Properties

Label 700.2.t.d.199.10
Level $700$
Weight $2$
Character 700.199
Analytic conductor $5.590$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,2,Mod(199,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.199"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,2,0,0,0,0,16,0,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.10
Character \(\chi\) \(=\) 700.199
Dual form 700.2.t.d.299.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.620297 + 1.27092i) q^{2} +(-0.573616 - 0.331177i) q^{3} +(-1.23046 + 1.57669i) q^{4} +(0.0650866 - 0.934447i) q^{6} +(2.03775 - 1.68748i) q^{7} +(-2.76710 - 0.585797i) q^{8} +(-1.28064 - 2.21814i) q^{9} +(-3.12892 - 1.80648i) q^{11} +(1.22798 - 0.496915i) q^{12} -5.83027 q^{13} +(3.40866 + 1.54307i) q^{14} +(-0.971925 - 3.88012i) q^{16} +(-0.684063 + 1.18483i) q^{17} +(2.02469 - 3.00350i) q^{18} +(-2.04788 - 3.54704i) q^{19} +(-1.72774 + 0.293111i) q^{21} +(0.355029 - 5.09715i) q^{22} +(1.62259 + 2.81042i) q^{23} +(1.39325 + 1.25242i) q^{24} +(-3.61650 - 7.40979i) q^{26} +3.68354i q^{27} +(0.153273 + 5.28928i) q^{28} -5.19327 q^{29} +(4.43405 - 7.67999i) q^{31} +(4.32843 - 3.64207i) q^{32} +(1.19653 + 2.07245i) q^{33} +(-1.93014 - 0.134439i) q^{34} +(5.07311 + 0.710155i) q^{36} +(-9.34942 + 5.39789i) q^{37} +(3.23770 - 4.80291i) q^{38} +(3.34434 + 1.93085i) q^{39} -0.832730i q^{41} +(-1.44423 - 2.01400i) q^{42} +3.10642 q^{43} +(6.69828 - 2.71054i) q^{44} +(-2.56532 + 3.80548i) q^{46} +(5.97212 - 3.44801i) q^{47} +(-0.727497 + 2.54758i) q^{48} +(1.30481 - 6.87732i) q^{49} +(0.784778 - 0.453092i) q^{51} +(7.17393 - 9.19255i) q^{52} +(6.42376 + 3.70876i) q^{53} +(-4.68148 + 2.28489i) q^{54} +(-6.62717 + 3.47572i) q^{56} +2.71285i q^{57} +(-3.22137 - 6.60021i) q^{58} +(3.73928 - 6.47663i) q^{59} +(1.28652 - 0.742772i) q^{61} +(12.5111 + 0.871427i) q^{62} +(-6.35269 - 2.35894i) q^{63} +(7.31368 + 3.24192i) q^{64} +(-1.89171 + 2.80623i) q^{66} +(-1.26880 + 2.19763i) q^{67} +(-1.02640 - 2.53645i) q^{68} -2.14947i q^{69} +3.52502i q^{71} +(2.24429 + 6.88801i) q^{72} +(2.58492 - 4.47721i) q^{73} +(-12.6597 - 8.53405i) q^{74} +(8.11244 + 1.13561i) q^{76} +(-9.42434 + 1.59884i) q^{77} +(-0.379472 + 5.44808i) q^{78} +(-9.82082 + 5.67005i) q^{79} +(-2.62202 + 4.54148i) q^{81} +(1.05833 - 0.516540i) q^{82} -6.49145i q^{83} +(1.66377 - 3.08478i) q^{84} +(1.92690 + 3.94800i) q^{86} +(2.97894 + 1.71989i) q^{87} +(7.59979 + 6.83162i) q^{88} +(-8.13303 + 4.69560i) q^{89} +(-11.8806 + 9.83847i) q^{91} +(-6.42771 - 0.899777i) q^{92} +(-5.08688 + 2.93691i) q^{93} +(8.08662 + 5.45128i) q^{94} +(-3.68903 + 0.655668i) q^{96} -0.343189 q^{97} +(9.54987 - 2.60767i) q^{98} +9.25383i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{4} + 16 q^{9} + 14 q^{12} + 8 q^{13} - 2 q^{14} - 14 q^{16} - 54 q^{18} - 12 q^{21} - 36 q^{24} + 30 q^{26} - 32 q^{28} + 40 q^{29} - 60 q^{32} + 24 q^{33} + 60 q^{36} + 60 q^{37} + 46 q^{38}+ \cdots + 124 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.620297 + 1.27092i 0.438616 + 0.898674i
