Properties

Label 700.4.a.f
Level $700$
Weight $4$
Character orbit 700.a
Self dual yes
Analytic conductor $41.301$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,4,Mod(1,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 700.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-1,0,0,0,7,0,-26,0,-37] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.3013370040\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{3} + 7 q^{7} - 26 q^{9} - 37 q^{11} + 38 q^{13} - 35 q^{17} + 73 q^{19} - 7 q^{21} - 64 q^{23} + 53 q^{27} + 226 q^{29} + 108 q^{31} + 37 q^{33} - 360 q^{37} - 38 q^{39} + 279 q^{41} - 32 q^{43}+ \cdots + 962 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −1.00000 0 0 0 7.00000 0 −26.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 700.4.a.f 1
5.b even 2 1 700.4.a.h yes 1
5.c odd 4 2 700.4.e.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
700.4.a.f 1 1.a even 1 1 trivial
700.4.a.h yes 1 5.b even 2 1
700.4.e.h 2 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(700))\):

\( T_{3} + 1 \) Copy content Toggle raw display
\( T_{11} + 37 \) Copy content Toggle raw display
\( T_{13} - 38 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 7 \) Copy content Toggle raw display
$11$ \( T + 37 \) Copy content Toggle raw display
$13$ \( T - 38 \) Copy content Toggle raw display
$17$ \( T + 35 \) Copy content Toggle raw display
$19$ \( T - 73 \) Copy content Toggle raw display
$23$ \( T + 64 \) Copy content Toggle raw display
$29$ \( T - 226 \) Copy content Toggle raw display
$31$ \( T - 108 \) Copy content Toggle raw display
$37$ \( T + 360 \) Copy content Toggle raw display
$41$ \( T - 279 \) Copy content Toggle raw display
$43$ \( T + 32 \) Copy content Toggle raw display
$47$ \( T - 222 \) Copy content Toggle raw display
$53$ \( T - 508 \) Copy content Toggle raw display
$59$ \( T - 420 \) Copy content Toggle raw display
$61$ \( T + 610 \) Copy content Toggle raw display
$67$ \( T + 825 \) Copy content Toggle raw display
$71$ \( T - 190 \) Copy content Toggle raw display
$73$ \( T - 275 \) Copy content Toggle raw display
$79$ \( T - 742 \) Copy content Toggle raw display
$83$ \( T - 1041 \) Copy content Toggle raw display
$89$ \( T - 1417 \) Copy content Toggle raw display
$97$ \( T - 106 \) Copy content Toggle raw display
show more
show less