Properties

Label 700.5.o.a.649.4
Level $700$
Weight $5$
Character 700.649
Analytic conductor $72.359$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,5,Mod(549,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.549"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 700.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(72.3589741587\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.32905425960566784.37
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 36x^{10} + 432x^{8} + 2040x^{6} + 3780x^{4} + 2592x^{2} + 576 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{6}\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 649.4
Root \(4.06501i\) of defining polynomial
Character \(\chi\) \(=\) 700.649
Dual form 700.5.o.a.549.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.784623 + 1.35901i) q^{3} +(24.5667 + 42.3967i) q^{7} +(39.2687 - 68.0154i) q^{9} +(-11.7557 - 20.3615i) q^{11} -136.269 q^{13} +(-131.251 - 227.333i) q^{17} +(387.162 + 223.528i) q^{19} +(-38.3418 + 66.6517i) q^{21} +(-648.800 - 374.585i) q^{23} +250.353 q^{27} -406.524 q^{29} +(-584.199 + 337.287i) q^{31} +(18.4476 - 31.9521i) q^{33} +(-645.476 - 372.666i) q^{37} +(-106.920 - 185.191i) q^{39} -2476.20i q^{41} +2636.68i q^{43} +(334.343 - 579.099i) q^{47} +(-1193.96 + 2083.09i) q^{49} +(205.964 - 356.741i) q^{51} +(1757.36 - 1014.61i) q^{53} +701.541i q^{57} +(1014.22 - 585.561i) q^{59} +(-2022.05 - 1167.43i) q^{61} +(3848.33 - 6.04891i) q^{63} +(-6546.78 + 3779.79i) q^{67} -1175.63i q^{69} +7575.36 q^{71} +(-1896.12 - 3284.18i) q^{73} +(574.460 - 998.615i) q^{77} +(3897.33 - 6750.37i) q^{79} +(-2984.33 - 5169.02i) q^{81} -2181.41 q^{83} +(-318.968 - 552.469i) q^{87} +(-8050.38 - 4647.89i) q^{89} +(-3347.69 - 5777.37i) q^{91} +(-916.751 - 529.287i) q^{93} -9981.90 q^{97} -1846.52 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 180 q^{9} + 270 q^{11} + 1494 q^{19} + 4338 q^{21} + 1080 q^{29} - 10710 q^{31} - 13176 q^{39} - 16860 q^{49} - 1782 q^{51} + 5886 q^{59} + 8082 q^{61} + 4536 q^{71} + 15546 q^{79} - 14958 q^{81}+ \cdots - 16200 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.784623 + 1.35901i 0.0871803 + 0.151001i 0.906318 0.422596i \(-0.138881\pi\)
−0.819138 + 0.573597i \(0.805548\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 24.5667 + 42.3967i 0.501361 + 0.865238i
\(8\) 0 0
\(9\) 39.2687 68.0154i 0.484799 0.839697i
\(10\) 0 0
\(11\) −11.7557 20.3615i −0.0971545 0.168276i 0.813351 0.581773i \(-0.197641\pi\)
−0.910506 + 0.413496i \(0.864307\pi\)
\(12\) 0 0
\(13\) −136.269 −0.806328 −0.403164 0.915128i \(-0.632090\pi\)
−0.403164 + 0.915128i \(0.632090\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −131.251 227.333i −0.454154 0.786618i 0.544485 0.838771i \(-0.316725\pi\)
−0.998639 + 0.0521523i \(0.983392\pi\)
\(18\) 0 0
\(19\) 387.162 + 223.528i 1.07247 + 0.619191i 0.928855 0.370442i \(-0.120794\pi\)
0.143615 + 0.989634i \(0.454127\pi\)
\(20\) 0 0
\(21\) −38.3418 + 66.6517i −0.0869429 + 0.151138i
\(22\) 0 0
\(23\) −648.800 374.585i −1.22646 0.708100i −0.260176 0.965561i \(-0.583781\pi\)
−0.966288 + 0.257462i \(0.917114\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 250.353 0.343420
\(28\) 0 0
\(29\) −406.524 −0.483382 −0.241691 0.970353i \(-0.577702\pi\)
−0.241691 + 0.970353i \(0.577702\pi\)
\(30\) 0 0
\(31\) −584.199 + 337.287i −0.607907 + 0.350975i −0.772146 0.635445i \(-0.780817\pi\)
0.164239 + 0.986421i \(0.447483\pi\)
\(32\) 0 0
\(33\) 18.4476 31.9521i 0.0169399 0.0293408i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −645.476 372.666i −0.471495 0.272218i 0.245370 0.969429i \(-0.421090\pi\)
−0.716865 + 0.697212i \(0.754424\pi\)
\(38\) 0 0
\(39\) −106.920 185.191i −0.0702959 0.121756i
\(40\) 0 0
\(41\) 2476.20i 1.47305i −0.676410 0.736526i \(-0.736465\pi\)
0.676410 0.736526i \(-0.263535\pi\)
\(42\) 0 0
\(43\) 2636.68i 1.42601i 0.701161 + 0.713003i \(0.252665\pi\)
−0.701161 + 0.713003i \(0.747335\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 334.343 579.099i 0.151355 0.262154i −0.780371 0.625317i \(-0.784970\pi\)
0.931726 + 0.363163i \(0.118303\pi\)
\(48\) 0 0
\(49\) −1193.96 + 2083.09i −0.497275 + 0.867593i
\(50\) 0 0
\(51\) 205.964 356.741i 0.0791866 0.137155i
\(52\) 0 0
\(53\) 1757.36 1014.61i 0.625617 0.361200i −0.153436 0.988159i \(-0.549034\pi\)
0.779053 + 0.626959i \(0.215700\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 701.541i 0.215925i
\(58\) 0 0
\(59\) 1014.22 585.561i 0.291359 0.168216i −0.347195 0.937793i \(-0.612866\pi\)
0.638555 + 0.769576i \(0.279533\pi\)
\(60\) 0 0
\(61\) −2022.05 1167.43i −0.543416 0.313741i 0.203047 0.979169i \(-0.434916\pi\)
−0.746462 + 0.665428i \(0.768249\pi\)
\(62\) 0 0
\(63\) 3848.33 6.04891i 0.969597 0.00152404i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −6546.78 + 3779.79i −1.45841 + 0.842011i −0.998933 0.0461815i \(-0.985295\pi\)
−0.459472 + 0.888192i \(0.651961\pi\)
\(68\) 0 0
\(69\) 1175.63i 0.246929i
\(70\) 0 0
\(71\) 7575.36 1.50275 0.751375 0.659876i \(-0.229391\pi\)
0.751375 + 0.659876i \(0.229391\pi\)