\(3\) −0.573616 0.331177i −0.331177 0.191205i 0.325186 0.945650i \(-0.394573\pi\)
−0.656364 + 0.754445i \(0.727906\pi\)
\(4\) −1.23046 + 1.57669i −0.615231 + 0.788347i
\(5\) 0 0
\(6\) 0.0650866 0.934447i 0.0265715 0.381486i
\(7\) 2.03775 1.68748i 0.770195 0.637808i
\(8\) −2.76710 0.585797i −0.978318 0.207111i
\(9\) −1.28064 2.21814i −0.426881 0.739380i
\(10\) 0 0
\(11\) −3.12892 1.80648i −0.943404 0.544674i −0.0523781 0.998627i \(-0.516680\pi\)
−0.891026 + 0.453953i \(0.850013\pi\)
\(12\) 1.22798 0.496915i 0.354487 0.143447i
\(13\) −5.83027 −1.61703 −0.808513 0.588478i \(-0.799727\pi\)
−0.808513 + 0.588478i \(0.799727\pi\)
\(14\) 3.40866 + 1.54307i 0.911002 + 0.412402i
\(15\) 0 0
\(16\) −0.971925 3.88012i −0.242981 0.970031i
\(17\) −0.684063 + 1.18483i −0.165910 + 0.287364i −0.936978 0.349389i \(-0.886389\pi\)
0.771068 + 0.636752i \(0.219723\pi\)
\(18\) 2.02469 3.00350i 0.477224 0.707931i
\(19\) −2.04788 3.54704i −0.469817 0.813747i 0.529588 0.848255i \(-0.322347\pi\)
−0.999404 + 0.0345086i \(0.989013\pi\)
\(20\) 0 0
\(21\) −1.72774 + 0.293111i −0.377024 + 0.0639622i
\(22\) 0.355029 5.09715i 0.0756925 1.08672i
\(23\) 1.62259 + 2.81042i 0.338334 + 0.586012i 0.984120 0.177507i \(-0.0568032\pi\)
−0.645785 + 0.763519i \(0.723470\pi\)
\(24\) 1.39325 + 1.25242i 0.284396 + 0.255650i
\(25\) 0 0
\(26\) −3.61650 7.40979i −0.709254 1.45318i
\(27\) 3.68354i 0.708898i
\(28\) 0.153273 + 5.28928i 0.0289658 + 0.999580i
\(29\) −5.19327 −0.964365 −0.482183 0.876071i \(-0.660156\pi\)
−0.482183 + 0.876071i \(0.660156\pi\)
\(30\) 0 0
\(31\) 4.43405 7.67999i 0.796378 1.37937i −0.125582 0.992083i \(-0.540080\pi\)
0.921960 0.387284i \(-0.126587\pi\)
\(32\) 4.32843 3.64207i 0.765166 0.643833i
\(33\) 1.19653 + 2.07245i 0.208289 + 0.360768i
\(34\) −1.93014 0.134439i −0.331017 0.0230562i
\(35\) 0 0
\(36\) 5.07311 + 0.710155i 0.845518 + 0.118359i
\(37\) −9.34942 + 5.39789i −1.53704 + 0.887408i −0.538026 + 0.842928i \(0.680830\pi\)
−0.999010 + 0.0444796i \(0.985837\pi\)
\(38\) 3.23770 4.80291i 0.525224 0.779135i
\(39\) 3.34434 + 1.93085i 0.535522 + 0.309184i
\(40\) 0 0
\(41\) 0.832730i 0.130051i −0.997884 0.0650253i \(-0.979287\pi\)
0.997884 0.0650253i \(-0.0207128\pi\)
\(42\) −1.44423 2.01400i −0.222850 0.310767i
\(43\) 3.10642 0.473725 0.236862 0.971543i \(-0.423881\pi\)
0.236862 + 0.971543i \(0.423881\pi\)
\(44\) 6.69828 2.71054i 1.00980 0.408629i
\(45\) 0 0
\(46\) −2.56532 + 3.80548i −0.378235 + 0.561087i
\(47\) 5.97212 3.44801i 0.871124 0.502943i 0.00340208 0.999994i \(-0.498917\pi\)
0.867721 + 0.497051i \(0.165584\pi\)
\(48\) −0.727497 + 2.54758i −0.105005 + 0.367712i
\(49\) 1.30481 6.87732i 0.186402 0.982474i
\(50\) 0 0
\(51\) 0.784778 0.453092i 0.109891 0.0634456i
\(52\) 7.17393 9.19255i 0.994845 1.27478i
\(53\) 6.42376 + 3.70876i 0.882371 + 0.509437i 0.871440 0.490503i \(-0.163187\pi\)
0.0109318 + 0.999940i \(0.496520\pi\)
\(54\) −4.68148 + 2.28489i −0.637069 + 0.310934i
\(55\) 0 0
\(56\) −6.62717 + 3.47572i −0.885592 + 0.464463i
