Properties

Label 700.2.t.d.199.6
Level $700$
Weight $2$
Character 700.199
Analytic conductor $5.590$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,2,Mod(199,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.199"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,2,0,0,0,0,16,0,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.6
Character \(\chi\) \(=\) 700.199
Dual form 700.2.t.d.299.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.626319 + 1.26796i) q^{2} +(-2.59647 - 1.49907i) q^{3} +(-1.21545 - 1.58830i) q^{4} +(3.52698 - 2.35332i) q^{6} +(-1.65899 + 2.06101i) q^{7} +(2.77516 - 0.546365i) q^{8} +(2.99443 + 5.18651i) q^{9} +(-1.93693 - 1.11828i) q^{11} +(0.774910 + 5.94600i) q^{12} -3.17109 q^{13} +(-1.57423 - 3.39438i) q^{14} +(-1.04536 + 3.86099i) q^{16} +(-1.72275 + 2.98390i) q^{17} +(-8.45176 + 0.548417i) q^{18} +(-1.02618 - 1.77739i) q^{19} +(7.39711 - 2.86441i) q^{21} +(2.63107 - 1.75554i) q^{22} +(-1.33068 - 2.30481i) q^{23} +(-8.02464 - 2.74154i) q^{24} +(1.98611 - 4.02082i) q^{26} -8.96105i q^{27} +(5.28991 + 0.129905i) q^{28} +7.38092 q^{29} +(-2.44599 + 4.23658i) q^{31} +(-4.24085 - 3.74369i) q^{32} +(3.35278 + 5.80718i) q^{33} +(-2.70447 - 4.05325i) q^{34} +(4.59812 - 11.0600i) q^{36} +(9.69410 - 5.59689i) q^{37} +(2.89637 - 0.187940i) q^{38} +(8.23364 + 4.75369i) q^{39} +1.46011i q^{41} +(-1.00099 + 11.1733i) q^{42} +9.95752 q^{43} +(0.578071 + 4.43563i) q^{44} +(3.75585 - 0.243709i) q^{46} +(5.30601 - 3.06343i) q^{47} +(8.50215 - 8.45786i) q^{48} +(-1.49553 - 6.83838i) q^{49} +(8.94615 - 5.16506i) q^{51} +(3.85430 + 5.03663i) q^{52} +(-4.03374 - 2.32888i) q^{53} +(11.3623 + 5.61247i) q^{54} +(-3.47788 + 6.62604i) q^{56} +6.15325i q^{57} +(-4.62281 + 9.35872i) q^{58} +(3.55938 - 6.16503i) q^{59} +(-2.19681 + 1.26833i) q^{61} +(-3.83985 - 5.75488i) q^{62} +(-15.6572 - 2.43279i) q^{63} +(7.40297 - 3.03249i) q^{64} +(-9.46318 + 0.614046i) q^{66} +(-0.0263848 + 0.0456998i) q^{67} +(6.83323 - 0.890536i) q^{68} +7.97917i q^{69} -0.212347i q^{71} +(11.1437 + 12.7573i) q^{72} +(7.43720 - 12.8816i) q^{73} +(1.02505 + 15.7972i) q^{74} +(-1.57575 + 3.79020i) q^{76} +(5.51813 - 2.13680i) q^{77} +(-11.1844 + 7.46261i) q^{78} +(-0.399413 + 0.230601i) q^{79} +(-4.44995 + 7.70755i) q^{81} +(-1.85137 - 0.914496i) q^{82} +10.9174i q^{83} +(-13.5403 - 8.26724i) q^{84} +(-6.23658 + 12.6257i) q^{86} +(-19.1643 - 11.0645i) q^{87} +(-5.98626 - 2.04514i) q^{88} +(-6.07992 + 3.51024i) q^{89} +(5.26080 - 6.53565i) q^{91} +(-2.04334 + 4.91490i) q^{92} +(12.7019 - 7.33344i) q^{93} +(0.561053 + 8.64650i) q^{94} +(5.39918 + 16.0777i) q^{96} -0.185459 q^{97} +(9.60747 + 2.38673i) q^{98} -13.3945i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{4} + 16 q^{9} + 14 q^{12} + 8 q^{13} - 2 q^{14} - 14 q^{16} - 54 q^{18} - 12 q^{21} - 36 q^{24} + 30 q^{26} - 32 q^{28} + 40 q^{29} - 60 q^{32} + 24 q^{33} + 60 q^{36} + 60 q^{37} + 46 q^{38}+ \cdots + 124 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.626319 + 1.26796i −0.442874 + 0.896584i
\(3\) −2.59647 1.49907i −1.49907 0.865490i −0.499072 0.866560i \(-0.666326\pi\)
−0.999999 + 0.00107081i \(0.999659\pi\)
\(4\) −1.21545 1.58830i −0.607725 0.794148i
\(5\) 0 0
\(6\) 3.52698 2.35332i 1.43988 0.960741i
\(7\) −1.65899 + 2.06101i −0.627038 + 0.778989i
\(8\) 2.77516 0.546365i 0.981165 0.193169i
\(9\) 2.99443 + 5.18651i 0.998144 + 1.72884i
\(10\) 0 0
\(11\) −1.93693 1.11828i −0.584005 0.337175i 0.178718 0.983900i \(-0.442805\pi\)
−0.762723 + 0.646725i \(0.776138\pi\)
\(12\) 0.774910 + 5.94600i 0.223697 + 1.71646i
\(13\) −3.17109 −0.879502 −0.439751 0.898120i \(-0.644933\pi\)
−0.439751 + 0.898120i \(0.644933\pi\)
\(14\) −1.57423 3.39438i −0.420730 0.907186i
\(15\) 0 0
\(16\) −1.04536 + 3.86099i −0.261341 + 0.965247i
\(17\) −1.72275 + 2.98390i −0.417829 + 0.723701i −0.995721 0.0924124i \(-0.970542\pi\)
0.577892 + 0.816113i \(0.303876\pi\)
\(18\) −8.45176 + 0.548417i −1.99210 + 0.129263i
\(19\) −1.02618 1.77739i −0.235421 0.407761i 0.723974 0.689827i \(-0.242314\pi\)
−0.959395 + 0.282066i \(0.908980\pi\)
\(20\) 0 0
\(21\) 7.39711 2.86441i 1.61418 0.625065i
\(22\) 2.63107 1.75554i 0.560947 0.374283i
\(23\) −1.33068 2.30481i −0.277467 0.480587i 0.693288 0.720661i \(-0.256162\pi\)
−0.970755 + 0.240074i \(0.922828\pi\)
\(24\) −8.02464 2.74154i −1.63802 0.559614i
\(25\) 0 0
\(26\) 1.98611 4.02082i 0.389509 0.788548i
\(27\) 8.96105i 1.72455i
\(28\) 5.28991 + 0.129905i 0.999699 + 0.0245497i
\(29\) 7.38092 1.37060 0.685301 0.728260i \(-0.259671\pi\)
0.685301 + 0.728260i \(0.259671\pi\)
\(30\) 0 0
\(31\) −2.44599 + 4.23658i −0.439313 + 0.760913i −0.997637 0.0687104i \(-0.978112\pi\)
0.558323 + 0.829623i \(0.311445\pi\)
\(32\) −4.24085 3.74369i −0.749684 0.661796i
\(33\) 3.35278 + 5.80718i 0.583643 + 1.01090i
\(34\) −2.70447 4.05325i −0.463813 0.695127i
\(35\) 0 0
\(36\) 4.59812 11.0600i 0.766354 1.84333i
\(37\) 9.69410 5.59689i 1.59370 0.920123i 0.601036 0.799222i \(-0.294755\pi\)
0.992664 0.120902i \(-0.0385785\pi\)
\(38\) 2.89637 0.187940i 0.469854 0.0304878i
\(39\) 8.23364 + 4.75369i 1.31844 + 0.761200i
\(40\) 0 0
\(41\) 1.46011i 0.228031i 0.993479 + 0.114016i \(0.0363714\pi\)
−0.993479 + 0.114016i \(0.963629\pi\)
\(42\) −1.00099 + 11.1733i −0.154456 + 1.72407i
\(43\) 9.95752 1.51851 0.759254 0.650794i \(-0.225564\pi\)
0.759254 + 0.650794i \(0.225564\pi\)
\(44\) 0.578071 + 4.43563i 0.0871474 + 0.668696i
\(45\) 0 0
\(46\) 3.75585 0.243709i 0.553769 0.0359329i
\(47\) 5.30601 3.06343i 0.773962 0.446847i −0.0603243 0.998179i \(-0.519213\pi\)
0.834286 + 0.551332i \(0.185880\pi\)
\(48\) 8.50215 8.45786i 1.22718 1.22079i
\(49\) −1.49553 6.83838i −0.213647 0.976911i
\(50\) 0 0
\(51\) 8.94615 5.16506i 1.25271 0.723253i
\(52\) 3.85430 + 5.03663i 0.534496 + 0.698455i
\(53\) −4.03374 2.32888i −0.554077 0.319897i 0.196688 0.980466i \(-0.436982\pi\)
−0.750765 + 0.660570i \(0.770315\pi\)
\(54\) 11.3623 + 5.61247i 1.54621 + 0.763760i
\(55\) 0 0
\(56\) −3.47788 + 6.62604i −0.464751 + 0.885441i
\(57\) 6.15325i 0.815018i
\(58\) −4.62281 + 9.35872i −0.607004 + 1.22886i
\(59\) 3.55938 6.16503i 0.463392 0.802619i −0.535735 0.844386i \(-0.679965\pi\)
0.999127 + 0.0417674i \(0.0132988\pi\)
\(60\) 0 0
\(61\) −2.19681 + 1.26833i −0.281272 + 0.162393i −0.633999 0.773334i \(-0.718588\pi\)
0.352727 + 0.935726i \(0.385254\pi\)
\(62\) −3.83985 5.75488i −0.487662 0.730870i
\(63\) −15.6572 2.43279i −1.97262 0.306503i
\(64\) 7.40297 3.03249i 0.925371 0.379062i
\(65\) 0 0
\(66\) −9.46318 + 0.614046i −1.16484 + 0.0755838i
\(67\) −0.0263848 + 0.0456998i −0.00322341 + 0.00558311i −0.867633 0.497206i \(-0.834359\pi\)
0.864409 + 0.502789i \(0.167693\pi\)
\(68\) 6.83323 0.890536i 0.828650 0.107993i
\(69\) 7.97917i 0.960579i
\(70\) 0 0
\(71\) 0.212347i 0.0252009i −0.999921 0.0126005i \(-0.995989\pi\)
0.999921 0.0126005i \(-0.00401095\pi\)
\(72\) 11.1437 + 12.7573i 1.31330 + 1.50346i