\(72\) 0 0
\(73\) −1896.12 3284.18i −0.355812 0.616284i 0.631445 0.775421i \(-0.282462\pi\)
−0.987257 + 0.159137i \(0.949129\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 574.460 998.615i 0.0968898 0.168429i
\(78\) 0 0
\(79\) 3897.33 6750.37i 0.624472 1.08162i −0.364171 0.931332i \(-0.618647\pi\)
0.988643 0.150285i \(-0.0480192\pi\)
\(80\) 0 0
\(81\) −2984.33 5169.02i −0.454860 0.787840i
\(82\) 0 0
\(83\) −2181.41 −0.316651 −0.158326 0.987387i \(-0.550610\pi\)
−0.158326 + 0.987387i \(0.550610\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −318.968 552.469i −0.0421414 0.0729910i
\(88\) 0 0
\(89\) −8050.38 4647.89i −1.01633 0.586781i −0.103294 0.994651i \(-0.532938\pi\)
−0.913040 + 0.407870i \(0.866272\pi\)
\(90\) 0 0
\(91\) −3347.69 5777.37i −0.404261 0.697666i
\(92\) 0 0
\(93\) −916.751 529.287i −0.105995 0.0611963i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −9981.90 −1.06089 −0.530444 0.847720i \(-0.677975\pi\)
−0.530444 + 0.847720i \(0.677975\pi\)
\(98\) 0 0
\(99\) −1846.52 −0.188402
\(100\) 0 0
\(101\) −675.552 + 390.030i −0.0662241 + 0.0382345i −0.532746 0.846275i \(-0.678840\pi\)
0.466522 + 0.884509i \(0.345507\pi\)
\(102\) 0 0
\(103\) 1376.35 2383.90i 0.129734 0.224706i −0.793840 0.608127i \(-0.791921\pi\)
0.923573 + 0.383422i \(0.125254\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12868.2 7429.46i −1.12396 0.648917i −0.181550 0.983382i \(-0.558111\pi\)
−0.942408 + 0.334464i \(0.891445\pi\)
\(108\) 0 0
\(109\) 1378.33 + 2387.33i 0.116011 + 0.200937i 0.918183 0.396155i \(-0.129656\pi\)
−0.802172 + 0.597092i \(0.796323\pi\)
\(110\) 0 0
\(111\) 1169.61i 0.0949281i
\(112\) 0 0
\(113\) 6264.79i 0.490625i −0.969444 0.245312i \(-0.921109\pi\)
0.969444 0.245312i \(-0.0788905\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −5351.13 + 9268.43i −0.390907 + 0.677071i
\(118\) 0 0
\(119\) 6413.76 11149.4i 0.452917 0.787331i
\(120\) 0 0
\(121\) 7044.11 12200.8i 0.481122 0.833328i
\(122\) 0 0
\(123\) 3365.17 1942.88i 0.222432 0.128421i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 12855.0i 0.797010i 0.917166 + 0.398505i \(0.130471\pi\)
−0.917166 + 0.398505i \(0.869529\pi\)
\(128\) 0 0
\(129\) −3583.27 + 2068.80i −0.215328 + 0.124320i
\(130\) 0 0
\(131\) −21412.5 12362.5i −1.24774 0.720383i −0.277082 0.960846i \(-0.589367\pi\)
−0.970658 + 0.240464i \(0.922701\pi\)
\(132\) 0 0
\(133\) 34.4320 + 21905.7i 0.00194652 + 1.23838i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1145.02 661.078i 0.0610059 0.0352218i −0.469187 0.883099i \(-0.655453\pi\)
0.530193 + 0.847877i \(0.322120\pi\)
\(138\) 0 0
\(139\) 5119.78i 0.264985i 0.991184 + 0.132493i \(0.0422981\pi\)
−0.991184 + 0.132493i \(0.957702\pi\)
\(140\) 0 0
\(141\) 1049.33 0.0527807
\(142\) 0 0
\(143\) 1601.94 + 2774.64i 0.0783384 + 0.135686i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −3767.74 + 11.8445i −0.174360 + 0.000548128i
\(148\) 0 0
\(149\) 5104.93 8842.00i 0.229942 0.398270i −0.727849 0.685737i \(-0.759480\pi\)
0.957791 + 0.287467i \(0.0928132\pi\)
\(150\) 0 0
\(151\) −14672.1 25412.8i −0.643483 1.11455i −0.984650 0.174543i \(-0.944155\pi\)
0.341166 0.940003i \(-0.389178\pi\)
\(152\) 0 0
\(153\) −20616.2 −0.880695
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −15030.2 26033.1i −0.609770 1.05615i −0.991278 0.131787i \(-0.957928\pi\)
0.381508 0.924366i \(-0.375405\pi\)
\(158\) 0 0
\(159\) 2757.73 + 1592.17i 0.109083 + 0.0629791i
\(160\) 0 0
\(161\) −57.7005 36709.3i −0.00222602 1.41620i
\(162\) 0 0
\(163\) 26742.3 + 15439.7i 1.00652 + 0.581115i 0.910171 0.414232i \(-0.135950\pi\)
0.0963500 + 0.995348i \(0.469283\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12858.8 −0.461070 −0.230535 0.973064i \(-0.574048\pi\)
−0.230535 + 0.973064i \(0.574048\pi\)
\(168\) 0 0
\(169\) −9991.63 −0.349835
\(170\) 0 0
\(171\) 30406.7 17555.3i 1.03987 0.600367i
\(172\) 0 0
\(173\) 7845.51 13588.8i 0.262137 0.454035i −0.704672 0.709533i \(-0.748906\pi\)
0.966810 + 0.255498i \(0.0822393\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1591.56 + 918.890i 0.0508016 + 0.0293303i
\(178\) 0 0
\(179\) −15993.2 27701.0i −0.499148 0.864550i 0.500851 0.865533i \(-0.333020\pi\)
−1.00000 0.000983488i \(0.999687\pi\)
\(180\) 0 0
\(181\) 47967.6i 1.46417i −0.681215 0.732083i \(-0.738548\pi\)
0.681215 0.732083i \(-0.261452\pi\)
\(182\) 0 0
\(183\) 3663.97i 0.109408i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −3085.88 + 5344.91i −0.0882462 + 0.152847i
\(188\) 0 0
\(189\) 6150.35 + 10614.2i 0.172177 + 0.297141i
\(190\) 0 0
\(191\) −2227.93 + 3858.88i −0.0610709 + 0.105778i −0.894944 0.446178i \(-0.852785\pi\)
0.833873 + 0.551956i \(0.186118\pi\)
\(192\) 0 0
\(193\) 25460.9 14699.9i 0.683533 0.394638i −0.117652 0.993055i \(-0.537537\pi\)
0.801185 + 0.598417i \(0.204203\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 23816.0i 0.613671i 0.951763 + 0.306836i \(0.0992701\pi\)
−0.951763 + 0.306836i \(0.900730\pi\)
\(198\) 0 0
\(199\) 42280.9 24410.9i 1.06767 0.616421i 0.140128 0.990133i \(-0.455249\pi\)