\(57\) 2.71285i 0.359326i
\(58\) −3.22137 6.60021i −0.422986 0.866650i
\(59\) 3.73928 6.47663i 0.486813 0.843185i −0.513072 0.858346i \(-0.671493\pi\)
0.999885 + 0.0151606i \(0.00482595\pi\)
\(60\) 0 0
\(61\) 1.28652 0.742772i 0.164722 0.0951022i −0.415373 0.909651i \(-0.636349\pi\)
0.580095 + 0.814549i \(0.303016\pi\)
\(62\) 12.5111 + 0.871427i 1.58891 + 0.110671i
\(63\) −6.35269 2.35894i −0.800364 0.297199i
\(64\) 7.31368 + 3.24192i 0.914210 + 0.405240i
\(65\) 0 0
\(66\) −1.89171 + 2.80623i −0.232854 + 0.345423i
\(67\) −1.26880 + 2.19763i −0.155009 + 0.268484i −0.933062 0.359715i \(-0.882874\pi\)
0.778053 + 0.628198i \(0.216207\pi\)
\(68\) −1.02640 2.53645i −0.124470 0.307589i
\(69\) 2.14947i 0.258765i
\(70\) 0 0
\(71\) 3.52502i 0.418342i 0.977879 + 0.209171i \(0.0670766\pi\)
−0.977879 + 0.209171i \(0.932923\pi\)
\(72\) 2.24429 + 6.88801i 0.264492 + 0.811760i
\(73\) 2.58492 4.47721i 0.302542 0.524018i −0.674169 0.738577i \(-0.735498\pi\)
0.976711 + 0.214559i \(0.0688314\pi\)
\(74\) −12.6597 8.53405i −1.47166 0.992063i
\(75\) 0 0
\(76\) 8.11244 + 1.13561i 0.930561 + 0.130264i
\(77\) −9.42434 + 1.59884i −1.07400 + 0.182205i
\(78\) −0.379472 + 5.44808i −0.0429668 + 0.616873i
\(79\) −9.82082 + 5.67005i −1.10493 + 0.637931i −0.937511 0.347955i \(-0.886876\pi\)
−0.167417 + 0.985886i \(0.553543\pi\)
\(80\) 0 0
\(81\) −2.62202 + 4.54148i −0.291336 + 0.504609i
\(82\) 1.05833 0.516540i 0.116873 0.0570423i
\(83\) 6.49145i 0.712529i −0.934385 0.356264i \(-0.884050\pi\)
0.934385 0.356264i \(-0.115950\pi\)
\(84\) 1.66377 3.08478i 0.181532 0.336577i
\(85\) 0 0
\(86\) 1.92690 + 3.94800i 0.207783 + 0.425724i
\(87\) 2.97894 + 1.71989i 0.319376 + 0.184392i
\(88\) 7.59979 + 6.83162i 0.810141 + 0.728253i
\(89\) −8.13303 + 4.69560i −0.862099 + 0.497733i −0.864715 0.502264i \(-0.832501\pi\)
0.00261566 + 0.999997i \(0.499167\pi\)
\(90\) 0 0
\(91\) −11.8806 + 9.83847i −1.24543 + 1.03135i
\(92\) −6.42771 0.899777i −0.670135 0.0938083i
\(93\) −5.08688 + 2.93691i −0.527485 + 0.304544i
\(94\) 8.08662 + 5.45128i 0.834071 + 0.562257i
\(95\) 0 0
\(96\) −3.68903 + 0.655668i −0.376510 + 0.0669189i
\(97\) −0.343189 −0.0348455 −0.0174228 0.999848i \(-0.505546\pi\)
−0.0174228 + 0.999848i \(0.505546\pi\)
\(98\) 9.54987 2.60767i 0.964683 0.263415i
\(99\) 9.25383i 0.930045i
\(100\) 0 0
\(101\) 3.92859 + 2.26817i 0.390910 + 0.225692i 0.682554 0.730835i \(-0.260869\pi\)
−0.291645 + 0.956527i \(0.594202\pi\)
\(102\) 1.06264 + 0.716337i 0.105217 + 0.0709279i
\(103\) −5.31577 + 3.06906i −0.523778 + 0.302404i −0.738479 0.674276i \(-0.764456\pi\)
0.214701 + 0.976680i \(0.431122\pi\)
\(104\) 16.1329 + 3.41536i 1.58196 + 0.334903i
\(105\) 0 0
\(106\) −0.728886 + 10.4646i −0.0707957 + 1.01641i
\(107\) −3.83398 6.64066i −0.370645 0.641976i 0.619020 0.785375i \(-0.287530\pi\)
−0.989665 + 0.143399i \(0.954197\pi\)
\(108\) −5.80782 4.53246i −0.558858 0.436136i
\(109\) 0.647616 1.12170i 0.0620304 0.107440i −0.833342 0.552757i \(-0.813576\pi\)
0.895373 + 0.445317i \(0.146909\pi\)