\(73\) 7.43720 12.8816i 0.870459 1.50768i 0.00893589 0.999960i \(-0.497156\pi\)
0.861523 0.507719i \(-0.169511\pi\)
\(74\) 1.02505 + 15.7972i 0.119159 + 1.83639i
\(75\) 0 0
\(76\) −1.57575 + 3.79020i −0.180751 + 0.434766i
\(77\) 5.51813 2.13680i 0.628849 0.243511i
\(78\) −11.1844 + 7.46261i −1.26638 + 0.844974i
\(79\) −0.399413 + 0.230601i −0.0449375 + 0.0259447i −0.522300 0.852762i \(-0.674926\pi\)
0.477363 + 0.878706i \(0.341593\pi\)
\(80\) 0 0
\(81\) −4.44995 + 7.70755i −0.494439 + 0.856394i
\(82\) −1.85137 0.914496i −0.204449 0.100989i
\(83\) 10.9174i 1.19834i 0.800624 + 0.599168i \(0.204502\pi\)
−0.800624 + 0.599168i \(0.795498\pi\)
\(84\) −13.5403 8.26724i −1.47737 0.902030i
\(85\) 0 0
\(86\) −6.23658 + 12.6257i −0.672508 + 1.36147i
\(87\) −19.1643 11.0645i −2.05463 1.18624i
\(88\) −5.98626 2.04514i −0.638137 0.218013i
\(89\) −6.07992 + 3.51024i −0.644470 + 0.372085i −0.786334 0.617801i \(-0.788024\pi\)
0.141864 + 0.989886i \(0.454690\pi\)
\(90\) 0 0
\(91\) 5.26080 6.53565i 0.551481 0.685122i
\(92\) −2.04334 + 4.91490i −0.213033 + 0.512414i
\(93\) 12.7019 7.33344i 1.31712 0.760442i
\(94\) 0.561053 + 8.64650i 0.0578682 + 0.891819i
\(95\) 0 0
\(96\) 5.39918 + 16.0777i 0.551052 + 1.64092i
\(97\) −0.185459 −0.0188305 −0.00941523 0.999956i \(-0.502997\pi\)
−0.00941523 + 0.999956i \(0.502997\pi\)
\(98\) 9.60747 + 2.38673i 0.970501 + 0.241096i
\(99\) 13.3945i 1.34620i
\(100\) 0 0
\(101\) −5.41172 3.12446i −0.538486 0.310895i 0.205979 0.978556i \(-0.433962\pi\)
−0.744465 + 0.667661i \(0.767295\pi\)
\(102\) 0.945957 + 14.5783i 0.0936637 + 1.44347i
\(103\) 9.88858 5.70918i 0.974351 0.562542i 0.0737911 0.997274i \(-0.476490\pi\)
0.900560 + 0.434732i \(0.143157\pi\)
\(104\) −8.80027 + 1.73257i −0.862937 + 0.169893i
\(105\) 0 0
\(106\) 5.47934 3.65601i 0.532201 0.355103i
\(107\) −1.30194 2.25502i −0.125863 0.218001i 0.796207 0.605024i \(-0.206837\pi\)
−0.922070 + 0.387023i \(0.873503\pi\)
\(108\) −14.2328 + 10.8917i −1.36955 + 1.04805i
\(109\) 0.500946 0.867663i 0.0479819 0.0831071i −0.841037 0.540978i \(-0.818054\pi\)
0.889019 + 0.457871i \(0.151388\pi\)
\(110\) 0 0
\(111\) −33.5606 −3.18543
\(112\) −6.22329 8.55983i −0.588046 0.808828i
\(113\) 14.8588i 1.39780i 0.715220 + 0.698899i \(0.246326\pi\)
−0.715220 + 0.698899i \(0.753674\pi\)
\(114\) −7.80208 3.85389i −0.730732 0.360950i
\(115\) 0 0
\(116\) −8.97114 11.7231i −0.832949 1.08846i
\(117\) −9.49562 16.4469i −0.877870 1.52052i
\(118\) 5.58771 + 8.37443i 0.514391 + 0.770929i
\(119\) −3.29182 8.50085i −0.301760 0.779272i
\(120\) 0 0
\(121\) −2.99888 5.19421i −0.272626 0.472201i
\(122\) −0.232288 3.57984i −0.0210304 0.324104i
\(123\) 2.18882 3.79114i 0.197359 0.341836i
\(124\) 9.70193 1.26440i 0.871259 0.113546i
\(125\) 0 0
\(126\) 12.8911 18.3290i 1.14843 1.63288i
\(127\) 3.02360 0.268301 0.134151 0.990961i \(-0.457169\pi\)
0.134151 + 0.990961i \(0.457169\pi\)
\(128\) −0.791535 + 11.2860i −0.0699625 + 0.997550i
\(129\) −25.8544 14.9270i −2.27635 1.31425i
\(130\) 0 0
\(131\) 7.85267 + 13.6012i 0.686091 + 1.18834i 0.973093 + 0.230414i \(0.0740081\pi\)
−0.287002 + 0.957930i \(0.592659\pi\)
\(132\) 5.14838 12.3835i 0.448109 1.07785i
\(133\) 5.36563 + 0.833705i 0.465259 + 0.0722914i
\(134\) −0.0414202 0.0620775i −0.00357816 0.00536268i
\(135\) 0 0
\(136\) −3.15061 + 9.22202i −0.270163 + 0.790782i
\(137\) 8.32628 + 4.80718i 0.711362 + 0.410705i 0.811565 0.584262i \(-0.198616\pi\)
−0.100203 + 0.994967i \(0.531949\pi\)
\(138\) −10.1173 4.99750i −0.861239 0.425415i
\(139\) 7.49745 0.635925 0.317963 0.948103i \(-0.397001\pi\)
0.317963 + 0.948103i \(0.397001\pi\)
\(140\) 0 0
\(141\) −18.3692 −1.54697
\(142\) 0.269247 + 0.132997i 0.0225947 + 0.0111608i
\(143\) 6.14217 + 3.54618i 0.513634 + 0.296547i
\(144\) −23.1553 + 6.13968i −1.92961 + 0.511640i
\(145\) 0 0
\(146\) 11.6753 + 17.4981i 0.966257 + 1.44815i
\(147\) −6.36813 + 19.9975i −0.525234 + 1.64937i
\(148\) −20.6722 8.59435i −1.69925 0.706451i
\(149\) 3.25066 + 5.63031i 0.266305 + 0.461253i 0.967905 0.251318i \(-0.0808640\pi\)
−0.701600 + 0.712571i \(0.747531\pi\)
\(150\) 0 0
\(151\) 20.5029 + 11.8373i 1.66850 + 0.963309i 0.968448 + 0.249217i \(0.0801731\pi\)
0.700052 + 0.714092i \(0.253160\pi\)
\(152\) −3.81890 4.37187i −0.309754 0.354605i
\(153\) −20.6347 −1.66821
\(154\) −0.746721 + 8.33509i −0.0601725 + 0.671661i
\(155\) 0 0
\(156\) −2.45731 18.8553i −0.196742 1.50963i
\(157\) 3.91624 6.78313i 0.312550 0.541353i −0.666363 0.745627i \(-0.732150\pi\)
0.978914 + 0.204274i \(0.0654834\pi\)
\(158\) −0.0422336 0.650870i −0.00335992 0.0517805i
\(159\) 6.98233 + 12.0937i 0.553734 + 0.959096i
\(160\) 0 0
\(161\) 6.95783 + 1.08110i 0.548354 + 0.0852026i
\(162\) −6.98578 10.4697i −0.548855 0.822581i
\(163\) −5.42579 9.39774i −0.424980 0.736088i 0.571438 0.820645i \(-0.306386\pi\)
−0.996419 + 0.0845574i \(0.973052\pi\)
\(164\) 2.31909 1.77470i 0.181091 0.138580i
\(165\) 0 0
\(166\) −13.8428 6.83774i −1.07441 0.530712i
\(167\) 11.7476i 0.909058i 0.890732 + 0.454529i \(0.150192\pi\)
−0.890732 + 0.454529i \(0.849808\pi\)
\(168\) 18.9631 11.9907i 1.46304 0.925102i
\(169\) −2.94418 −0.226476
\(170\) 0 0
\(171\) 6.14563 10.6445i 0.469968 0.814009i
\(172\) −12.1029 15.8155i −0.922835 1.20592i
\(173\) −8.24371 14.2785i −0.626758 1.08558i −0.988198 0.153181i \(-0.951048\pi\)
0.361440 0.932395i \(-0.382285\pi\)
\(174\) 26.0324 17.3697i 1.97351 1.31679i
\(175\) 0 0
\(176\) 6.34247 6.30943i 0.478082 0.475591i
\(177\) −18.4836 + 10.6715i −1.38932 + 0.802122i
\(178\) −0.642885 9.90763i −0.0481863 0.742608i
\(179\) 7.88914 + 4.55480i 0.589662 + 0.340441i 0.764964 0.644073i \(-0.222757\pi\)
−0.175302 + 0.984515i \(0.556090\pi\)
\(180\) 0 0
\(181\) 16.5755i 1.23205i −0.787728 0.616023i \(-0.788743\pi\)
0.787728 0.616023i \(-0.211257\pi\)
\(182\) 4.99202 + 10.7639i 0.370033 + 0.797872i
\(183\) 7.60525 0.562196
\(184\) −4.95212 5.66917i −0.365075 0.417937i
\(185\) 0 0
\(186\) 1.34309 + 20.6986i 0.0984798 + 1.51769i
\(187\) 6.67369 3.85305i 0.488028 0.281763i
\(188\) −11.3148 4.70407i −0.825218 0.343080i
\(189\) 18.4688 + 14.8663i 1.34341 + 1.08136i
\(190\) 0 0
\(191\) −2.59197 + 1.49648i −0.187549 + 0.108281i −0.590834 0.806793i \(-0.701201\pi\)
0.403286 + 0.915074i \(0.367868\pi\)
\(192\) −23.7675 3.22381i −1.71527 0.232659i
\(193\) 12.7382 + 7.35442i 0.916918 + 0.529383i 0.882651 0.470030i \(-0.155757\pi\)
0.0342676 + 0.999413i \(0.489090\pi\)
\(194\) 0.116156 0.235154i 0.00833953 0.0168831i
\(195\) 0 0
\(196\) −9.04362 + 10.6870i −0.645973 + 0.763360i
\(197\) 4.81748i 0.343231i −0.985164 0.171616i \(-0.945101\pi\)
0.985164 0.171616i \(-0.0548987\pi\)
\(198\) 16.9837 + 8.38923i 1.20698 + 0.596196i
\(199\) 0.637180 1.10363i 0.0451685 0.0782342i −0.842557 0.538607i \(-0.818951\pi\)
0.887726 + 0.460373i \(0.152284\pi\)
\(200\) 0 0
\(201\) 0.137014 0.0791053i 0.00966425 0.00557966i
\(202\) 7.35115 4.90494i 0.517225 0.345110i