0.927545 + 0.373713i \(0.121915\pi\)
\(200\) 0 0
\(201\) −10273.5 5931.41i −0.254288 0.146813i
\(202\) 0 0
\(203\) −9986.94 17235.3i −0.242349 0.418241i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −50955.1 + 29418.9i −1.18918 + 0.686572i
\(208\) 0 0
\(209\) 10510.9i 0.240629i
\(210\) 0 0
\(211\) −9582.07 −0.215226 −0.107613 0.994193i \(-0.534321\pi\)
−0.107613 + 0.994193i \(0.534321\pi\)
\(212\) 0 0
\(213\) 5943.80 + 10295.0i 0.131010 + 0.226916i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −28651.7 16482.1i −0.608458 0.350019i
\(218\) 0 0
\(219\) 2975.48 5153.68i 0.0620396 0.107456i
\(220\) 0 0
\(221\) 17885.5 + 30978.5i 0.366197 + 0.634273i
\(222\) 0 0
\(223\) −54978.9 −1.10557 −0.552785 0.833324i \(-0.686435\pi\)
−0.552785 + 0.833324i \(0.686435\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4340.66 7518.24i −0.0842372 0.145903i 0.820829 0.571174i \(-0.193512\pi\)
−0.905066 + 0.425271i \(0.860179\pi\)
\(228\) 0 0
\(229\) 6262.86 + 3615.86i 0.119427 + 0.0689511i 0.558523 0.829489i \(-0.311368\pi\)
−0.439097 + 0.898440i \(0.644701\pi\)
\(230\) 0 0
\(231\) 1807.86 2.84164i 0.0338798 5.32531e-5i
\(232\) 0 0
\(233\) 7660.79 + 4422.96i 0.141111 + 0.0814707i 0.568894 0.822411i \(-0.307372\pi\)
−0.427782 + 0.903882i \(0.640705\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 12231.7 0.217767
\(238\) 0 0
\(239\) −88491.7 −1.54920 −0.774599 0.632453i \(-0.782048\pi\)
−0.774599 + 0.632453i \(0.782048\pi\)
\(240\) 0 0
\(241\) −53365.8 + 30810.7i −0.918816 + 0.530479i −0.883257 0.468889i \(-0.844654\pi\)
−0.0355589 + 0.999368i \(0.511321\pi\)
\(242\) 0 0
\(243\) 14822.5 25673.3i 0.251020 0.434779i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −52758.4 30460.0i −0.864763 0.499271i
\(248\) 0 0
\(249\) −1711.59 2964.55i −0.0276058 0.0478146i
\(250\) 0 0
\(251\) 57796.3i 0.917386i −0.888595 0.458693i \(-0.848318\pi\)
0.888595 0.458693i \(-0.151682\pi\)
\(252\) 0 0
\(253\) 17614.0i 0.275180i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −35065.0 + 60734.3i −0.530893 + 0.919534i 0.468457 + 0.883486i \(0.344810\pi\)
−0.999350 + 0.0360479i \(0.988523\pi\)
\(258\) 0 0
\(259\) −57.4050 36521.2i −0.000855756 0.544435i
\(260\) 0 0
\(261\) −15963.7 + 27649.9i −0.234343 + 0.405894i
\(262\) 0 0
\(263\) −19262.0 + 11120.9i −0.278477 + 0.160779i −0.632734 0.774369i \(-0.718067\pi\)
0.354257 + 0.935148i \(0.384734\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 14587.4i 0.204623i
\(268\) 0 0
\(269\) −40332.3 + 23285.9i −0.557376 + 0.321801i −0.752092 0.659058i \(-0.770955\pi\)
0.194715 + 0.980860i \(0.437622\pi\)
\(270\) 0 0
\(271\) 71958.3 + 41545.1i 0.979811 + 0.565694i 0.902213 0.431291i \(-0.141942\pi\)
0.0775980 + 0.996985i \(0.475275\pi\)
\(272\) 0 0
\(273\) 5224.82 9082.59i 0.0701045 0.121866i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −7818.59 + 4514.06i −0.101899 + 0.0588313i −0.550083 0.835110i \(-0.685404\pi\)
0.448185 + 0.893941i \(0.352071\pi\)
\(278\) 0 0
\(279\) 52979.4i 0.680610i
\(280\) 0 0
\(281\) 64188.4 0.812912 0.406456 0.913670i \(-0.366764\pi\)
0.406456 + 0.913670i \(0.366764\pi\)
\(282\) 0 0
\(283\) −11295.1 19563.7i −0.141032 0.244274i 0.786854 0.617140i \(-0.211709\pi\)
−0.927885 + 0.372865i \(0.878375\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 104983. 60832.0i 1.27454 0.738530i
\(288\) 0 0
\(289\) 7307.06 12656.2i 0.0874877 0.151533i
\(290\) 0 0
\(291\) −7832.02 13565.5i −0.0924885 0.160195i
\(292\) 0 0
\(293\) 130473. 1.51980 0.759900 0.650040i \(-0.225248\pi\)
0.759900 + 0.650040i \(0.225248\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −2943.08 5097.56i −0.0333648 0.0577896i
\(298\) 0 0
\(299\) 88411.6 + 51044.5i 0.988933 + 0.570961i
\(300\) 0 0
\(301\) −111787. + 64774.5i −1.23383 + 0.714943i
\(302\) 0 0
\(303\) −1060.11 612.053i −0.0115469 0.00666659i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 56173.9 0.596015 0.298008 0.954563i \(-0.403678\pi\)
0.298008 + 0.954563i \(0.403678\pi\)
\(308\) 0 0
\(309\) 4319.65 0.0452410
\(310\) 0 0
\(311\) 40087.2 23144.4i 0.414462 0.239290i −0.278243 0.960511i \(-0.589752\pi\)
0.692705 + 0.721221i \(0.256419\pi\)
\(312\) 0 0
\(313\) −69174.4 + 119814.i −0.706085 + 1.22298i 0.260213 + 0.965551i \(0.416207\pi\)
−0.966299 + 0.257424i \(0.917126\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 50493.9 + 29152.7i 0.502482 + 0.290108i 0.729738 0.683727i \(-0.239642\pi\)
−0.227256 + 0.973835i \(0.572975\pi\)
\(318\) 0 0
\(319\) 4778.97 + 8277.42i 0.0469627 + 0.0813418i
\(320\) 0 0
\(321\) 23317.3i 0.226291i
\(322\) 0 0
\(323\) 117353.i 1.12483i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −2162.93 + 3746.31i −0.0202278 + 0.0350355i
\(328\) 0 0
\(329\) 32765.6 51.5018i 0.302709 0.000475806i
\(330\) 0 0
\(331\) −494.602 + 856.675i −0.00451440 + 0.00781916i −0.868274 0.496085i \(-0.834770\pi\)
0.863759 + 0.503904i \(0.168104\pi\)
\(332\) 0 0
\(333\) −50694.1 + 29268.2i −0.457161 + 0.263942i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 55958.7i 0.492728i −0.969177 0.246364i \(-0.920764\pi\)
