Properties

Label 700.5.o
Level $700$
Weight $5$
Character orbit 700.o
Rep. character $\chi_{700}(549,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $96$
Newform subspaces $3$
Sturm bound $600$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 700.o (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(600\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(700, [\chi])\).

Total New Old
Modular forms 996 96 900
Cusp forms 924 96 828
Eisenstein series 72 0 72

Trace form

\( 96 q - 1332 q^{9} - 330 q^{11} + 78 q^{19} - 1004 q^{21} + 1176 q^{29} - 2652 q^{31} - 588 q^{39} + 3616 q^{49} - 1420 q^{51} - 4716 q^{59} - 11100 q^{61} - 22308 q^{71} - 8008 q^{79} - 24536 q^{81} - 35622 q^{89}+ \cdots + 145860 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(700, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
700.5.o.a 700.o 35.i $12$ $72.359$ 12.0.\(\cdots\).37 None 28.5.h.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(2\beta _{1}+\beta _{2}+\beta _{8})q^{3}+(-9\beta _{1}+4\beta _{2}+\cdots)q^{7}+\cdots\)
700.5.o.b 700.o 35.i $40$ $72.359$ None 140.5.r.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$
700.5.o.c 700.o 35.i $44$ $72.359$ None 700.5.s.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{5}^{\mathrm{old}}(700, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(700, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(350, [\chi])\)\(^{\oplus 2}\)