\(110\) 0 0
\(111\) 7.15064 0.678709
\(112\) −8.52817 6.26660i −0.805837 0.592138i
\(113\) 7.10591i 0.668468i 0.942490 + 0.334234i \(0.108478\pi\)
−0.942490 + 0.334234i \(0.891522\pi\)
\(114\) −3.44781 + 1.68277i −0.322917 + 0.157606i
\(115\) 0 0
\(116\) 6.39012 8.18819i 0.593308 0.760254i
\(117\) 7.46649 + 12.9323i 0.690278 + 1.19560i
\(118\) 10.5507 + 0.734884i 0.971273 + 0.0676516i
\(119\) 0.605436 + 3.56873i 0.0555002 + 0.327145i
\(120\) 0 0
\(121\) 1.02675 + 1.77837i 0.0933405 + 0.161670i
\(122\) 1.74203 + 1.17432i 0.157716 + 0.106318i
\(123\) −0.275781 + 0.477667i −0.0248664 + 0.0430698i
\(124\) 6.65307 + 16.4411i 0.597463 + 1.47645i
\(125\) 0 0
\(126\) −0.942541 9.53699i −0.0839682 0.849623i
\(127\) −17.0178 −1.51008 −0.755041 0.655677i \(-0.772383\pi\)
−0.755041 + 0.655677i \(0.772383\pi\)
\(128\) 0.416448 + 11.3060i 0.0368091 + 0.999322i
\(129\) −1.78189 1.02878i −0.156887 0.0905787i
\(130\) 0 0
\(131\) 0.603066 + 1.04454i 0.0526901 + 0.0912619i 0.891167 0.453674i \(-0.149887\pi\)
−0.838477 + 0.544936i \(0.816554\pi\)
\(132\) −4.73991 0.663512i −0.412556 0.0577513i
\(133\) −10.1586 3.77220i −0.880865 0.327091i
\(134\) −3.58005 0.249359i −0.309269 0.0215414i
\(135\) 0 0
\(136\) 2.58694 2.87782i 0.221828 0.246771i
\(137\) 1.85754 + 1.07245i 0.158701 + 0.0916258i 0.577247 0.816570i \(-0.304127\pi\)
−0.418547 + 0.908195i \(0.637460\pi\)
\(138\) 2.73179 1.33331i 0.232546 0.113499i
\(139\) −3.39555 −0.288007 −0.144004 0.989577i \(-0.545998\pi\)
−0.144004 + 0.989577i \(0.545998\pi\)
\(140\) 0 0
\(141\) −4.56761 −0.384662
\(142\) −4.48000 + 2.18656i −0.375954 + 0.183492i
\(143\) 18.2424 + 10.5323i 1.52551 + 0.880753i
\(144\) −7.36197 + 7.12492i −0.613497 + 0.593743i
\(145\) 0 0
\(146\) 7.29359 + 0.508017i 0.603622 + 0.0420438i
\(147\) −3.02607 + 3.51281i −0.249586 + 0.289732i
\(148\) 2.99329 21.3831i 0.246047 1.75768i
\(149\) −9.54319 16.5293i −0.781808 1.35413i −0.930887 0.365307i \(-0.880964\pi\)
0.149079 0.988825i \(-0.452369\pi\)
\(150\) 0 0
\(151\) 8.31900 + 4.80298i 0.676990 + 0.390861i 0.798720 0.601703i \(-0.205511\pi\)
−0.121730 + 0.992563i \(0.538844\pi\)
\(152\) 3.58885 + 11.0147i 0.291095 + 0.893407i
\(153\) 3.50416 0.283295
\(154\) −7.87789 10.9858i −0.634818 0.885261i
\(155\) 0 0
\(156\) −7.15944 + 2.89715i −0.573214 + 0.231958i
\(157\) 8.23118 14.2568i 0.656919 1.13782i −0.324490 0.945889i \(-0.605193\pi\)
0.981409 0.191928i \(-0.0614742\pi\)
\(158\) −13.2980 8.96433i −1.05793 0.713164i
\(159\) −2.45651 4.25481i −0.194814 0.337428i
\(160\) 0 0
\(161\) 8.04896 + 2.98881i 0.634347 + 0.235552i
\(162\) −7.39828 0.515309i −0.581264 0.0404865i
\(163\) −3.57806 6.19738i −0.280255 0.485416i 0.691192 0.722671i \(-0.257086\pi\)
−0.971447 + 0.237255i \(0.923752\pi\)
\(164\) 1.31296 + 1.02464i 0.102525 + 0.0800112i
\(165\) 0 0
\(166\) 8.25009 4.02663i 0.640331 0.312527i
\(167\) 13.7127i 1.06112i 0.847646 + 0.530562i \(0.178019\pi\)
−0.847646 + 0.530562i \(0.821981\pi\)
\(168\) 4.95253 + 0.201036i 0.382096 + 0.0155103i
