Defining parameters
| Level: | \( N \) | \(=\) | \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 5 \) |
| Character orbit: | \([\chi]\) | \(=\) | 700.o (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 35 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(600\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(700, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 996 | 96 | 900 |
| Cusp forms | 924 | 96 | 828 |
| Eisenstein series | 72 | 0 | 72 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(700, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 700.5.o.a | $12$ | $72.359$ | 12.0.\(\cdots\).37 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(2\beta _{1}+\beta _{2}+\beta _{8})q^{3}+(-9\beta _{1}+4\beta _{2}+\cdots)q^{7}+\cdots\) |
| 700.5.o.b | $40$ | $72.359$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
| 700.5.o.c | $44$ | $72.359$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{5}^{\mathrm{old}}(700, [\chi])\) into lower level spaces
\( S_{5}^{\mathrm{old}}(700, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(350, [\chi])\)\(^{\oplus 2}\)