\(203\) −12.2448 + 15.2122i −0.859420 + 1.06768i
\(204\) −19.0772 7.93125i −1.33567 0.555298i
\(205\) 0 0
\(206\) 1.04561 + 16.1141i 0.0728511 + 1.12272i
\(207\) 7.96929 13.8032i 0.553904 0.959390i
\(208\) 3.31494 12.2435i 0.229850 0.848937i
\(209\) 4.59023i 0.317513i
\(210\) 0 0
\(211\) 3.70986i 0.255397i 0.991813 + 0.127698i \(0.0407590\pi\)
−0.991813 + 0.127698i \(0.959241\pi\)
\(212\) 1.20386 + 9.23742i 0.0826815 + 0.634428i
\(213\) −0.318323 + 0.551351i −0.0218111 + 0.0377780i
\(214\) 3.67471 0.238444i 0.251198 0.0162997i
\(215\) 0 0
\(216\) −4.89600 24.8683i −0.333131 1.69207i
\(217\) −4.67378 12.0697i −0.317277 0.819342i
\(218\) 0.786412 + 1.17861i 0.0532625 + 0.0798258i
\(219\) −38.6209 + 22.2978i −2.60976 + 1.50675i
\(220\) 0 0
\(221\) 5.46301 9.46220i 0.367482 0.636497i
\(222\) 21.0196 42.5535i 1.41074 2.85600i
\(223\) 12.9581i 0.867737i −0.900976 0.433869i \(-0.857148\pi\)
0.900976 0.433869i \(-0.142852\pi\)
\(224\) 14.7513 2.52971i 0.985612 0.169024i
\(225\) 0 0
\(226\) −18.8404 9.30634i −1.25324 0.619049i
\(227\) 7.70115 + 4.44626i 0.511143 + 0.295109i 0.733304 0.679901i \(-0.237977\pi\)
−0.222160 + 0.975010i \(0.571311\pi\)
\(228\) 9.77318 7.47897i 0.647244 0.495307i
\(229\) 11.2113 6.47287i 0.740866 0.427739i −0.0815180 0.996672i \(-0.525977\pi\)
0.822384 + 0.568933i \(0.192643\pi\)
\(230\) 0 0
\(231\) −17.5309 2.72392i −1.15345 0.179221i
\(232\) 20.4832 4.03267i 1.34479 0.264758i
\(233\) −13.1776 + 7.60809i −0.863294 + 0.498423i −0.865114 0.501576i \(-0.832754\pi\)
0.00182020 + 0.999998i \(0.499421\pi\)
\(234\) 26.8013 1.73908i 1.75206 0.113687i
\(235\) 0 0
\(236\) −14.1181 + 1.83994i −0.919013 + 0.119770i
\(237\) 1.38275 0.0898194
\(238\) 12.8405 + 1.15035i 0.832324 + 0.0745660i
\(239\) 0.0438513i 0.00283650i 0.999999 + 0.00141825i \(0.000451444\pi\)
−0.999999 + 0.00141825i \(0.999549\pi\)
\(240\) 0 0
\(241\) 1.99236 + 1.15029i 0.128339 + 0.0740968i 0.562795 0.826596i \(-0.309726\pi\)
−0.434456 + 0.900693i \(0.643059\pi\)
\(242\) 8.46432 0.549231i 0.544107 0.0353059i
\(243\) −0.173149 + 0.0999675i −0.0111075 + 0.00641292i
\(244\) 4.68458 + 1.94759i 0.299900 + 0.124682i
\(245\) 0 0
\(246\) 3.43612 + 5.14979i 0.219079 + 0.328339i
\(247\) 3.25410 + 5.63627i 0.207053 + 0.358627i
\(248\) −4.47329 + 13.0936i −0.284054 + 0.831443i
\(249\) 16.3659 28.3466i 1.03715 1.79639i
\(250\) 0 0
\(251\) 6.32409 0.399173 0.199587 0.979880i \(-0.436040\pi\)
0.199587 + 0.979880i \(0.436040\pi\)
\(252\) 15.1665 + 27.8251i 0.955401 + 1.75282i
\(253\) 5.95233i 0.374220i
\(254\) −1.89374 + 3.83381i −0.118824 + 0.240554i
\(255\) 0 0
\(256\) −13.8144 8.07226i −0.863402 0.504516i
\(257\) 7.12068 + 12.3334i 0.444176 + 0.769335i 0.997994 0.0633025i \(-0.0201633\pi\)
−0.553819 + 0.832637i \(0.686830\pi\)
\(258\) 35.1200 23.4333i 2.18648 1.45889i
\(259\) −4.54713 + 29.2648i −0.282545 + 1.81843i
\(260\) 0 0
\(261\) 22.1017 + 38.2812i 1.36806 + 2.36955i
\(262\) −22.1641 + 1.43818i −1.36930 + 0.0888511i
\(263\) −5.87421 + 10.1744i −0.362219 + 0.627382i −0.988326 0.152355i \(-0.951314\pi\)
0.626107 + 0.779738i \(0.284647\pi\)
\(264\) 12.4773 + 14.2840i 0.767925 + 0.879118i
\(265\) 0 0
\(266\) −4.41770 + 6.28125i −0.270867 + 0.385128i
\(267\) 21.0484 1.28814
\(268\) 0.104654 0.0136390i 0.00639276 0.000833133i
\(269\) 7.35196 + 4.24466i 0.448257 + 0.258801i 0.707094 0.707120i \(-0.250006\pi\)
−0.258837 + 0.965921i \(0.583339\pi\)
\(270\) 0 0
\(271\) −3.98686 6.90544i −0.242184 0.419476i 0.719152 0.694853i \(-0.244531\pi\)
−0.961336 + 0.275377i \(0.911197\pi\)
\(272\) −9.71988 9.77078i −0.589354 0.592440i
\(273\) −23.4569 + 9.08330i −1.41968 + 0.549746i
\(274\) −11.3102 + 7.54657i −0.683275 + 0.455905i
\(275\) 0 0
\(276\) 12.6733 9.69828i 0.762841 0.583768i
\(277\) −11.7737 6.79754i −0.707412 0.408425i 0.102690 0.994713i \(-0.467255\pi\)
−0.810102 + 0.586289i \(0.800588\pi\)
\(278\) −4.69579 + 9.50647i −0.281635 + 0.570160i
\(279\) −29.2974 −1.75399
\(280\) 0 0
\(281\) 9.48286 0.565700 0.282850 0.959164i \(-0.408720\pi\)
0.282850 + 0.959164i \(0.408720\pi\)
\(282\) 11.5050 23.2914i 0.685111 1.38698i
\(283\) −18.6621 10.7746i −1.10935 0.640483i −0.170689 0.985325i \(-0.554599\pi\)
−0.938661 + 0.344842i \(0.887933\pi\)
\(284\) −0.337269 + 0.258097i −0.0200132 + 0.0153152i
\(285\) 0 0
\(286\) −8.34337 + 5.56699i −0.493354 + 0.329183i
\(287\) −3.00931 2.42231i −0.177634 0.142984i
\(288\) 6.71772 33.2054i 0.395845 1.95665i
\(289\) 2.56424 + 4.44140i 0.150838 + 0.261259i
\(290\) 0 0
\(291\) 0.481537 + 0.278016i 0.0282282 + 0.0162976i
\(292\) −29.4994 + 3.84449i −1.72632 + 0.224982i
\(293\) −28.9496 −1.69125 −0.845626 0.533776i \(-0.820773\pi\)
−0.845626 + 0.533776i \(0.820773\pi\)
\(294\) −21.3676 20.5994i −1.24618 1.20138i
\(295\) 0 0
\(296\) 23.8447 20.8288i 1.38594 1.21065i
\(297\) −10.0210 + 17.3569i −0.581477 + 1.00715i
\(298\) −9.17496 + 0.595344i −0.531491 + 0.0344873i
\(299\) 4.21972 + 7.30877i 0.244033 + 0.422677i
\(300\) 0 0
\(301\) −16.5194 + 20.5226i −0.952162 + 1.18290i
\(302\) −27.8506 + 18.5829i −1.60262 + 1.06933i
\(303\) 9.36757 + 16.2251i 0.538153 + 0.932108i
\(304\) 7.93521 2.10404i 0.455115 0.120675i
\(305\) 0 0
\(306\) 12.9239 26.1640i 0.738809 1.49569i
\(307\) 8.00589i 0.456920i 0.973553 + 0.228460i \(0.0733690\pi\)
−0.973553 + 0.228460i \(0.926631\pi\)
\(308\) −10.1009 6.16724i −0.575551 0.351411i
\(309\) −34.2339 −1.94750
\(310\) 0 0
\(311\) 6.87633 11.9101i 0.389921 0.675363i −0.602518 0.798105i \(-0.705836\pi\)
0.992438 + 0.122743i \(0.0391691\pi\)
\(312\) 25.4469 + 8.69367i 1.44065 + 0.492182i
\(313\) 5.31792 + 9.21091i 0.300587 + 0.520631i 0.976269 0.216562i \(-0.0694842\pi\)
−0.675682 + 0.737193i \(0.736151\pi\)
\(314\) 6.14793 + 9.21404i 0.346948 + 0.519979i
\(315\) 0 0
\(316\) 0.851730 + 0.354102i 0.0479136 + 0.0199198i
\(317\) 14.7081 8.49175i 0.826091 0.476944i −0.0264211 0.999651i \(-0.508411\pi\)
0.852513 + 0.522707i \(0.175078\pi\)
\(318\) −19.7076 + 1.27878i −1.10514 + 0.0717105i
\(319\) −14.2963 8.25397i −0.800439 0.462133i
\(320\) 0 0
\(321\) 7.80679i 0.435732i
\(322\) −5.72861 + 8.14515i −0.319243 + 0.453911i
\(323\) 7.07140 0.393463
\(324\) 17.6506 2.30030i 0.980586 0.127794i
\(325\) 0 0
\(326\) 15.3142 0.993708i 0.848177 0.0550364i
\(327\) −2.60138 + 1.50191i −0.143857 + 0.0830557i
\(328\) 0.797755 + 4.05204i 0.0440486 + 0.223737i
\(329\) −2.48885 + 16.0179i −0.137215 + 0.883097i
\(330\) 0 0
\(331\) 7.21415 4.16509i 0.396525 0.228934i −0.288458 0.957492i \(-0.593143\pi\)
0.684984 + 0.728558i \(0.259809\pi\)
\(332\) 17.3400 13.2695i 0.951655 0.728258i
\(333\) 58.0567 + 33.5190i 3.18149 + 1.83683i
\(334\) −14.8955 7.35775i −0.815046 0.402598i
\(335\) 0 0
\(336\) 3.32679 + 31.5545i 0.181491 + 1.72144i
\(337\) 27.0772i 1.47499i 0.675353 + 0.737495i \(0.263991\pi\)
−0.675353 + 0.737495i \(0.736009\pi\)
\(338\) 1.84400 3.73311i 0.100300 0.203054i