0.969177 0.246364i \(-0.0792359\pi\)
\(338\) 0 0
\(339\) 8513.89 4915.49i 0.0740847 0.0427728i
\(340\) 0 0
\(341\) 13735.3 + 7930.09i 0.118122 + 0.0681976i
\(342\) 0 0
\(343\) −117648. + 554.769i −0.999989 + 0.00471546i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 113141. 65322.2i 0.939641 0.542502i 0.0497936 0.998760i \(-0.484144\pi\)
0.889848 + 0.456257i \(0.150810\pi\)
\(348\) 0 0
\(349\) 110948.i 0.910899i 0.890262 + 0.455450i \(0.150522\pi\)
−0.890262 + 0.455450i \(0.849478\pi\)
\(350\) 0 0
\(351\) −34115.5 −0.276910
\(352\) 0 0
\(353\) −8503.18 14727.9i −0.0682389 0.118193i 0.829887 0.557931i \(-0.188405\pi\)
−0.898126 + 0.439738i \(0.855071\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 20184.5 31.7265i 0.158373 0.000248935i
\(358\) 0 0
\(359\) 35732.4 61890.3i 0.277251 0.480212i −0.693450 0.720505i \(-0.743910\pi\)
0.970701 + 0.240293i \(0.0772434\pi\)
\(360\) 0 0
\(361\) 34769.0 + 60221.8i 0.266795 + 0.462103i
\(362\) 0 0
\(363\) 22107.9 0.167777
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 85183.8 + 147543.i 0.632448 + 1.09543i 0.987050 + 0.160415i \(0.0512832\pi\)
−0.354602 + 0.935017i \(0.615383\pi\)
\(368\) 0 0
\(369\) −168420. 97237.2i −1.23692 0.714134i
\(370\) 0 0
\(371\) 86188.6 + 49580.5i 0.626184 + 0.360216i
\(372\) 0 0
\(373\) 130503. + 75346.0i 0.938001 + 0.541555i 0.889333 0.457260i \(-0.151169\pi\)
0.0486680 + 0.998815i \(0.484502\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 55396.8 0.389764
\(378\) 0 0
\(379\) 211477. 1.47226 0.736129 0.676841i \(-0.236652\pi\)
0.736129 + 0.676841i \(0.236652\pi\)
\(380\) 0 0
\(381\) −17470.0 + 10086.3i −0.120349 + 0.0694836i
\(382\) 0 0
\(383\) −59333.6 + 102769.i −0.404486 + 0.700590i −0.994261 0.106977i \(-0.965883\pi\)
0.589776 + 0.807567i \(0.299216\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 179335. + 103539.i 1.19741 + 0.691326i
\(388\) 0 0
\(389\) 107858. + 186816.i 0.712778 + 1.23457i 0.963810 + 0.266588i \(0.0858964\pi\)
−0.251033 + 0.967979i \(0.580770\pi\)
\(390\) 0 0
\(391\) 196658.i 1.28635i
\(392\) 0 0
\(393\) 38799.6i 0.251213i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 77371.1 134011.i 0.490905 0.850273i −0.509040 0.860743i \(-0.669999\pi\)
0.999945 + 0.0104699i \(0.00333275\pi\)
\(398\) 0 0
\(399\) −29743.0 + 17234.5i −0.186827 + 0.108256i
\(400\) 0 0
\(401\) −100029. + 173255.i −0.622067 + 1.07745i 0.367033 + 0.930208i \(0.380374\pi\)
−0.989100 + 0.147244i \(0.952960\pi\)
\(402\) 0 0
\(403\) 79608.5 45962.0i 0.490173 0.283001i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 17523.8i 0.105789i
\(408\) 0 0
\(409\) −190382. + 109917.i −1.13810 + 0.657080i −0.945958 0.324288i \(-0.894875\pi\)
−0.192137 + 0.981368i \(0.561542\pi\)
\(410\) 0 0
\(411\) 1796.82 + 1037.39i 0.0106370 + 0.00614129i
\(412\) 0 0
\(413\) 49741.9 + 28614.4i 0.291623 + 0.167758i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −6957.81 + 4017.10i −0.0400130 + 0.0231015i
\(418\) 0 0
\(419\) 31359.8i 0.178626i 0.996004 + 0.0893132i \(0.0284672\pi\)
−0.996004 + 0.0893132i \(0.971533\pi\)
\(420\) 0 0
\(421\) −73690.7 −0.415766 −0.207883 0.978154i \(-0.566657\pi\)
−0.207883 + 0.978154i \(0.566657\pi\)
\(422\) 0 0
\(423\) −26258.5 45481.0i −0.146753 0.254184i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −179.830 114408.i −0.000986291 0.627481i
\(428\) 0 0
\(429\) −2513.84 + 4354.10i −0.0136591 + 0.0236583i
\(430\) 0 0
\(431\) 132586. + 229646.i 0.713746 + 1.23624i 0.963441 + 0.267920i \(0.0863364\pi\)
−0.249695 + 0.968325i \(0.580330\pi\)
\(432\) 0 0
\(433\) −124873. −0.666027 −0.333014 0.942922i \(-0.608066\pi\)
−0.333014 + 0.942922i \(0.608066\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −167460. 290050.i −0.876898 1.51883i
\(438\) 0 0
\(439\) 120989. + 69852.8i 0.627792 + 0.362456i 0.779896 0.625909i \(-0.215272\pi\)
−0.152105 + 0.988364i \(0.548605\pi\)
\(440\) 0 0
\(441\) 94797.1 + 163008.i 0.487437 + 0.838169i
\(442\) 0 0
\(443\) −191556. 110595.i −0.976087 0.563544i −0.0750005 0.997183i \(-0.523896\pi\)
−0.901087 + 0.433639i \(0.857229\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 16021.8 0.0801855
\(448\) 0 0
\(449\) −255878. −1.26923 −0.634615 0.772828i \(-0.718841\pi\)
−0.634615 + 0.772828i \(0.718841\pi\)
\(450\) 0 0
\(451\) −50419.0 + 29109.4i −0.247880 + 0.143114i
\(452\) 0 0
\(453\) 23024.1 39878.9i 0.112198 0.194333i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 277065. + 159964.i 1.32663 + 0.765929i 0.984777 0.173825i \(-0.0556126\pi\)
0.341852 + 0.939754i \(0.388946\pi\)
\(458\) 0 0
\(459\) −32859.0 56913.5i −0.155966 0.270141i
\(460\) 0 0
\(461\) 369557.i 1.73892i 0.494002 + 0.869461i \(0.335534\pi\)
−0.494002 + 0.869461i \(0.664466\pi\)
\(462\) 0 0
\(463\) 32715.0i 0.152611i −0.997084 0.0763053i \(-0.975688\pi\)
0.997084 0.0763053i \(-0.0243124\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −153186. + 265325.i −0.702400 + 1.21659i 0.265222 + 0.964187i \(0.414555\pi\)
−0.967622 + 0.252405i \(0.918779\pi\)
\(468\) 0 0