\(169\) 20.9920 1.61477
\(170\) 0 0
\(171\) −5.24522 + 9.08498i −0.401112 + 0.694746i
\(172\) −3.82233 + 4.89787i −0.291450 + 0.373459i
\(173\) 1.96219 + 3.39862i 0.149183 + 0.258392i 0.930926 0.365209i \(-0.119002\pi\)
−0.781743 + 0.623601i \(0.785669\pi\)
\(174\) −0.338012 + 4.85283i −0.0256246 + 0.367892i
\(175\) 0 0
\(176\) −3.96830 + 13.8963i −0.299122 + 1.04748i
\(177\) −4.28982 + 2.47673i −0.322443 + 0.186162i
\(178\) −11.0126 7.42373i −0.825431 0.556432i
\(179\) 17.8002 + 10.2769i 1.33045 + 0.768134i 0.985368 0.170440i \(-0.0545188\pi\)
0.345079 + 0.938574i \(0.387852\pi\)
\(180\) 0 0
\(181\) 13.0603i 0.970762i −0.874303 0.485381i \(-0.838681\pi\)
0.874303 0.485381i \(-0.161319\pi\)
\(182\) −19.8734 8.99649i −1.47311 0.666864i
\(183\) −0.983957 −0.0727362
\(184\) −2.84355 8.72722i −0.209629 0.643379i
\(185\) 0 0
\(186\) −6.88795 4.64325i −0.505049 0.340459i
\(187\) 4.28075 2.47149i 0.313039 0.180733i
\(188\) −1.91202 + 13.6588i −0.139449 + 0.996174i
\(189\) 6.21591 + 7.50612i 0.452141 + 0.545990i
\(190\) 0 0
\(191\) 10.8038 6.23755i 0.781733 0.451334i −0.0553113 0.998469i \(-0.517615\pi\)
0.837044 + 0.547136i \(0.184282\pi\)
\(192\) −3.12160 4.28174i −0.225282 0.309008i
\(193\) −16.5103 9.53225i −1.18844 0.686147i −0.230489 0.973075i \(-0.574033\pi\)
−0.957952 + 0.286928i \(0.907366\pi\)
\(194\) −0.212879 0.436165i −0.0152838 0.0313148i
\(195\) 0 0
\(196\) 9.23790 + 10.5196i 0.659850 + 0.751397i
\(197\) 1.93188i 0.137641i −0.997629 0.0688203i \(-0.978076\pi\)
0.997629 0.0688203i \(-0.0219235\pi\)
\(198\) −11.7609 + 5.74013i −0.835807 + 0.407933i
\(199\) 10.2823 17.8094i 0.728892 1.26248i −0.228460 0.973553i \(-0.573369\pi\)
0.957352 0.288924i \(-0.0932976\pi\)
\(200\) 0 0
\(201\) 1.45561 0.840398i 0.102671 0.0592771i
\(202\) −0.445766 + 6.39986i −0.0313640 + 0.450293i
\(203\) −10.5826 + 8.76354i −0.742750 + 0.615080i
\(204\) −0.251253 + 1.79487i −0.0175912 + 0.125666i
\(205\) 0 0
\(206\) −7.19788 4.85217i −0.501500 0.338067i
\(207\) 4.15593 7.19828i 0.288857 0.500315i
\(208\) 5.66658 + 22.6222i 0.392907 + 1.56857i
\(209\) 14.7979i 1.02359i
\(210\) 0 0
\(211\) 9.98398i 0.687326i 0.939093 + 0.343663i \(0.111668\pi\)
−0.939093 + 0.343663i \(0.888332\pi\)
\(212\) −13.7518 + 5.56481i −0.944476 + 0.382193i
\(213\) 1.16741 2.02200i 0.0799893 0.138545i
\(214\) 6.06151 8.99186i 0.414357 0.614671i
\(215\) 0 0
\(216\) 2.15781 10.1927i 0.146820 0.693528i
\(217\) −3.92439 23.1322i −0.266405 1.57032i
\(218\) 1.82731 + 0.127277i 0.123761 + 0.00862026i
\(219\) −2.96550 + 1.71213i −0.200390 + 0.115695i
\(220\) 0 0
\(221\) 3.98827 6.90789i 0.268280 0.464675i
\(222\) 4.43552 + 9.08787i 0.297693 + 0.609938i
\(223\) 16.8179i 1.12621i −0.826384 0.563106i \(-0.809606\pi\)
0.826384 0.563106i \(-0.190394\pi\)
\(224\) 2.67433 14.7258i 0.178686 0.983906i
\(225\) 0 0
\(226\) −9.03103 + 4.40778i −0.600735 + 0.293201i
\(227\) −17.1766 9.91692i −1.14005 0.658209i −0.193608 0.981079i \(-0.562019\pi\)
−0.946443 + 0.322870i \(0.895352\pi\)