\(339\) 22.2744 38.5804i 1.20978 2.09540i
\(340\) 0 0
\(341\) 9.47541 5.47063i 0.513122 0.296251i
\(342\) 9.64775 + 14.4593i 0.521690 + 0.781870i
\(343\) 16.5750 + 8.26248i 0.894967 + 0.446132i
\(344\) 27.6337 5.44044i 1.48991 0.293329i
\(345\) 0 0
\(346\) 23.2678 1.50980i 1.25089 0.0811672i
\(347\) −13.8861 + 24.0514i −0.745443 + 1.29115i 0.204544 + 0.978857i \(0.434429\pi\)
−0.949987 + 0.312288i \(0.898905\pi\)
\(348\) 5.71955 + 43.8870i 0.306600 + 2.35259i
\(349\) 9.64063i 0.516051i −0.966138 0.258026i \(-0.916928\pi\)
0.966138 0.258026i \(-0.0830719\pi\)
\(350\) 0 0
\(351\) 28.4163i 1.51675i
\(352\) 4.02771 + 11.9937i 0.214677 + 0.639267i
\(353\) 8.15697 14.1283i 0.434152 0.751973i −0.563074 0.826406i \(-0.690381\pi\)
0.997226 + 0.0744333i \(0.0237148\pi\)
\(354\) −1.95444 30.1203i −0.103877 1.60088i
\(355\) 0 0
\(356\) 12.9651 + 5.39018i 0.687151 + 0.285679i
\(357\) −4.19629 + 27.0069i −0.222091 + 1.42936i
\(358\) −10.7164 + 7.15037i −0.566380 + 0.377909i
\(359\) −1.38744 + 0.801040i −0.0732264 + 0.0422773i −0.536166 0.844112i \(-0.680128\pi\)
0.462940 + 0.886390i \(0.346795\pi\)
\(360\) 0 0
\(361\) 7.39392 12.8067i 0.389154 0.674034i
\(362\) 21.0171 + 10.3815i 1.10463 + 0.545642i
\(363\) 17.9822i 0.943818i
\(364\) −16.7748 0.411939i −0.879237 0.0215915i
\(365\) 0 0
\(366\) −4.76331 + 9.64316i −0.248982 + 0.504056i
\(367\) 1.09164 + 0.630259i 0.0569832 + 0.0328993i 0.528221 0.849107i \(-0.322859\pi\)
−0.471238 + 0.882006i \(0.656193\pi\)
\(368\) 10.2899 2.72839i 0.536398 0.142227i
\(369\) −7.57289 + 4.37221i −0.394229 + 0.227608i
\(370\) 0 0
\(371\) 11.4918 4.45000i 0.596623 0.231033i
\(372\) −27.0862 11.2609i −1.40435 0.583851i
\(373\) 7.99120 4.61372i 0.413768 0.238889i −0.278639 0.960396i \(-0.589883\pi\)
0.692408 + 0.721507i \(0.256550\pi\)
\(374\) 0.705669 + 10.8752i 0.0364893 + 0.562344i
\(375\) 0 0
\(376\) 13.0513 11.4005i 0.673068 0.587936i
\(377\) −23.4056 −1.20545
\(378\) −30.4172 + 14.1067i −1.56449 + 0.725571i
\(379\) 2.53516i 0.130223i −0.997878 0.0651113i \(-0.979260\pi\)
0.997878 0.0651113i \(-0.0207403\pi\)
\(380\) 0 0
\(381\) −7.85068 4.53259i −0.402203 0.232212i
\(382\) −0.274073 4.22379i −0.0140228 0.216108i
\(383\) 1.14737 0.662435i 0.0586279 0.0338489i −0.470400 0.882454i \(-0.655890\pi\)
0.529027 + 0.848605i \(0.322557\pi\)
\(384\) 18.9737 28.1171i 0.968248 1.43485i
\(385\) 0 0
\(386\) −17.3033 + 11.5454i −0.880715 + 0.587644i
\(387\) 29.8171 + 51.6448i 1.51569 + 2.62525i
\(388\) 0.225416 + 0.294563i 0.0114437 + 0.0149542i
\(389\) 16.1134 27.9093i 0.816983 1.41506i −0.0909120 0.995859i \(-0.528978\pi\)
0.907895 0.419197i \(-0.137688\pi\)
\(390\) 0 0
\(391\) 9.16976 0.463735
\(392\) −7.88657 18.1605i −0.398332 0.917241i
\(393\) 47.0869i 2.37522i
\(394\) 6.10838 + 3.01728i 0.307736 + 0.152008i
\(395\) 0 0
\(396\) −21.2744 + 16.2804i −1.06908 + 0.818119i
\(397\) 17.5871 + 30.4617i 0.882670 + 1.52883i 0.848361 + 0.529419i \(0.177590\pi\)
0.0343095 + 0.999411i \(0.489077\pi\)
\(398\) 1.00028 + 1.49914i 0.0501395 + 0.0751452i
\(399\) −12.6819 10.2082i −0.634890 0.511047i
\(400\) 0 0
\(401\) −15.9623 27.6476i −0.797120 1.38065i −0.921484 0.388416i \(-0.873022\pi\)
0.124364 0.992237i \(-0.460311\pi\)
\(402\) 0.0144878 + 0.223274i 0.000722585 + 0.0111359i
\(403\) 7.75647 13.4346i 0.386377 0.669225i
\(404\) 1.61511 + 12.3930i 0.0803549 + 0.616576i
\(405\) 0 0
\(406\) −11.6192 25.0536i −0.576653 1.24339i
\(407\) −25.0357 −1.24097
\(408\) 22.0049 19.2217i 1.08941 0.951616i
\(409\) −14.2151 8.20712i −0.702894 0.405816i 0.105530 0.994416i \(-0.466346\pi\)
−0.808424 + 0.588600i \(0.799679\pi\)
\(410\) 0 0
\(411\) −14.4126 24.9634i −0.710922 1.23135i
\(412\) −21.0869 8.76677i −1.03888 0.431908i
\(413\) 6.80123 + 17.5636i 0.334666 + 0.864250i
\(414\) 12.5106 + 18.7500i 0.614864 + 0.921510i
\(415\) 0 0
\(416\) 13.4481 + 11.8716i 0.659349 + 0.582052i
\(417\) −19.4669 11.2392i −0.953298 0.550387i
\(418\) −5.82023 2.87495i −0.284677 0.140618i
\(419\) 11.8654 0.579665 0.289832 0.957077i \(-0.406400\pi\)
0.289832 + 0.957077i \(0.406400\pi\)
\(420\) 0 0
\(421\) 10.3433 0.504101 0.252051 0.967714i \(-0.418895\pi\)
0.252051 + 0.967714i \(0.418895\pi\)
\(422\) −4.70395 2.32355i −0.228985 0.113109i
\(423\) 31.7770 + 18.3465i 1.54505 + 0.892035i
\(424\) −12.4667 4.25912i −0.605436 0.206841i
\(425\) 0 0
\(426\) −0.499720 0.748942i −0.0242115 0.0362864i
\(427\) 1.03044 6.63178i 0.0498663 0.320934i
\(428\) −1.99920 + 4.80873i −0.0966349 + 0.232439i
\(429\) −10.6320 18.4151i −0.513316 0.889089i
\(430\) 0 0
\(431\) −25.6838 14.8286i −1.23715 0.714267i −0.268636 0.963242i \(-0.586573\pi\)
−0.968510 + 0.248975i \(0.919906\pi\)
\(432\) 34.5985 + 9.36754i 1.66462 + 0.450696i
\(433\) 29.4107 1.41339 0.706693 0.707520i \(-0.250186\pi\)
0.706693 + 0.707520i \(0.250186\pi\)
\(434\) 18.2311 + 1.63328i 0.875122 + 0.0784001i
\(435\) 0 0
\(436\) −1.98698 + 0.258952i −0.0951591 + 0.0124016i
\(437\) −2.73103 + 4.73029i −0.130643 + 0.226280i
\(438\) −4.08374 62.9354i −0.195129 3.00717i
\(439\) −4.41191 7.64165i −0.210569 0.364716i 0.741324 0.671147i \(-0.234198\pi\)
−0.951893 + 0.306432i \(0.900865\pi\)
\(440\) 0 0
\(441\) 30.9890 28.2336i 1.47567 1.34446i
\(442\) 8.57612 + 12.8532i 0.407925 + 0.611366i
\(443\) −9.78342 16.9454i −0.464824 0.805099i 0.534369 0.845251i \(-0.320549\pi\)
−0.999194 + 0.0401518i \(0.987216\pi\)
\(444\) 40.7912 + 53.3041i 1.93586 + 2.52970i
\(445\) 0 0
\(446\) 16.4303 + 8.11589i 0.777999 + 0.384298i
\(447\) 19.4919i 0.921935i
\(448\) −6.03143 + 20.2885i −0.284958 + 0.958540i
\(449\) −5.02309 −0.237054 −0.118527 0.992951i \(-0.537817\pi\)
−0.118527 + 0.992951i \(0.537817\pi\)
\(450\) 0 0
\(451\) 1.63282 2.82813i 0.0768866 0.133171i
\(452\) 23.6002 18.0601i 1.11006 0.849477i
\(453\) −35.4900 61.4705i −1.66747 2.88814i
\(454\) −10.4611 + 6.97998i −0.490962 + 0.327587i
\(455\) 0 0
\(456\) 3.36192 + 17.0762i 0.157436 + 0.799667i
\(457\) 24.1144 13.9225i 1.12802 0.651265i 0.184587 0.982816i \(-0.440905\pi\)
0.943437 + 0.331551i \(0.107572\pi\)
\(458\) 1.18548 + 18.2696i 0.0553937 + 0.853683i
\(459\) 26.7388 + 15.4377i 1.24806 + 0.720569i
\(460\) 0 0
\(461\) 19.8494i 0.924481i 0.886755 + 0.462240i \(0.152954\pi\)
−0.886755 + 0.462240i \(0.847046\pi\)
\(462\) 14.4337 20.5224i 0.671518 0.954789i
\(463\) −35.7118 −1.65967 −0.829833 0.558012i \(-0.811564\pi\)
−0.829833 + 0.558012i \(0.811564\pi\)
\(464\) −7.71573 + 28.4976i −0.358194 + 1.32297i
\(465\) 0 0
\(466\) −1.39339 21.4738i −0.0645474 0.994754i
\(467\) 19.5818 11.3055i 0.906136 0.523158i 0.0269503 0.999637i \(-0.491420\pi\)
0.879186 + 0.476479i \(0.158087\pi\)
\(468\) −14.5811 + 35.0722i −0.674010 + 1.62121i
\(469\) −0.0504157 0.130195i −0.00232798 0.00601183i
\(470\) 0 0
\(471\) −20.3368 + 11.7415i −0.937070 + 0.541018i
\(472\) 6.50948 19.0536i 0.299623 0.877015i
\(473\) −19.2870 11.1353i −0.886816 0.512003i
\(474\) −0.866043 + 1.75328i −0.0397787 + 0.0805306i
