1 2 35.19 odd 6
196.6.e.i.177.1 2 35.24 odd 6
252.6.a.a.1.1 1 15.14 odd 2
448.6.a.b.1.1 1 40.29 even 2
448.6.a.o.1.1 1 40.19 odd 2
700.6.a.b.1.1 1 1.1 even 1 trivial
700.6.e.b.449.1 2 5.3 odd 4
700.6.e.b.449.2 2 5.2 odd 4
784.6.a.m.1.1 1 140.139 even 2
1008.6.a.l.1.1 1 60.59 even 2