\(469\) −321083. 184705.i −1.45973 0.839717i
\(470\) 0 0
\(471\) 23586.1 40852.3i 0.106320 0.184151i
\(472\) 0 0
\(473\) 53686.7 30996.0i 0.239963 0.138543i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 159370.i 0.700438i
\(478\) 0 0
\(479\) 226801. 130944.i 0.988493 0.570707i 0.0836697 0.996494i \(-0.473336\pi\)
0.904824 + 0.425787i \(0.140003\pi\)
\(480\) 0 0
\(481\) 87958.7 + 50783.0i 0.380180 + 0.219497i
\(482\) 0 0
\(483\) 49842.8 28881.3i 0.213653 0.123801i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 71235.3 41127.7i 0.300357 0.173411i −0.342246 0.939610i \(-0.611188\pi\)
0.642603 + 0.766199i \(0.277854\pi\)
\(488\) 0 0
\(489\) 48457.2i 0.202647i
\(490\) 0 0
\(491\) −102923. −0.426924 −0.213462 0.976951i \(-0.568474\pi\)
−0.213462 + 0.976951i \(0.568474\pi\)
\(492\) 0 0
\(493\) 53356.5 + 92416.2i 0.219530 + 0.380237i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 186101. + 321170.i 0.753420 + 1.30024i
\(498\) 0 0
\(499\) 75028.2 129953.i 0.301317 0.521896i −0.675118 0.737710i \(-0.735907\pi\)
0.976434 + 0.215814i \(0.0692405\pi\)
\(500\) 0 0
\(501\) −10089.3 17475.2i −0.0401962 0.0696219i
\(502\) 0 0
\(503\) −91806.6 −0.362859 −0.181430 0.983404i \(-0.558072\pi\)
−0.181430 + 0.983404i \(0.558072\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −7839.66 13578.7i −0.0304987 0.0528253i
\(508\) 0 0
\(509\) 412600. + 238215.i 1.59255 + 0.919460i 0.992867 + 0.119224i \(0.0380405\pi\)
0.599684 + 0.800237i \(0.295293\pi\)
\(510\) 0 0
\(511\) 92656.9 161071.i 0.354843 0.616843i
\(512\) 0 0
\(513\) 96927.3 + 55961.0i 0.368308 + 0.212643i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −15721.7 −0.0588192
\(518\) 0 0
\(519\) 24623.1 0.0914128
\(520\) 0 0
\(521\) 147768. 85314.0i 0.544384 0.314300i −0.202470 0.979289i \(-0.564897\pi\)
0.746854 + 0.664988i \(0.231563\pi\)
\(522\) 0 0
\(523\) 49098.2 85040.5i 0.179499 0.310901i −0.762210 0.647330i \(-0.775886\pi\)
0.941709 + 0.336428i \(0.109219\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 153353. + 88538.3i 0.552167 + 0.318794i
\(528\) 0 0
\(529\) 140707. + 243711.i 0.502810 + 0.870892i
\(530\) 0 0
\(531\) 91977.0i 0.326205i
\(532\) 0 0
\(533\) 337430.i 1.18776i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 25097.3 43469.7i 0.0870318 0.150743i
\(538\) 0 0
\(539\) 56450.5 177.461i 0.194308 0.000610838i
\(540\) 0 0
\(541\) 52833.7 91510.6i 0.180516 0.312663i −0.761540 0.648118i \(-0.775557\pi\)
0.942056 + 0.335454i \(0.108890\pi\)
\(542\) 0 0
\(543\) 65188.2 37636.4i 0.221090 0.127646i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 127121.i 0.424855i −0.977177 0.212428i \(-0.931863\pi\)
0.977177 0.212428i \(-0.0681370\pi\)
\(548\) 0 0
\(549\) −158807. + 91687.0i −0.526895 + 0.304203i
\(550\) 0 0
\(551\) −157391. 90869.5i −0.518413 0.299306i
\(552\) 0 0
\(553\) 381938. 600.340i 1.24894 0.00196312i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 26407.6 15246.5i 0.0851176 0.0491427i −0.456837 0.889550i \(-0.651018\pi\)
0.541955 + 0.840408i \(0.317684\pi\)
\(558\) 0 0
\(559\) 359300.i 1.14983i
\(560\) 0 0
\(561\) −9685.01 −0.0307733
\(562\) 0 0
\(563\) −265237. 459404.i −0.836791 1.44936i −0.892564 0.450921i \(-0.851095\pi\)
0.0557725 0.998444i \(-0.482238\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 145834. 253511.i 0.453621 0.788554i
\(568\) 0 0
\(569\) −169366. + 293351.i −0.523121 + 0.906072i 0.476517 + 0.879165i \(0.341899\pi\)
−0.999638 + 0.0269067i \(0.991434\pi\)
\(570\) 0 0
\(571\) 53455.6 + 92587.8i 0.163954 + 0.283976i 0.936283 0.351246i \(-0.114242\pi\)
−0.772330 + 0.635222i \(0.780909\pi\)
\(572\) 0 0
\(573\) −6992.33 −0.0212967
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −60238.8 104337.i −0.180936 0.313390i 0.761264 0.648443i \(-0.224579\pi\)
−0.942200 + 0.335052i \(0.891246\pi\)
\(578\) 0 0
\(579\) 39954.4 + 23067.7i 0.119181 + 0.0688093i
\(580\) 0 0
\(581\) −53590.0 92484.6i −0.158757 0.273979i
\(582\) 0 0
\(583\) −41317.9 23854.9i −0.121563 0.0701844i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −525818. −1.52602 −0.763008 0.646389i \(-0.776278\pi\)
−0.763008 + 0.646389i \(0.776278\pi\)
\(588\) 0 0
\(589\) −301573. −0.869283
\(590\) 0 0
\(591\) −32366.0 + 18686.5i −0.0926648 + 0.0535000i
\(592\) 0 0
\(593\) −37113.8 + 64283.0i −0.105542 + 0.182804i −0.913960 0.405805i \(-0.866991\pi\)
0.808417 + 0.588610i \(0.200324\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 66349.1 + 38306.7i 0.186160 + 0.107480i
\(598\) 0 0
\(599\) 10990.7 + 19036.5i 0.0306318 + 0.0530558i 0.880935 0.473237i \(-0.156915\pi\)
−0.850303 + 0.526293i \(0.823581\pi\)
\(600\) 0 0
\(601\) 77418.2i 0.214336i −0.994241 0.107168i \(-0.965822\pi\)
0.994241 0.107168i \(-0.0341782\pi\)
\(602\) 0 0
\(603\) 593710.i 1.63282i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −89931.2 + 155765.i −0.244081 + 0.422760i −0.961873 0.273498i \(-0.911819\pi\)
0.717792 + 0.696257i \(0.245153\pi\)
\(608\) 0 0
\(609\) 15586.9 27095.5i 0.0420266 0.0730572i
\(610\) 0 0
\(611\) −45560.7 + 78913.5i −0.122042 + 0.211382i