\(475\) 0 0
\(476\) −9.50083 + 15.5607i −0.435470 + 0.713225i
\(477\) 27.8947i 1.27721i
\(478\) −0.0556017 0.0274649i −0.00254316 0.00125621i
\(479\) 4.28200 7.41664i 0.195649 0.338875i −0.751464 0.659774i \(-0.770652\pi\)
0.947113 + 0.320900i \(0.103985\pi\)
\(480\) 0 0
\(481\) −30.7409 + 17.7483i −1.40166 + 0.809251i
\(482\) −2.70638 + 1.80579i −0.123272 + 0.0822515i
\(483\) −16.4451 13.2373i −0.748280 0.602319i
\(484\) −4.60495 + 11.0764i −0.209316 + 0.503473i
\(485\) 0 0
\(486\) −0.0183086 0.282157i −0.000830494 0.0127989i
\(487\) 15.8225 27.4054i 0.716987 1.24186i −0.245201 0.969472i \(-0.578854\pi\)
0.962188 0.272386i \(-0.0878128\pi\)
\(488\) −5.40351 + 4.72006i −0.244605 + 0.213667i
\(489\) 32.5346i 1.47126i
\(490\) 0 0
\(491\) 35.7781i 1.61464i −0.590113 0.807321i \(-0.700917\pi\)
0.590113 0.807321i \(-0.299083\pi\)
\(492\) −8.68184 + 1.13146i −0.391408 + 0.0510100i
\(493\) −12.7155 + 22.0239i −0.572677 + 0.991906i
\(494\) −9.18467 + 0.595973i −0.413238 + 0.0268141i
\(495\) 0 0
\(496\) −13.8004 13.8727i −0.619658 0.622903i
\(497\) 0.437649 + 0.352280i 0.0196312 + 0.0158019i
\(498\) 25.6921 + 38.5053i 1.15129 + 1.72546i
\(499\) 35.7797 20.6574i 1.60172 0.924752i 0.610574 0.791959i \(-0.290939\pi\)
0.991144 0.132793i \(-0.0423947\pi\)
\(500\) 0 0
\(501\) 17.6105 30.5023i 0.786780 1.36274i
\(502\) −3.96090 + 8.01870i −0.176783 + 0.357892i
\(503\) 29.0170i 1.29381i −0.762572 0.646903i \(-0.776064\pi\)
0.762572 0.646903i \(-0.223936\pi\)
\(504\) −44.7803 + 1.80315i −1.99467 + 0.0803187i
\(505\) 0 0
\(506\) −7.54733 3.72806i −0.335520 0.165732i
\(507\) 7.64448 + 4.41354i 0.339503 + 0.196012i
\(508\) −3.67503 4.80237i −0.163053 0.213071i
\(509\) −17.3474 + 10.0155i −0.768910 + 0.443931i −0.832486 0.554046i \(-0.813083\pi\)
0.0635754 + 0.997977i \(0.479750\pi\)
\(510\) 0 0
\(511\) 14.2109 + 36.6986i 0.628654 + 1.62345i
\(512\) 18.8875 12.4604i 0.834720 0.550675i
\(513\) −15.9273 + 9.19562i −0.703206 + 0.405996i
\(514\) −20.0981 + 1.30412i −0.886487 + 0.0575222i
\(515\) 0 0
\(516\) 7.71618 + 59.2075i 0.339686 + 2.60646i
\(517\) −13.7031 −0.602663
\(518\) −34.2587 24.0947i −1.50524 1.05866i
\(519\) 49.4317i 2.16981i
\(520\) 0 0
\(521\) 18.5712 + 10.7221i 0.813620 + 0.469743i 0.848211 0.529658i \(-0.177680\pi\)
−0.0345917 + 0.999402i \(0.511013\pi\)
\(522\) −62.3818 + 4.04782i −2.73038 + 0.177168i
\(523\) 35.5105 20.5020i 1.55277 0.896491i 0.554852 0.831949i \(-0.312775\pi\)
0.997915 0.0645418i \(-0.0205586\pi\)
\(524\) 12.0582 29.0040i 0.526766 1.26704i
\(525\) 0 0
\(526\) −9.22165 13.8207i −0.402083 0.602611i
\(527\) −8.42768 14.5972i −0.367116 0.635863i
\(528\) −25.9263 + 6.87442i −1.12830 + 0.299171i
\(529\) 7.95856 13.7846i 0.346024 0.599332i
\(530\) 0 0
\(531\) 42.6333 1.85013
\(532\) −5.19749 9.53553i −0.225340 0.413418i
\(533\) 4.63015i 0.200554i
\(534\) −13.1830 + 26.6886i −0.570485 + 1.15493i
\(535\) 0 0
\(536\) −0.0482531 + 0.141240i −0.00208422 + 0.00610062i
\(537\) −13.6559 23.6528i −0.589297 1.02069i
\(538\) −9.98673 + 6.66349i −0.430559 + 0.287284i
\(539\) −4.75052 + 14.9178i −0.204620 + 0.642557i
\(540\) 0 0
\(541\) −1.72641 2.99023i −0.0742242 0.128560i 0.826524 0.562901i \(-0.190315\pi\)
−0.900749 + 0.434341i \(0.856981\pi\)
\(542\) 11.2529 0.730175i 0.483352 0.0313637i
\(543\) −24.8479 + 43.0377i −1.06632 + 1.84693i
\(544\) 18.4767 6.20481i 0.792182 0.266029i
\(545\) 0 0
\(546\) 3.17422 35.4315i 0.135844 1.51633i
\(547\) −28.2607 −1.20834 −0.604170 0.796855i \(-0.706495\pi\)
−0.604170 + 0.796855i \(0.706495\pi\)
\(548\) −2.48496 19.0675i −0.106152 0.814522i
\(549\) −13.1564 7.59584i −0.561500 0.324182i
\(550\) 0 0
\(551\) −7.57413 13.1188i −0.322669 0.558879i
\(552\) 4.35953 + 22.1434i 0.185554 + 0.942487i
\(553\) 0.187349 1.20576i 0.00796691 0.0512741i
\(554\) 15.9931 10.6711i 0.679481 0.453374i
\(555\) 0 0
\(556\) −9.11277 11.9082i −0.386468 0.505018i
\(557\) 1.79833 + 1.03826i 0.0761976 + 0.0439927i 0.537615 0.843191i \(-0.319326\pi\)
−0.461417 + 0.887183i \(0.652659\pi\)
\(558\) 18.3495 37.1480i 0.776798 1.57260i
\(559\) −31.5762 −1.33553
\(560\) 0 0
\(561\) −23.1040 −0.975453
\(562\) −5.93929 + 12.0239i −0.250534 + 0.507197i
\(563\) 39.7588 + 22.9547i 1.67563 + 0.967426i 0.964392 + 0.264477i \(0.0851993\pi\)
0.711240 + 0.702949i \(0.248134\pi\)
\(564\) 22.3268 + 29.1757i 0.940130 + 1.22852i
\(565\) 0 0
\(566\) 25.3502 16.9145i 1.06555 0.710971i
\(567\) −8.50292 21.9581i −0.357089 0.922154i
\(568\) −0.116019 0.589295i −0.00486803 0.0247263i
\(569\) 3.96413 + 6.86607i 0.166185 + 0.287840i 0.937075 0.349127i \(-0.113522\pi\)
−0.770891 + 0.636968i \(0.780189\pi\)
\(570\) 0 0
\(571\) 18.3314 + 10.5837i 0.767147 + 0.442912i 0.831856 0.554992i \(-0.187279\pi\)
−0.0647092 + 0.997904i \(0.520612\pi\)
\(572\) −1.83311 14.0658i −0.0766464 0.588120i
\(573\) 8.97330 0.374865
\(574\) 4.95618 2.29855i 0.206867 0.0959396i
\(575\) 0 0
\(576\) 37.8958 + 29.3150i 1.57899 + 1.22146i
\(577\) 5.16573 8.94731i 0.215052 0.372481i −0.738237 0.674542i \(-0.764341\pi\)
0.953289 + 0.302061i \(0.0976745\pi\)
\(578\) −7.23756 + 0.469630i −0.301043 + 0.0195340i
\(579\) −22.0496 38.1911i −0.916351 1.58717i
\(580\) 0 0
\(581\) −22.5008 18.1117i −0.933490 0.751402i
\(582\) −0.654109 + 0.436444i −0.0271137 + 0.0180912i
\(583\) 5.20871 + 9.02174i 0.215723 + 0.373642i
\(584\) 13.6013 39.8119i 0.562827 1.64743i
\(585\) 0 0
\(586\) 18.1317 36.7069i 0.749012 1.51635i
\(587\) 20.4660i 0.844722i 0.906428 + 0.422361i \(0.138799\pi\)
−0.906428 + 0.422361i \(0.861201\pi\)
\(588\) 39.5021 14.1915i 1.62904 0.585249i
\(589\) 10.0401 0.413694
\(590\) 0 0
\(591\) −7.22175 + 12.5084i −0.297063 + 0.514529i
\(592\) 11.4757 + 43.2796i 0.471648 + 1.77878i
\(593\) 22.4236 + 38.8389i 0.920828 + 1.59492i 0.798136 + 0.602477i \(0.205819\pi\)
0.122692 + 0.992445i \(0.460847\pi\)
\(594\) −15.7315 23.5772i −0.645471 0.967383i
\(595\) 0 0
\(596\) 4.99158 12.0064i 0.204463 0.491800i
\(597\) −3.30884 + 1.91036i −0.135422 + 0.0781857i
\(598\) −11.9101 + 0.772823i −0.487041 + 0.0316031i
\(599\) 14.1499 + 8.16942i 0.578147 + 0.333793i 0.760397 0.649459i \(-0.225005\pi\)
−0.182250 + 0.983252i \(0.558338\pi\)
\(600\) 0 0
\(601\) 39.8029i 1.62359i 0.583941 + 0.811796i \(0.301510\pi\)
−0.583941 + 0.811796i \(0.698490\pi\)
\(602\) −15.6754 33.7996i −0.638882 1.37757i
\(603\) −0.316030 −0.0128697
\(604\) −6.11903 46.9523i −0.248980 1.91046i
\(605\) 0 0
\(606\) −26.4399 + 1.71563i −1.07405 + 0.0696926i
\(607\) 8.14710 4.70373i 0.330681 0.190919i −0.325463 0.945555i \(-0.605520\pi\)
0.656143 + 0.754636i \(0.272187\pi\)
\(608\) −2.30213 + 11.3793i −0.0933636 + 0.461493i
\(609\) 54.5975 21.1420i 2.21240 0.856716i
\(610\) 0 0
\(611\) −16.8259 + 9.71441i −0.680701 + 0.393003i
\(612\) 25.0804 + 32.7739i 1.01382 + 1.32481i
\(613\) −11.8091 6.81796i −0.476963 0.275375i 0.242187 0.970230i \(-0.422135\pi\)
−0.719150 + 0.694855i \(0.755469\pi\)