\(228\) −4.27733 3.33806i −0.283273 0.221069i
\(229\) −12.0664 + 6.96655i −0.797371 + 0.460363i −0.842551 0.538616i \(-0.818947\pi\)
0.0451798 + 0.998979i \(0.485614\pi\)
\(230\) 0 0
\(231\) 5.93545 + 2.20401i 0.390524 + 0.145013i
\(232\) 14.3703 + 3.04220i 0.943455 + 0.199730i
\(233\) 8.85568 5.11283i 0.580155 0.334953i −0.181040 0.983476i \(-0.557946\pi\)
0.761195 + 0.648523i \(0.224613\pi\)
\(234\) −11.8045 + 17.5112i −0.771684 + 1.14474i
\(235\) 0 0
\(236\) 5.61061 + 13.8649i 0.365220 + 0.902531i
\(237\) 7.51117 0.487903
\(238\) −4.16001 + 2.98313i −0.269653 + 0.193368i
\(239\) 17.0835i 1.10504i −0.833501 0.552518i \(-0.813667\pi\)
0.833501 0.552518i \(-0.186333\pi\)
\(240\) 0 0
\(241\) −16.0074 9.24185i −1.03112 0.595320i −0.113818 0.993502i \(-0.536308\pi\)
−0.917307 + 0.398182i \(0.869641\pi\)
\(242\) −1.62328 + 2.40803i −0.104348 + 0.154794i
\(243\) 12.5782 7.26203i 0.806892 0.465859i
\(244\) −0.411889 + 2.94240i −0.0263685 + 0.188368i
\(245\) 0 0
\(246\) −0.778142 0.0541995i −0.0496125 0.00345564i
\(247\) 11.9397 + 20.6802i 0.759706 + 1.31585i
\(248\) −16.7684 + 18.6539i −1.06479 + 1.18452i
\(249\) −2.14982 + 3.72360i −0.136239 + 0.235973i
\(250\) 0 0
\(251\) −16.5313 −1.04344 −0.521722 0.853116i \(-0.674710\pi\)
−0.521722 + 0.853116i \(0.674710\pi\)
\(252\) 11.5361 7.11366i 0.726704 0.448119i
\(253\) 11.7247i 0.737128i
\(254\) −10.5561 21.6282i −0.662347 1.35707i
\(255\) 0 0
\(256\) −14.1107 + 7.54238i −0.881920 + 0.471399i
\(257\) 3.09749 + 5.36502i 0.193216 + 0.334660i 0.946314 0.323248i \(-0.104775\pi\)
−0.753098 + 0.657908i \(0.771441\pi\)
\(258\) 0.202186 2.90279i 0.0125876 0.180720i
\(259\) −9.94290 + 26.7765i −0.617822 + 1.66381i
\(260\) 0 0
\(261\) 6.65072 + 11.5194i 0.411669 + 0.713032i
\(262\) −0.953445 + 1.41437i −0.0589040 + 0.0873802i
\(263\) −10.5768 + 18.3196i −0.652194 + 1.12963i 0.330396 + 0.943842i \(0.392818\pi\)
−0.982589 + 0.185790i \(0.940516\pi\)
\(264\) −2.09688 6.43561i −0.129054 0.396084i
\(265\) 0 0
\(266\) −1.50722 15.2507i −0.0924137 0.935078i
\(267\) 6.22031 0.380677
\(268\) −1.90378 4.70462i −0.116292 0.287380i
\(269\) 26.8352 + 15.4933i 1.63617 + 0.944642i 0.982135 + 0.188177i \(0.0602578\pi\)
0.654033 + 0.756466i \(0.273076\pi\)
\(270\) 0 0
\(271\) −11.5190 19.9516i −0.699732 1.21197i −0.968559 0.248783i \(-0.919969\pi\)
0.268827 0.963188i \(-0.413364\pi\)
\(272\) 5.26215 + 1.50268i 0.319065 + 0.0911134i
\(273\) 10.0732 1.70892i 0.609657 0.103428i
\(274\) −0.210770 + 3.02602i −0.0127331 + 0.182809i
\(275\) 0 0
\(276\) 3.38905 + 2.64484i 0.203997 + 0.159201i
\(277\) 6.01508 + 3.47281i 0.361411 + 0.208661i 0.669700 0.742632i \(-0.266423\pi\)
−0.308288 + 0.951293i \(0.599756\pi\)
\(278\) −2.10625 4.31547i −0.126325 0.258825i
\(279\) −22.7137 −1.35984
\(280\) 0 0
\(281\) −4.24391 −0.253170 −0.126585 0.991956i \(-0.540402\pi\)
−0.126585 + 0.991956i \(0.540402\pi\)
\(282\) −2.83327 5.80505i −0.168719 0.345686i
\(283\) 7.38891 + 4.26599i 0.439225 + 0.253587i 0.703269 0.710924i \(-0.251723\pi\)