\(612\) 0 0
\(613\) −544968. + 314637.i −1.45027 + 0.837316i −0.998497 0.0548147i \(-0.982543\pi\)
−0.451777 + 0.892131i \(0.649210\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 52877.1i 0.138899i −0.997585 0.0694493i \(-0.977876\pi\)
0.997585 0.0694493i \(-0.0221242\pi\)
\(618\) 0 0
\(619\) −447040. + 258099.i −1.16672 + 0.673603i −0.952904 0.303271i \(-0.901921\pi\)
−0.213811 + 0.976875i \(0.568588\pi\)
\(620\) 0 0
\(621\) −162429. 93778.6i −0.421193 0.243176i
\(622\) 0 0
\(623\) −715.955 455493.i −0.00184463 1.17356i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 14284.4 8247.09i 0.0363351 0.0209781i
\(628\) 0 0
\(629\) 195651.i 0.494515i
\(630\) 0 0
\(631\) 193439. 0.485831 0.242915 0.970047i \(-0.421896\pi\)
0.242915 + 0.970047i \(0.421896\pi\)
\(632\) 0 0
\(633\) −7518.31 13022.1i −0.0187635 0.0324993i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 162700. 283862.i 0.400967 0.699565i
\(638\) 0 0
\(639\) 297475. 515242.i 0.728532 1.26185i
\(640\) 0 0
\(641\) −376563. 652226.i −0.916477 1.58738i −0.804725 0.593648i \(-0.797687\pi\)
−0.111751 0.993736i \(-0.535646\pi\)
\(642\) 0 0
\(643\) 7110.23 0.0171974 0.00859868 0.999963i \(-0.497263\pi\)
0.00859868 + 0.999963i \(0.497263\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −197343. 341808.i −0.471426 0.816534i 0.528040 0.849220i \(-0.322927\pi\)
−0.999466 + 0.0326859i \(0.989594\pi\)
\(648\) 0 0
\(649\) −23845.8 13767.4i −0.0566137 0.0326860i
\(650\) 0 0
\(651\) −81.5306 51870.0i −0.000192380 0.122392i
\(652\) 0 0
\(653\) 200186. + 115578.i 0.469470 + 0.271049i 0.716018 0.698082i \(-0.245963\pi\)
−0.246548 + 0.969131i \(0.579296\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −297833. −0.689989
\(658\) 0 0
\(659\) 772498. 1.77880 0.889399 0.457131i \(-0.151123\pi\)
0.889399 + 0.457131i \(0.151123\pi\)
\(660\) 0 0
\(661\) −195287. + 112749.i −0.446962 + 0.258053i −0.706546 0.707667i \(-0.749748\pi\)
0.259584 + 0.965720i \(0.416414\pi\)
\(662\) 0 0
\(663\) −28066.7 + 48612.9i −0.0638504 + 0.110592i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 263753. + 152278.i 0.592851 + 0.342282i
\(668\) 0 0
\(669\) −43137.7 74716.6i −0.0963839 0.166942i
\(670\) 0 0
\(671\) 54895.8i 0.121925i
\(672\) 0 0
\(673\) 59564.6i 0.131510i −0.997836 0.0657549i \(-0.979054\pi\)
0.997836 0.0657549i \(-0.0209455\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −396715. + 687131.i −0.865569 + 1.49921i 0.000912440 1.00000i \(0.499710\pi\)
−0.866481 + 0.499210i \(0.833624\pi\)
\(678\) 0 0
\(679\) −245222. 423199.i −0.531888 0.917921i
\(680\) 0 0
\(681\) 6811.56 11798.0i 0.0146876 0.0254397i
\(682\) 0 0
\(683\) 80201.3 46304.3i 0.171925 0.0992612i −0.411568 0.911379i \(-0.635019\pi\)
0.583493 + 0.812118i \(0.301685\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 11348.4i 0.0240447i
\(688\) 0 0
\(689\) −239474. + 138261.i −0.504453 + 0.291246i
\(690\) 0 0
\(691\) −162273. 93688.2i −0.339852 0.196213i 0.320355 0.947298i \(-0.396198\pi\)
−0.660206 + 0.751084i \(0.729531\pi\)
\(692\) 0 0
\(693\) −45362.9 78286.5i −0.0944571 0.163012i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −562921. + 325003.i −1.15873 + 0.668993i
\(698\) 0 0
\(699\) 13881.4i 0.0284105i
\(700\) 0 0
\(701\) 326056. 0.663522 0.331761 0.943363i \(-0.392357\pi\)
0.331761 + 0.943363i \(0.392357\pi\)
\(702\) 0 0
\(703\) −166603. 288564.i −0.337110 0.583891i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −33132.0 19059.4i −0.0662841 0.0381303i
\(708\) 0 0
\(709\) 32372.6 56070.9i 0.0643998 0.111544i −0.832028 0.554734i \(-0.812820\pi\)
0.896428 + 0.443190i \(0.146153\pi\)
\(710\) 0 0
\(711\) −306086. 530157.i −0.605487 1.04873i
\(712\) 0 0
\(713\) 505371. 0.994102
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −69432.6 120261.i −0.135060 0.233930i
\(718\) 0 0
\(719\) 616355. + 355853.i 1.19227 + 0.688355i 0.958820 0.284014i \(-0.0916664\pi\)
0.233446 + 0.972370i \(0.425000\pi\)
\(720\) 0 0
\(721\) 134882. 212.011i 0.259468 0.000407838i
\(722\) 0 0
\(723\) −83744.0 48349.6i −0.160205 0.0924946i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −763134. −1.44388 −0.721941 0.691954i \(-0.756750\pi\)
−0.721941 + 0.691954i \(0.756750\pi\)
\(728\) 0 0
\(729\) −436942. −0.822183
\(730\) 0 0
\(731\) 599404. 346066.i 1.12172 0.647626i
\(732\) 0 0
\(733\) −10304.6 + 17848.0i −0.0191788 + 0.0332187i −0.875456 0.483299i \(-0.839439\pi\)
0.856277 + 0.516517i \(0.172772\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 153924. + 88868.0i 0.283381 + 0.163610i
\(738\) 0 0
\(739\) −393194. 681032.i −0.719976 1.24703i −0.961009 0.276518i \(-0.910819\pi\)
0.241033 0.970517i \(-0.422514\pi\)
\(740\) 0 0
\(741\) 95598.6i 0.174107i
\(742\) 0 0
\(743\) 740479.i 1.34133i −0.741761 0.670664i \(-0.766009\pi\)
0.741761 0.670664i \(-0.233991\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −85661.3 + 148370.i −0.153512 + 0.265891i
\(748\) 0 0
\(749\) −1144.42 728086.i −0.00203997 1.29783i
\(750\) 0 0
\(751\) 247292. 428322.i 0.438460 0.759436i −0.559111 0.829093i \(-0.688857\pi\)