\(614\) −10.1512 5.01423i −0.409667 0.202358i
\(615\) 0 0
\(616\) 14.1462 8.94487i 0.569966 0.360399i
\(617\) 39.1144i 1.57469i −0.616515 0.787343i \(-0.711456\pi\)
0.616515 0.787343i \(-0.288544\pi\)
\(618\) 21.4413 43.4072i 0.862496 1.74609i
\(619\) −9.50950 + 16.4709i −0.382219 + 0.662023i −0.991379 0.131024i \(-0.958173\pi\)
0.609160 + 0.793047i \(0.291507\pi\)
\(620\) 0 0
\(621\) −20.6535 + 11.9243i −0.828798 + 0.478507i
\(622\) 10.7948 + 16.1785i 0.432833 + 0.648697i
\(623\) 2.85186 18.3542i 0.114257 0.735347i
\(624\) −26.9611 + 26.8206i −1.07931 + 1.07368i
\(625\) 0 0
\(626\) −15.0098 + 0.973953i −0.599912 + 0.0389270i
\(627\) 6.88108 11.9184i 0.274804 0.475974i
\(628\) −15.5336 + 2.02441i −0.619859 + 0.0807827i
\(629\) 38.5683i 1.53782i
\(630\) 0 0
\(631\) 16.4987i 0.656802i 0.944538 + 0.328401i \(0.106510\pi\)
−0.944538 + 0.328401i \(0.893490\pi\)
\(632\) −0.982441 + 0.858180i −0.0390794 + 0.0341366i
\(633\) 5.56134 9.63252i 0.221043 0.382858i
\(634\) 1.55522 + 23.9679i 0.0617659 + 0.951886i
\(635\) 0 0
\(636\) 10.7218 25.7893i 0.425146 1.02261i
\(637\) 4.74245 + 21.6851i 0.187903 + 0.859196i
\(638\) 19.4197 12.9575i 0.768835 0.512993i
\(639\) 1.10134 0.635857i 0.0435682 0.0251541i
\(640\) 0 0
\(641\) −13.4723 + 23.3347i −0.532124 + 0.921665i 0.467173 + 0.884166i \(0.345272\pi\)
−0.999297 + 0.0374991i \(0.988061\pi\)
\(642\) −9.89870 4.88954i −0.390671 0.192975i
\(643\) 43.6730i 1.72229i −0.508355 0.861147i \(-0.669746\pi\)
0.508355 0.861147i \(-0.330254\pi\)
\(644\) −6.73979 12.3651i −0.265585 0.487254i
\(645\) 0 0
\(646\) −4.42895 + 8.96625i −0.174255 + 0.352773i
\(647\) −24.3422 14.0540i −0.956989 0.552518i −0.0617443 0.998092i \(-0.519666\pi\)
−0.895245 + 0.445574i \(0.853000\pi\)
\(648\) −8.13818 + 23.8209i −0.319698 + 0.935775i
\(649\) −13.7885 + 7.96080i −0.541246 + 0.312489i
\(650\) 0 0
\(651\) −5.95797 + 38.3448i −0.233511 + 1.50285i
\(652\) −8.33161 + 20.0402i −0.326291 + 0.784836i
\(653\) −36.0902 + 20.8367i −1.41232 + 0.815403i −0.995607 0.0936346i \(-0.970151\pi\)
−0.416713 + 0.909038i \(0.636818\pi\)
\(654\) −0.275067 4.23912i −0.0107560 0.165763i
\(655\) 0 0
\(656\) −5.63748 1.52635i −0.220107 0.0595939i
\(657\) 89.0808 3.47537
\(658\) −18.7513 13.1881i −0.731002 0.514125i
\(659\) 47.0951i 1.83457i −0.398236 0.917283i \(-0.630378\pi\)
0.398236 0.917283i \(-0.369622\pi\)
\(660\) 0 0
\(661\) −10.0792 5.81924i −0.392036 0.226342i 0.291006 0.956721i \(-0.406010\pi\)
−0.683042 + 0.730379i \(0.739343\pi\)
\(662\) 0.762817 + 11.7559i 0.0296477 + 0.456907i
\(663\) −28.3690 + 16.3789i −1.10176 + 0.636103i
\(664\) 5.96486 + 30.2973i 0.231481 + 1.17577i
\(665\) 0 0
\(666\) −78.8628 + 52.6200i −3.05587 + 2.03898i
\(667\) −9.82168 17.0116i −0.380297 0.658693i
\(668\) 18.6587 14.2786i 0.721926 0.552457i
\(669\) −19.4251 + 33.6452i −0.751017 + 1.30080i
\(670\) 0 0
\(671\) 5.67340 0.219019
\(672\) −42.0935 15.5449i −1.62379 0.599658i
\(673\) 14.9849i 0.577626i 0.957385 + 0.288813i \(0.0932606\pi\)
−0.957385 + 0.288813i \(0.906739\pi\)
\(674\) −34.3328 16.9590i −1.32245 0.653234i
\(675\) 0 0
\(676\) 3.57851 + 4.67623i 0.137635 + 0.179855i
\(677\) −11.5093 19.9347i −0.442339 0.766154i 0.555524 0.831501i \(-0.312518\pi\)
−0.997863 + 0.0653470i \(0.979185\pi\)
\(678\) 34.9676 + 52.4067i 1.34292 + 2.01267i
\(679\) 0.307673 0.382232i 0.0118074 0.0146687i
\(680\) 0 0
\(681\) −13.3305 23.0892i −0.510827 0.884779i
\(682\) 1.00192 + 15.4408i 0.0383655 + 0.591259i
\(683\) −18.6347 + 32.2762i −0.713037 + 1.23502i 0.250675 + 0.968071i \(0.419348\pi\)
−0.963712 + 0.266945i \(0.913986\pi\)
\(684\) −24.3764 + 3.17684i −0.932055 + 0.121469i
\(685\) 0 0
\(686\) −20.8577 + 15.8415i −0.796352 + 0.604833i
\(687\) −38.8132 −1.48082
\(688\) −10.4092 + 38.4459i −0.396848 + 1.46573i
\(689\) 12.7914 + 7.38510i 0.487312 + 0.281350i
\(690\) 0 0
\(691\) −13.9969 24.2433i −0.532467 0.922260i −0.999281 0.0379044i \(-0.987932\pi\)
0.466815 0.884355i \(-0.345402\pi\)
\(692\) −12.6587 + 30.4483i −0.481211 + 1.15747i
\(693\) 27.6062 + 22.2213i 1.04867 + 0.844118i
\(694\) −21.7991 32.6708i −0.827483 1.24017i
\(695\) 0 0
\(696\) −59.2292 20.2351i −2.24508 0.767009i
\(697\) −4.35683 2.51542i −0.165027 0.0952782i
\(698\) 12.2239 + 6.03811i 0.462683 + 0.228546i
\(699\) 45.6203 1.72552
\(700\) 0 0
\(701\) 29.2334 1.10413 0.552065 0.833801i \(-0.313840\pi\)
0.552065 + 0.833801i \(0.313840\pi\)
\(702\) −36.0308 17.7977i −1.35989 0.671729i
\(703\) −19.8957 11.4868i −0.750381 0.433233i
\(704\) −17.7302 2.40491i −0.668232 0.0906386i
\(705\) 0 0
\(706\) 12.8053 + 19.1915i 0.481932 + 0.722283i
\(707\) 15.4175 5.97017i 0.579835 0.224532i
\(708\) 39.4155 + 16.3868i 1.48133 + 0.615852i
\(709\) −2.08074 3.60395i −0.0781440 0.135349i 0.824305 0.566146i \(-0.191566\pi\)
−0.902449 + 0.430796i \(0.858233\pi\)
\(710\) 0 0
\(711\) −2.39203 1.38104i −0.0897082 0.0517931i
\(712\) −14.9548 + 13.0633i −0.560457 + 0.489569i
\(713\) 13.0194 0.487580
\(714\) −31.6154 22.2356i −1.18318 0.832148i
\(715\) 0 0
\(716\) −2.35449 18.0664i −0.0879916 0.675173i
\(717\) 0.0657362 0.113858i 0.00245496 0.00425212i
\(718\) −0.146707 2.26093i −0.00547505 0.0843771i
\(719\) 21.1113 + 36.5658i 0.787318 + 1.36368i 0.927604 + 0.373564i \(0.121865\pi\)
−0.140286 + 0.990111i \(0.544802\pi\)
\(720\) 0 0
\(721\) −4.63835 + 29.8519i −0.172741 + 1.11174i
\(722\) 11.6074 + 17.3962i 0.431982 + 0.647421i
\(723\) −3.44874 5.97339i −0.128260 0.222153i
\(724\) −26.3268 + 20.1467i −0.978427 + 0.748746i
\(725\) 0 0
\(726\) −22.8007 11.2626i −0.846212 0.417993i
\(727\) 27.2605i 1.01104i −0.862816 0.505519i \(-0.831301\pi\)
0.862816 0.505519i \(-0.168699\pi\)
\(728\) 11.0287 21.0118i 0.408750 0.778748i
\(729\) 27.2992 1.01108
\(730\) 0 0
\(731\) −17.1544 + 29.7122i −0.634477 + 1.09895i
\(732\) −9.24380 12.0794i −0.341661 0.446467i
\(733\) 7.65300 + 13.2554i 0.282670 + 0.489599i 0.972041 0.234809i \(-0.0754466\pi\)
−0.689372 + 0.724408i \(0.742113\pi\)
\(734\) −1.48286 + 0.989415i −0.0547333 + 0.0365200i
\(735\) 0 0
\(736\) −2.98526 + 14.7560i −0.110038 + 0.543915i
\(737\) 0.102211 0.0590113i 0.00376498 0.00217371i
\(738\) −0.800751 12.3405i −0.0294760 0.454261i
\(739\) −42.5694 24.5774i −1.56594 0.904096i −0.996635 0.0819692i \(-0.973879\pi\)
−0.569305 0.822126i \(-0.692788\pi\)
\(740\) 0 0
\(741\) 19.5125i 0.716810i
\(742\) −1.55508 + 17.3582i −0.0570890 + 0.637241i
\(743\) −35.2067 −1.29161 −0.645805 0.763503i \(-0.723478\pi\)
−0.645805 + 0.763503i \(0.723478\pi\)
\(744\) 31.2430 27.2913i 1.14542 1.00055i
\(745\) 0 0
\(746\) 0.844982 + 13.0222i 0.0309370 + 0.476776i
\(747\) −56.6229 + 32.6913i −2.07173 + 1.19611i
\(748\) −14.2313 5.91659i −0.520349 0.216332i
\(749\) 6.80752 + 1.05774i 0.248741 + 0.0386491i
\(750\) 0 0
\(751\) 0.584292 0.337341i 0.0213211 0.0123098i −0.489302 0.872115i \(-0.662748\pi\)
0.510623 + 0.859805i \(0.329415\pi\)