−0.264044 + 0.964511i \(0.585056\pi\)
\(284\) −5.55787 4.33740i −0.329799 0.257377i
\(285\) 0 0
\(286\) −2.06992 + 29.7178i −0.122397 + 1.75725i
\(287\) −1.40522 1.69689i −0.0829473 0.100164i
\(288\) −13.6218 4.93688i −0.802672 0.290909i
\(289\) 7.56412 + 13.1014i 0.444948 + 0.770673i
\(290\) 0 0
\(291\) 0.196859 + 0.113656i 0.0115401 + 0.00666265i
\(292\) 3.87855 + 9.58467i 0.226975 + 0.560900i
\(293\) 25.2319 1.47406 0.737032 0.675857i \(-0.236227\pi\)
0.737032 + 0.675857i \(0.236227\pi\)
\(294\) −6.34156 1.66690i −0.369847 0.0972154i
\(295\) 0 0
\(296\) 29.0329 9.45964i 1.68750 0.549831i
\(297\) 6.65425 11.5255i 0.386119 0.668777i
\(298\) 15.0877 22.3817i 0.874010 1.29654i
\(299\) −9.46017 16.3855i −0.547096 0.947597i
\(300\) 0 0
\(301\) 6.33009 5.24203i 0.364861 0.302145i
\(302\) −0.943933 + 13.5520i −0.0543172 + 0.779832i
\(303\) −1.50234 2.60212i −0.0863070 0.149488i
\(304\) −11.7726 + 11.3935i −0.675203 + 0.653462i
\(305\) 0 0
\(306\) 2.17362 + 4.45350i 0.124258 + 0.254590i
\(307\) 29.2635i 1.67016i −0.550132 0.835078i \(-0.685423\pi\)
0.550132 0.835078i \(-0.314577\pi\)
\(308\) 9.07541 16.8266i 0.517119 0.958785i
\(309\) 4.06561 0.231285
\(310\) 0 0
\(311\) 11.3730 19.6987i 0.644906 1.11701i −0.339417 0.940636i \(-0.610230\pi\)
0.984323 0.176374i \(-0.0564369\pi\)
\(312\) −8.12302 7.30197i −0.459876 0.413392i
\(313\) 3.29240 + 5.70261i 0.186098 + 0.322331i 0.943946 0.330100i \(-0.107083\pi\)
−0.757848 + 0.652431i \(0.773749\pi\)
\(314\) 23.2250 + 1.61768i 1.31066 + 0.0912910i
\(315\) 0 0
\(316\) 3.14421 22.4612i 0.176876 1.26354i
\(317\) 12.2298 7.06086i 0.686892 0.396577i −0.115555 0.993301i \(-0.536865\pi\)
0.802447 + 0.596724i \(0.203531\pi\)
\(318\) 3.88374 5.76127i 0.217789 0.323076i
\(319\) 16.2493 + 9.38153i 0.909786 + 0.525265i
\(320\) 0 0
\(321\) 5.07891i 0.283477i
\(322\) 1.19421 + 12.0835i 0.0665509 + 0.673388i
\(323\) 5.60352 0.311788
\(324\) −3.93422 9.72224i −0.218568 0.540125i
\(325\) 0 0
\(326\) 5.65690 8.39163i 0.313306 0.464770i
\(327\) −0.742966 + 0.428952i −0.0410861 + 0.0237211i
\(328\) −0.487811 + 2.30425i −0.0269349 + 0.127231i
\(329\) 6.35122 17.1040i 0.350154 0.942974i
\(330\) 0 0
\(331\) −17.5997 + 10.1612i −0.967368 + 0.558510i −0.898433 0.439111i \(-0.855293\pi\)
−0.0689349 + 0.997621i \(0.521960\pi\)
\(332\) 10.2350 + 7.98748i 0.561720 + 0.438370i
\(333\) 23.9466 + 13.8255i 1.31226 + 0.757635i
\(334\) −17.4278 + 8.50598i −0.953605 + 0.465426i
\(335\) 0 0
\(336\) 2.81654 + 6.41896i 0.153655 + 0.350183i
\(337\) 15.7704i 0.859067i −0.903051 0.429533i \(-0.858678\pi\)
0.903051 0.429533i \(-0.141322\pi\)
\(338\) 13.0213 + 26.6792i 0.708266 + 1.45115i
\(339\) 2.35332 4.07607i 0.127815 0.221381i
\(340\) 0 0
\(341\) −27.7475 + 16.0200i −1.50261 + 0.867534i
\(342\) −14.7999 1.03085i −0.800285 0.0557418i
\(343\) −8.94647 16.2161i −0.483064 0.875585i
\(344\) −8.59578 1.81973i −0.463453 0.0981134i
\(345\) 0 0
\(346\) −3.10222 + 4.60194i −0.166776 + 0.247402i
\(347\) 1.52392 2.63950i 0.0818082 0.141696i −0.822218 0.569172i \(-0.807264\pi\)