0.997571 + 0.0696574i \(0.0221906\pi\)
\(752\) 0 0
\(753\) 78545.5 45348.3i 0.138526 0.0799780i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 139399.i 0.243258i −0.992576 0.121629i \(-0.961188\pi\)
0.992576 0.121629i \(-0.0388118\pi\)
\(758\) 0 0
\(759\) −23937.5 + 13820.3i −0.0415524 + 0.0239903i
\(760\) 0 0
\(761\) −207340. 119708.i −0.358025 0.206706i 0.310189 0.950675i \(-0.399608\pi\)
−0.668214 + 0.743969i \(0.732941\pi\)
\(762\) 0 0
\(763\) −67354.1 + 117085.i −0.115695 + 0.201119i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −138208. + 79794.1i −0.234931 + 0.135638i
\(768\) 0 0
\(769\) 98701.5i 0.166906i −0.996512 0.0834528i \(-0.973405\pi\)
0.996512 0.0834528i \(-0.0265948\pi\)
\(770\) 0 0
\(771\) −110051. −0.185134
\(772\) 0 0
\(773\) 293248. + 507921.i 0.490769 + 0.850036i 0.999944 0.0106268i \(-0.00338269\pi\)
−0.509175 + 0.860663i \(0.670049\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 49587.5 28733.4i 0.0821354 0.0475932i
\(778\) 0 0
\(779\) 553500. 958690.i 0.912100 1.57980i
\(780\) 0 0
\(781\) −89053.6 154245.i −0.145999 0.252877i
\(782\) 0 0
\(783\) −101775. −0.166003
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −74787.4 129536.i −0.120748 0.209141i 0.799315 0.600912i \(-0.205196\pi\)
−0.920063 + 0.391771i \(0.871863\pi\)
\(788\) 0 0
\(789\) −30226.8 17451.4i −0.0485554 0.0280335i
\(790\) 0 0
\(791\) 265606. 153905.i 0.424507 0.245980i
\(792\) 0 0
\(793\) 275544. + 159085.i 0.438171 + 0.252978i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −241092. −0.379547 −0.189774 0.981828i \(-0.560775\pi\)
−0.189774 + 0.981828i \(0.560775\pi\)
\(798\) 0 0
\(799\) −175531. −0.274954
\(800\) 0 0
\(801\) −632256. + 365033.i −0.985436 + 0.568941i
\(802\) 0 0
\(803\) −44580.4 + 77215.6i −0.0691374 + 0.119750i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −63291.3 36541.3i −0.0971845 0.0561095i
\(808\) 0 0
\(809\) 100933. + 174820.i 0.154218 + 0.267113i 0.932774 0.360462i \(-0.117381\pi\)
−0.778556 + 0.627575i \(0.784048\pi\)
\(810\) 0 0
\(811\) 1.16747e6i 1.77503i −0.460779 0.887515i \(-0.652430\pi\)
0.460779 0.887515i \(-0.347570\pi\)
\(812\) 0 0
\(813\) 130389.i 0.197270i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −589373. + 1.02082e6i −0.882970 + 1.52935i
\(818\) 0 0
\(819\) −524410. + 824.281i −0.781814 + 0.00122887i
\(820\) 0 0
\(821\) 324585. 562198.i 0.481551 0.834071i −0.518225 0.855245i \(-0.673407\pi\)
0.999776 + 0.0211734i \(0.00674022\pi\)
\(822\) 0 0
\(823\) 425193. 245486.i 0.627750 0.362432i −0.152130 0.988360i \(-0.548613\pi\)
0.779880 + 0.625929i \(0.215280\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 709017.i 1.03668i −0.855174 0.518341i \(-0.826550\pi\)
0.855174 0.518341i \(-0.173450\pi\)
\(828\) 0 0
\(829\) −534645. + 308677.i −0.777958 + 0.449154i −0.835706 0.549177i \(-0.814941\pi\)
0.0577480 + 0.998331i \(0.481608\pi\)
\(830\) 0 0
\(831\) −12269.3 7083.68i −0.0177671 0.0102579i
\(832\) 0 0
\(833\) 630262. 1981.33i 0.908304 0.00285540i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −146256. + 84441.0i −0.208768 + 0.120532i
\(838\) 0 0
\(839\) 493961.i 0.701728i 0.936426 + 0.350864i \(0.114112\pi\)
−0.936426 + 0.350864i \(0.885888\pi\)
\(840\) 0 0
\(841\) −542019. −0.766342
\(842\) 0 0
\(843\) 50363.7 + 87232.4i 0.0708699 + 0.122750i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 690322. 1085.07i 0.962243 0.00151248i
\(848\) 0 0
\(849\) 17724.8 30700.2i 0.0245904 0.0425918i
\(850\) 0 0
\(851\) 279190. + 483571.i 0.385514 + 0.667730i
\(852\) 0 0
\(853\) −505142. −0.694249 −0.347124 0.937819i \(-0.612842\pi\)
−0.347124 + 0.937819i \(0.612842\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −560018. 969980.i −0.762501 1.32069i −0.941557 0.336852i \(-0.890638\pi\)
0.179056 0.983839i \(-0.442696\pi\)
\(858\) 0 0
\(859\) 605141. + 349379.i 0.820107 + 0.473489i 0.850453 0.526050i \(-0.176328\pi\)
−0.0303463 + 0.999539i \(0.509661\pi\)
\(860\) 0 0
\(861\) 165043. + 94941.9i 0.222633 + 0.128071i
\(862\) 0 0
\(863\) 830576. + 479533.i 1.11521 + 0.643868i 0.940175 0.340693i \(-0.110662\pi\)
0.175038 + 0.984562i \(0.443995\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 22933.1 0.0305088
\(868\) 0 0
\(869\) −183263. −0.242681
\(870\) 0 0
\(871\) 892127. 515069.i 1.17595 0.678937i
\(872\) 0 0
\(873\) −391976. + 678923.i −0.514318 + 0.890824i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 863326. + 498442.i 1.12247 + 0.648060i 0.942031 0.335526i \(-0.108914\pi\)
0.180442 + 0.983586i \(0.442247\pi\)
\(878\) 0 0
\(879\) 102372. + 177314.i 0.132497 + 0.229491i
\(880\) 0 0
\(881\) 494568.i 0.637198i −0.947890 0.318599i \(-0.896788\pi\)
0.947890 0.318599i \(-0.103212\pi\)
\(882\) 0 0
\(883\) 887278.i 1.13799i −0.822341 0.568995i \(-0.807333\pi\)
0.822341 0.568995i \(-0.192667\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −312960. + 542062.i −0.397779 + 0.688973i −0.993452 0.114254i \(-0.963552\pi\)
0.595673 + 0.803227i \(0.296885\pi\)
\(888\) 0 0
\(889\) −545008. + 315804.i −0.689604 + 0.399589i