\(752\) 6.28115 + 23.6888i 0.229050 + 0.863843i
\(753\) −16.4203 9.48027i −0.598389 0.345480i
\(754\) 14.6593 29.6773i 0.533862 1.08079i
\(755\) 0 0
\(756\) 1.16408 47.4031i 0.0423372 1.72403i
\(757\) 45.8640i 1.66695i 0.552553 + 0.833477i \(0.313654\pi\)
−0.552553 + 0.833477i \(0.686346\pi\)
\(758\) 3.21449 + 1.58782i 0.116756 + 0.0576723i
\(759\) 8.92298 15.4550i 0.323883 0.560983i
\(760\) 0 0
\(761\) 18.9229 10.9252i 0.685956 0.396037i −0.116139 0.993233i \(-0.537052\pi\)
0.802095 + 0.597196i \(0.203719\pi\)
\(762\) 10.6642 7.11551i 0.386322 0.257768i
\(763\) 0.957201 + 2.47190i 0.0346530 + 0.0894886i
\(764\) 5.52726 + 2.29793i 0.199969 + 0.0831360i
\(765\) 0 0
\(766\) 0.121322 + 1.86972i 0.00438354 + 0.0675556i
\(767\) −11.2871 + 19.5499i −0.407554 + 0.705905i
\(768\) 23.7679 + 41.6682i 0.857649 + 1.50357i
\(769\) 16.0214i 0.577745i 0.957368 + 0.288872i \(0.0932803\pi\)
−0.957368 + 0.288872i \(0.906720\pi\)
\(770\) 0 0
\(771\) 42.6976i 1.53772i
\(772\) −3.80169 29.1710i −0.136826 1.04989i
\(773\) 21.1707 36.6688i 0.761458 1.31888i −0.180641 0.983549i \(-0.557817\pi\)
0.942099 0.335335i \(-0.108850\pi\)
\(774\) −84.1586 + 5.46087i −3.02502 + 0.196287i
\(775\) 0 0
\(776\) −0.514676 + 0.101328i −0.0184758 + 0.00363746i
\(777\) 55.6765 69.1687i 1.99738 2.48141i
\(778\) 25.2957 + 37.9113i 0.906896 + 1.35919i
\(779\) 2.59519 1.49833i 0.0929824 0.0536834i
\(780\) 0 0
\(781\) −0.237464 + 0.411299i −0.00849712 + 0.0147174i
\(782\) −5.74319 + 11.6269i −0.205376 + 0.415777i
\(783\) 66.1408i 2.36368i
\(784\) 27.9662 + 1.37437i 0.998795 + 0.0490845i
\(785\) 0 0
\(786\) 59.7043 + 29.4914i 2.12958 + 1.05192i
\(787\) 3.79528 + 2.19121i 0.135287 + 0.0781081i 0.566116 0.824326i \(-0.308445\pi\)
−0.430829 + 0.902434i \(0.641779\pi\)
\(788\) −7.65158 + 5.85541i −0.272576 + 0.208590i
\(789\) 30.5044 17.6117i 1.08599 0.626994i
\(790\) 0 0
\(791\) −30.6241 24.6506i −1.08887 0.876473i
\(792\) −7.31828 37.1718i −0.260044 1.32084i
\(793\) 6.96627 4.02198i 0.247380 0.142825i
\(794\) −49.6394 + 3.22099i −1.76164 + 0.114309i
\(795\) 0 0
\(796\) −2.52735 + 0.329375i −0.0895795 + 0.0116744i
\(797\) −53.6019 −1.89868 −0.949339 0.314255i \(-0.898245\pi\)
−0.949339 + 0.314255i \(0.898245\pi\)
\(798\) 20.8865 9.68661i 0.739373 0.342902i
\(799\) 21.1101i 0.746822i
\(800\) 0 0
\(801\) −36.4118 21.0224i −1.28655 0.742789i
\(802\) 45.0535 2.92343i 1.59090 0.103230i
\(803\) −28.8106 + 16.6338i −1.01670 + 0.586995i
\(804\) −0.292177 0.121471i −0.0103043 0.00428394i
\(805\) 0 0
\(806\) 12.1765 + 18.2492i 0.428900 + 0.642802i
\(807\) −12.7261 22.0422i −0.447980 0.775924i
\(808\) −16.7254 5.71408i −0.588399 0.201021i
\(809\) −0.754693 + 1.30717i −0.0265336 + 0.0459575i −0.878987 0.476845i \(-0.841780\pi\)
0.852454 + 0.522803i \(0.175114\pi\)
\(810\) 0 0
\(811\) 43.1894 1.51658 0.758292 0.651915i \(-0.226034\pi\)
0.758292 + 0.651915i \(0.226034\pi\)
\(812\) 39.0444 + 0.958815i 1.37019 + 0.0336478i
\(813\) 23.9063i 0.838432i
\(814\) 15.6803 31.7442i 0.549594 1.11264i
\(815\) 0 0
\(816\) 10.5903 + 39.9403i 0.370733 + 1.39819i
\(817\) −10.2182 17.6984i −0.357489 0.619189i
\(818\) 19.3095 12.8840i 0.675142 0.450478i
\(819\) 49.6503 + 7.71460i 1.73492 + 0.269570i
\(820\) 0 0
\(821\) 4.56478 + 7.90644i 0.159312 + 0.275937i 0.934621 0.355646i \(-0.115739\pi\)
−0.775309 + 0.631582i \(0.782406\pi\)
\(822\) 40.6795 2.63960i 1.41886 0.0920668i
\(823\) 0.190193 0.329424i 0.00662972 0.0114830i −0.862692 0.505731i \(-0.831223\pi\)
0.869321 + 0.494248i \(0.164556\pi\)
\(824\) 24.3231 21.2466i 0.847334 0.740161i
\(825\) 0 0
\(826\) −26.5297 2.37674i −0.923087 0.0826972i
\(827\) 23.9044 0.831236 0.415618 0.909539i \(-0.363565\pi\)
0.415618 + 0.909539i \(0.363565\pi\)
\(828\) −31.6099 + 4.11954i −1.09852 + 0.143164i
\(829\) −35.8241 20.6830i −1.24422 0.718352i −0.274271 0.961653i \(-0.588436\pi\)
−0.969951 + 0.243301i \(0.921770\pi\)
\(830\) 0 0
\(831\) 20.3800 + 35.2992i 0.706974 + 1.22452i
\(832\) −23.4755 + 9.61631i −0.813866 + 0.333386i
\(833\) 22.9814 + 7.31833i 0.796259 + 0.253565i
\(834\) 26.4434 17.6439i 0.915659 0.610959i
\(835\) 0 0
\(836\) 7.29064 5.57919i 0.252152 0.192960i
\(837\) 37.9642 + 21.9187i 1.31224 + 0.757620i
\(838\) −7.43155 + 15.0449i −0.256718 + 0.519718i
\(839\) −46.4174 −1.60251 −0.801253 0.598326i \(-0.795833\pi\)
−0.801253 + 0.598326i \(0.795833\pi\)
\(840\) 0 0
\(841\) 25.4780 0.878551
\(842\) −6.47819 + 13.1149i −0.223253 + 0.451969i
\(843\) −24.6219 14.2155i −0.848025 0.489607i
\(844\) 5.89234 4.50914i 0.202823 0.155211i
\(845\) 0 0
\(846\) −43.1651 + 28.8013i −1.48405 + 0.990208i
\(847\) 15.6804 + 2.43641i 0.538786 + 0.0837159i
\(848\) 13.2085 13.1397i 0.453582 0.451219i
\(849\) 32.3038 + 55.9518i 1.10866 + 1.92026i
\(850\) 0 0
\(851\) −25.7996 14.8954i −0.884398 0.510608i
\(852\) 1.26261 0.164549i 0.0432564 0.00563737i
\(853\) 10.5928 0.362692 0.181346 0.983419i \(-0.441955\pi\)
0.181346 + 0.983419i \(0.441955\pi\)
\(854\) 7.76345 + 5.46016i 0.265660 + 0.186843i
\(855\) 0 0
\(856\) −4.84514 5.54670i −0.165604 0.189582i
\(857\) −0.141688 + 0.245410i −0.00483996 + 0.00838305i −0.868435 0.495803i \(-0.834874\pi\)
0.863595 + 0.504186i \(0.168207\pi\)
\(858\) 30.0086 1.94719i 1.02448 0.0664761i
\(859\) −4.93861 8.55393i −0.168503 0.291856i 0.769391 0.638779i \(-0.220560\pi\)
−0.937894 + 0.346922i \(0.887227\pi\)
\(860\) 0 0
\(861\) 4.18236 + 10.8006i 0.142535 + 0.368084i
\(862\) 34.8883 23.2787i 1.18830 0.792875i
\(863\) 16.2817 + 28.2007i 0.554235 + 0.959963i 0.997963 + 0.0638012i \(0.0203224\pi\)
−0.443728 + 0.896162i \(0.646344\pi\)
\(864\) −33.5473 + 38.0025i −1.14130 + 1.29287i
\(865\) 0 0
\(866\) −18.4205 + 37.2916i −0.625952 + 1.26722i
\(867\) 15.3759i 0.522195i
\(868\) −13.4894 + 22.0934i −0.457861 + 0.749899i
\(869\) 1.03151 0.0349916
\(870\) 0 0
\(871\) 0.0836685 0.144918i 0.00283500 0.00491036i
\(872\) 0.916141 2.68160i 0.0310245 0.0908104i
\(873\) −0.555343 0.961883i −0.0187955 0.0325548i
\(874\) −4.28733 6.42551i −0.145021 0.217346i
\(875\) 0 0
\(876\) 82.3573 + 34.2396i 2.78260 + 1.15685i
\(877\) −32.9700 + 19.0353i −1.11332 + 0.642775i −0.939687 0.342036i \(-0.888884\pi\)
−0.173632 + 0.984811i \(0.555550\pi\)
\(878\) 12.4526 0.808020i 0.420254 0.0272694i
\(879\) 75.1666 + 43.3975i 2.53531 + 1.46376i
\(880\) 0 0
\(881\) 27.7529i 0.935019i 0.883988 + 0.467509i \(0.154849\pi\)
−0.883988 + 0.467509i \(0.845151\pi\)
\(882\) 16.3901 + 56.9761i 0.551884 + 1.91849i
\(883\) 44.1707 1.48646 0.743232 0.669034i \(-0.233292\pi\)
0.743232 + 0.669034i \(0.233292\pi\)
\(884\) −21.6688 + 2.82397i −0.728800 + 0.0949804i
\(885\) 0 0
\(886\) 27.6136 1.79179i 0.927698 0.0601963i
\(887\) 17.4310 10.0638i 0.585275 0.337909i −0.177952 0.984039i \(-0.556947\pi\)
0.763227 + 0.646130i \(0.223614\pi\)
\(888\) −93.1358 + 18.3363i −3.12543 + 0.615326i
\(889\) −5.01611 + 6.23167i −0.168235 + 0.209003i
\(890\) 0 0
\(891\) 17.2385 9.95263i 0.577510 0.333426i
\(892\) −20.5813 + 15.7499i −0.689111 + 0.527346i
\(893\) −10.8898 6.28724i −0.364414 0.210394i
\(894\) 24.7150 + 12.2081i 0.826592 + 0.408301i
\(895\) 0 0
\(896\) −21.9474 20.3547i −0.733211 0.680001i
\(897\) 25.3027i 0.844831i
\(898\) 3.14606 6.36909i 0.104985 0.212539i
\(899\) −18.0537 + 31.2699i −0.602124 + 1.04291i
\(900\) 0 0
\(901\) 13.8983 8.02418i 0.463019 0.267324i
\(902\) 2.56329 + 3.84167i 0.0853483 + 0.127913i
\(903\) 73.6569 28.5224i 2.45115 0.949167i
\(904\) 8.11832 + 41.2355i 0.270011 + 1.37147i
\(905\) 0 0
\(906\) 100.170 6.49984i 3.32794 0.215943i
\(907\) −7.50854 + 13.0052i −0.249317 + 0.431830i −0.963336 0.268296i \(-0.913539\pi\)
0.714020 + 0.700126i \(0.246873\pi\)
\(908\) −2.29839 17.6359i −0.0762748 0.585268i
\(909\) 37.4239i 1.24127i
\(910\) 0 0
\(911\) 24.0198i 0.795811i 0.917426 + 0.397906i \(0.130263\pi\)
−0.917426 + 0.397906i \(0.869737\pi\)
\(912\) −23.7576 6.43237i −0.786693 0.212997i
\(913\) 12.2087 21.1461i 0.404049 0.699834i
\(914\) 2.54983 + 39.2960i 0.0843410 + 1.29980i
\(915\) 0 0
\(916\) −23.9076 9.93946i −0.789931 0.328409i
\(917\) −41.0597 6.37981i −1.35591 0.210680i
\(918\) −36.3214 + 24.2349i −1.19878 + 0.799871i
\(919\) 49.7575 28.7275i 1.64135 0.947632i 0.660992 0.750393i \(-0.270136\pi\)
0.980355 0.197239i \(-0.0631976\pi\)
\(920\) 0 0
\(921\) 12.0014 20.7870i 0.395459 0.684956i
\(922\) −25.1683 12.4321i −0.828875 0.409429i
\(923\) 0.673370i 0.0221643i
\(924\) 16.9815 + 31.1550i 0.558650 + 1.02492i
\(925\) 0 0
\(926\) 22.3669 45.2811i 0.735023 1.48803i
\(927\) 59.2214 + 34.1915i 1.94509 + 1.12300i
\(928\) −31.3014 27.6318i −1.02752 0.907060i
\(929\) −3.45964 + 1.99743i −0.113507 + 0.0655334i −0.555679 0.831397i \(-0.687542\pi\)
0.442172 + 0.896930i \(0.354208\pi\)
\(930\) 0 0
\(931\) −10.6198 + 9.67552i −0.348049 + 0.317102i
\(932\) 28.1006 + 11.6827i 0.920466 + 0.382678i
\(933\) −35.7083 + 20.6162i −1.16904 + 0.674945i
\(934\) 2.07056 + 31.9098i 0.0677507 + 1.04412i
\(935\) 0 0
\(936\) −35.3378 40.4546i −1.15505 1.32230i
\(937\) 43.2204 1.41195 0.705975 0.708237i \(-0.250509\pi\)
0.705975 + 0.708237i \(0.250509\pi\)
\(938\) 0.196658 + 0.0176181i 0.00642111 + 0.000575252i
\(939\) 31.8878i 1.04062i
\(940\) 0 0
\(941\) −30.6731 17.7091i −0.999915 0.577301i −0.0916918 0.995787i \(-0.529227\pi\)
−0.908223 + 0.418486i \(0.862561\pi\)
\(942\) −2.15039 33.1402i −0.0700636 1.07976i
\(943\) 3.36529 1.94295i 0.109589 0.0632712i
\(944\) 20.0823 + 20.1874i 0.653622 + 0.657044i
\(945\) 0 0
\(946\) 26.1990 17.4809i 0.851802 0.568352i
\(947\) −24.3466 42.1696i −0.791159 1.37033i −0.925250 0.379358i \(-0.876145\pi\)
0.134091 0.990969i \(-0.457188\pi\)
\(948\) −1.68067 2.19622i −0.0545855 0.0713299i
\(949\) −23.5840 + 40.8488i −0.765571 + 1.32601i
\(950\) 0 0
\(951\) −50.9190 −1.65116
\(952\) −13.7799 21.7927i −0.446608 0.706304i
\(953\) 47.5308i 1.53967i −0.638241 0.769837i \(-0.720338\pi\)
0.638241 0.769837i \(-0.279662\pi\)
\(954\) 35.3694 + 17.4710i 1.14513 + 0.565644i
\(955\) 0 0
\(956\) 0.0696488 0.0532990i 0.00225260 0.00172381i
\(957\) 24.7466 + 42.8623i 0.799943 + 1.38554i
\(958\) 6.72211 + 10.0746i 0.217182 + 0.325495i
\(959\) −23.7208 + 9.18550i −0.765986 + 0.296615i
\(960\) 0 0
\(961\) 3.53423 + 6.12147i 0.114008 + 0.197467i
\(962\) −3.25051 50.0943i −0.104801 1.61510i
\(963\) 7.79713 13.5050i 0.251259 0.435193i
\(964\) −0.594616 4.56258i −0.0191513 0.146951i
\(965\) 0 0
\(966\) 27.0843 12.5610i 0.871424 0.404144i
\(967\) 29.3643 0.944292 0.472146 0.881520i \(-0.343479\pi\)
0.472146 + 0.881520i \(0.343479\pi\)
\(968\) −11.1603 12.7763i −0.358705 0.410645i
\(969\) −18.3607 10.6005i −0.589829 0.340538i
\(970\) 0 0
\(971\) 13.3188 + 23.0688i 0.427419 + 0.740312i 0.996643 0.0818708i \(-0.0260895\pi\)
−0.569224 + 0.822183i \(0.692756\pi\)
\(972\) 0.369231 + 0.153506i 0.0118431 + 0.00492370i
\(973\) −12.4382 + 15.4523i −0.398749 + 0.495379i
\(974\) 24.8391 + 37.2269i 0.795895 + 1.19283i
\(975\) 0 0
\(976\) −2.60053 9.80770i −0.0832411 0.313937i
\(977\) 13.3970 + 7.73476i 0.428608 + 0.247457i 0.698753 0.715363i \(-0.253739\pi\)
−0.270146 + 0.962819i \(0.587072\pi\)
\(978\) −41.2526 20.3770i −1.31911 0.651585i
\(979\) 15.7018 0.501832
\(980\) 0 0
\(981\) 6.00019 0.191571
\(982\) 45.3652 + 22.4085i 1.44766 + 0.715083i
\(983\) 38.1277 + 22.0131i 1.21609 + 0.702107i 0.964078 0.265618i \(-0.0855760\pi\)
0.252007 + 0.967725i \(0.418909\pi\)
\(984\) 4.00296 11.7169i 0.127610 0.373521i
\(985\) 0 0
\(986\) −19.9615 29.9167i −0.635703 0.952743i
\(987\) 30.4743 37.8591i 0.970006 1.20507i
\(988\) 4.99686 12.0191i 0.158971 0.382378i
\(989\) −13.2503 22.9502i −0.421336 0.729775i
\(990\) 0 0
\(991\) −14.4776 8.35865i −0.459896 0.265521i 0.252104 0.967700i \(-0.418877\pi\)
−0.712001 + 0.702179i \(0.752211\pi\)
\(992\) 26.2335 8.80969i 0.832916 0.279708i
\(993\) −24.9751 −0.792560
\(994\) −0.720785 + 0.334282i −0.0228619 + 0.0106028i
\(995\) 0 0
\(996\) −64.9146 + 8.45996i −2.05690 + 0.268064i
\(997\) 13.7897 23.8844i 0.436723 0.756427i −0.560711 0.828011i \(-0.689472\pi\)
0.997435 + 0.0715845i \(0.0228056\pi\)
\(998\) 3.78331 + 58.3053i 0.119759 + 1.84562i
\(999\) −50.1540 86.8693i −1.58680 2.74842i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.t.d.199.6 32
4.3 odd 2 inner 700.2.t.d.199.1 32
5.2 odd 4 140.2.o.a.31.3 32
5.3 odd 4 700.2.p.c.451.14 32
5.4 even 2 700.2.t.c.199.11 32
7.5 odd 6 700.2.t.c.299.16 32
20.3 even 4 700.2.p.c.451.9 32
20.7 even 4 140.2.o.a.31.8 yes 32
20.19 odd 2 700.2.t.c.199.16 32
28.19 even 6 700.2.t.c.299.11 32
35.2 odd 12 980.2.o.f.411.8 32
35.12 even 12 140.2.o.a.131.8 yes 32
35.17 even 12 980.2.g.a.391.25 32
35.19 odd 6 inner 700.2.t.d.299.1 32
35.27 even 4 980.2.o.f.31.3 32
35.32 odd 12 980.2.g.a.391.26 32
35.33 even 12 700.2.p.c.551.9 32
140.19 even 6 inner 700.2.t.d.299.6 32
140.27 odd 4 980.2.o.f.31.8 32
140.47 odd 12 140.2.o.a.131.3 yes 32
140.67 even 12 980.2.g.a.391.27 32
140.87 odd 12 980.2.g.a.391.28 32
140.103 odd 12 700.2.p.c.551.14 32
140.107 even 12 980.2.o.f.411.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.o.a.31.3 32 5.2 odd 4
140.2.o.a.31.8 yes 32 20.7 even 4
140.2.o.a.131.3 yes 32 140.47 odd 12
140.2.o.a.131.8 yes 32 35.12 even 12
700.2.p.c.451.9 32 20.3 even 4
700.2.p.c.451.14 32 5.3 odd 4
700.2.p.c.551.9 32 35.33 even 12
700.2.p.c.551.14 32 140.103 odd 12
700.2.t.c.199.11 32 5.4 even 2
700.2.t.c.199.16 32 20.19 odd 2
700.2.t.c.299.11 32 28.19 even 6
700.2.t.c.299.16 32 7.5 odd 6
700.2.t.d.199.1 32 4.3 odd 2 inner
700.2.t.d.199.6 32 1.1 even 1 trivial
700.2.t.d.299.1 32 35.19 odd 6 inner
700.2.t.d.299.6 32 140.19 even 6 inner
980.2.g.a.391.25 32 35.17 even 12
980.2.g.a.391.26 32 35.32 odd 12
980.2.g.a.391.27 32 140.67 even 12
980.2.g.a.391.28 32 140.87 odd 12
980.2.o.f.31.3 32 35.27 even 4
980.2.o.f.31.8 32 140.27 odd 4
980.2.o.f.411.3 32 140.107 even 12
980.2.o.f.411.8 32 35.2 odd 12