\(890\) 0 0
\(891\) −70165.8 + 121531.i −0.0883833 + 0.153084i
\(892\) 0 0
\(893\) 258890. 149470.i 0.324647 0.187435i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 160203.i 0.199106i
\(898\) 0 0
\(899\) 237491. 137115.i 0.293851 0.169655i
\(900\) 0 0
\(901\) −461309. 266337.i −0.568253 0.328081i
\(902\) 0 0
\(903\) −175739. 101095.i −0.215523 0.123981i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1.09835e6 + 634131.i −1.33513 + 0.770840i −0.986081 0.166263i \(-0.946830\pi\)
−0.349052 + 0.937103i \(0.613496\pi\)
\(908\) 0 0
\(909\) 61263.9i 0.0741442i
\(910\) 0 0
\(911\) −1.09985e6 −1.32525 −0.662625 0.748951i \(-0.730558\pi\)
−0.662625 + 0.748951i \(0.730558\pi\)
\(912\) 0 0
\(913\) 25644.0 + 44416.7i 0.0307641 + 0.0532850i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1904.30 1.21152e6i −0.00226463 1.44076i
\(918\) 0 0
\(919\) 430660. 745925.i 0.509922 0.883211i −0.490012 0.871716i \(-0.663008\pi\)
0.999934 0.0114950i \(-0.00365905\pi\)
\(920\) 0 0
\(921\) 44075.3 + 76340.6i 0.0519608 + 0.0899987i
\(922\) 0 0
\(923\) −1.03229e6 −1.21171
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −108095. 187226.i −0.125790 0.217874i
\(928\) 0 0
\(929\) 326247. + 188359.i 0.378021 + 0.218250i 0.676957 0.736023i \(-0.263298\pi\)
−0.298936 + 0.954273i \(0.596632\pi\)
\(930\) 0 0
\(931\) −927884. + 539610.i −1.07052 + 0.622560i
\(932\) 0 0
\(933\) 62906.7 + 36319.2i 0.0722659 + 0.0417227i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −417813. −0.475885 −0.237943 0.971279i \(-0.576473\pi\)
−0.237943 + 0.971279i \(0.576473\pi\)
\(938\) 0 0
\(939\) −217103. −0.246227
\(940\) 0 0
\(941\) 213031. 122994.i 0.240582 0.138900i −0.374862 0.927081i \(-0.622310\pi\)
0.615444 + 0.788180i \(0.288977\pi\)
\(942\) 0 0
\(943\) −927546. + 1.60656e6i −1.04307 + 1.80665i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.25221e6 + 722964.i 1.39630 + 0.806152i 0.994002 0.109359i \(-0.0348797\pi\)
0.402294 + 0.915511i \(0.368213\pi\)
\(948\) 0 0
\(949\) 258384. + 447533.i 0.286901 + 0.496928i
\(950\) 0 0
\(951\) 91495.4i 0.101167i
\(952\) 0 0
\(953\) 907377.i 0.999084i −0.866290 0.499542i \(-0.833502\pi\)
0.866290 0.499542i \(-0.166498\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −7499.38 + 12989.3i −0.00818845 + 0.0141828i
\(958\) 0 0
\(959\) 56156.9 + 32304.6i 0.0610612 + 0.0351259i
\(960\) 0 0
\(961\) −234235. + 405707.i −0.253633 + 0.439305i
\(962\) 0 0
\(963\) −1.01064e6 + 583491.i −1.08979 + 0.629189i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 50286.2i 0.0537770i −0.999638 0.0268885i \(-0.991440\pi\)
0.999638 0.0268885i \(-0.00855990\pi\)
\(968\) 0 0
\(969\) 159483. 92077.6i 0.169851 0.0980633i
\(970\) 0 0
\(971\) 677500. + 391155.i 0.718573 + 0.414868i 0.814227 0.580546i \(-0.197161\pi\)
−0.0956544 + 0.995415i \(0.530494\pi\)
\(972\) 0 0
\(973\) −217062. + 125776.i −0.229275 + 0.132853i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.10629e6 638714.i 1.15899 0.669141i 0.207925 0.978145i \(-0.433329\pi\)
0.951061 + 0.309004i \(0.0999956\pi\)
\(978\) 0 0
\(979\) 218557.i 0.228033i
\(980\) 0 0
\(981\) 216501. 0.224968
\(982\) 0 0
\(983\) −786638. 1.36250e6i −0.814081 1.41003i −0.909986 0.414639i \(-0.863908\pi\)
0.0959049 0.995391i \(-0.469426\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 25778.6 + 44488.2i 0.0264621 + 0.0456679i
\(988\) 0 0
\(989\) 987661. 1.71068e6i 1.00975 1.74894i
\(990\) 0 0
\(991\) −162173. 280892.i −0.165132 0.286017i 0.771570 0.636144i \(-0.219472\pi\)
−0.936702 + 0.350127i \(0.886138\pi\)
\(992\) 0 0
\(993\) −1552.30 −0.00157427
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −907185. 1.57129e6i −0.912652 1.58076i −0.810303 0.586012i \(-0.800697\pi\)
−0.102350 0.994748i \(-0.532636\pi\)
\(998\) 0 0
\(999\) −161597. 93298.2i −0.161921 0.0934851i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.5.o.a.649.4 12
5.2 odd 4 700.5.s.a.201.2 6
5.3 odd 4 28.5.h.a.5.2 6
5.4 even 2 inner 700.5.o.a.649.3 12
7.3 odd 6 inner 700.5.o.a.549.3 12
15.8 even 4 252.5.z.f.145.1 6
20.3 even 4 112.5.s.c.33.2 6
35.3 even 12 28.5.h.a.17.2 yes 6
35.13 even 4 196.5.h.c.117.2 6
35.17 even 12 700.5.s.a.101.2 6
35.18 odd 12 196.5.h.c.129.2 6
35.23 odd 12 196.5.b.a.97.3 6
35.24 odd 6 inner 700.5.o.a.549.4 12
35.33 even 12 196.5.b.a.97.4 6
105.38 odd 12 252.5.z.f.73.1 6
140.3 odd 12 112.5.s.c.17.2 6
140.23 even 12 784.5.c.e.97.4 6
140.103 odd 12 784.5.c.e.97.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.5.h.a.5.2 6 5.3 odd 4
28.5.h.a.17.2 yes 6 35.3 even 12
112.5.s.c.17.2 6 140.3 odd 12
112.5.s.c.33.2 6 20.3 even 4
196.5.b.a.97.3 6 35.23 odd 12
196.5.b.a.97.4 6 35.33 even 12
196.5.h.c.117.2 6 35.13 even 4
196.5.h.c.129.2 6 35.18 odd 12
252.5.z.f.73.1 6 105.38 odd 12
252.5.z.f.145.1 6 15.8 even 4
700.5.o.a.549.3 12 7.3 odd 6 inner
700.5.o.a.549.4 12 35.24 odd 6 inner
700.5.o.a.649.3 12 5.4 even 2 inner
700.5.o.a.649.4 12 1.1 even 1 trivial
700.5.s.a.101.2 6 35.17 even 12
700.5.s.a.201.2 6 5.2 odd 4
784.5.c.e.97.3 6 140.103 odd 12
784.5.c.e.97.4 6 140.23 even 12