0.904027 + 0.427476i \(0.140597\pi\)
\(348\) −6.37722 + 2.58061i −0.341855 + 0.138335i
\(349\) 8.40462i 0.449889i 0.974372 + 0.224944i \(0.0722201\pi\)
−0.974372 + 0.224944i \(0.927780\pi\)
\(350\) 0 0
\(351\) 21.4761i 1.14631i
\(352\) −20.1226 + 3.57649i −1.07254 + 0.190628i
\(353\) −0.216411 + 0.374834i −0.0115184 + 0.0199504i −0.871727 0.489992i \(-0.837000\pi\)
0.860209 + 0.509942i \(0.170333\pi\)
\(354\) −5.80869 3.91570i −0.308728 0.208117i
\(355\) 0 0
\(356\) 2.60385 18.6011i 0.138004 0.985854i
\(357\) 0.834594 2.24759i 0.0441714 0.118955i
\(358\) −2.01973 + 28.9973i −0.106746 + 1.53255i
\(359\) 23.3662 13.4905i 1.23322 0.712002i 0.265522 0.964105i \(-0.414456\pi\)
0.967700 + 0.252103i \(0.0811222\pi\)
\(360\) 0 0
\(361\) 1.11234 1.92663i 0.0585442 0.101402i
\(362\) 16.5985 8.10125i 0.872399 0.425792i
\(363\) 1.36014i 0.0713888i
\(364\) −0.893621 30.8379i −0.0468385 1.61635i
\(365\) 0 0
\(366\) −0.610346 1.25053i −0.0319033 0.0653661i
\(367\) 18.0317 + 10.4106i 0.941248 + 0.543430i 0.890351 0.455274i \(-0.150459\pi\)
0.0508965 + 0.998704i \(0.483792\pi\)
\(368\) 9.32773 9.02738i 0.486241 0.470585i
\(369\) −1.84711 + 1.06643i −0.0961568 + 0.0555161i
\(370\) 0 0
\(371\) 19.3485 3.28247i 1.00452 0.170417i
\(372\) 1.62860 11.6342i 0.0844392 0.603206i
\(373\) −15.2953 + 8.83072i −0.791958 + 0.457237i −0.840652 0.541576i \(-0.817828\pi\)
0.0486931 + 0.998814i \(0.484494\pi\)
\(374\) 5.79640 + 3.90742i 0.299725 + 0.202048i
\(375\) 0 0
\(376\) −18.5453 + 6.04253i −0.956400 + 0.311619i
\(377\) 30.2781 1.55940
\(378\) −5.68395 + 12.5559i −0.292351 + 0.645808i
\(379\) 15.0551i 0.773331i −0.922220 0.386665i \(-0.873627\pi\)
0.922220 0.386665i \(-0.126373\pi\)
\(380\) 0 0
\(381\) 9.76166 + 5.63590i 0.500105 + 0.288736i
\(382\) 14.6290 + 9.86155i 0.748483 + 0.504561i
\(383\) 26.2843 15.1753i 1.34307 0.775420i 0.355811 0.934558i \(-0.384205\pi\)
0.987256 + 0.159138i \(0.0508714\pi\)
\(384\) 3.50542 6.62324i 0.178885 0.337991i
\(385\) 0 0
\(386\) 1.87338 26.8961i 0.0953527 1.36898i
\(387\) −3.97822 6.89047i −0.202224 0.350262i
\(388\) 0.422281 0.541104i 0.0214381 0.0274704i
\(389\) −3.13909 + 5.43706i −0.159158 + 0.275670i −0.934565 0.355792i \(-0.884211\pi\)
0.775407 + 0.631462i \(0.217545\pi\)
\(390\) 0 0
\(391\) −4.43983 −0.224532
\(392\) −7.63925 + 18.2659i −0.385841 + 0.922565i
\(393\) 0.798887i 0.0402985i
\(394\) 2.45526 1.19834i 0.123694 0.0603715i
\(395\) 0 0
\(396\) −14.5905 11.3865i −0.733198 0.572193i
\(397\) 4.86104 + 8.41956i 0.243968 + 0.422566i 0.961841 0.273609i \(-0.0882173\pi\)
−0.717873 + 0.696174i \(0.754884\pi\)
\(398\) 29.0124 + 2.02079i 1.45426 + 0.101293i
\(399\) 4.57789 + 5.52810i 0.229181 + 0.276751i
\(400\) 0 0
\(401\) −3.49372 6.05130i −0.174468 0.302188i 0.765509 0.643425i \(-0.222487\pi\)
−0.939977 + 0.341238i \(0.889154\pi\)
\(402\) 1.97099 + 1.32867i 0.0983040 + 0.0662679i
\(403\) −25.8517 + 44.7764i −1.28776 + 2.23047i
\(404\) −8.41020 + 3.40329i −0.418423 + 0.169320i
\(405\) 0 0
\(406\) −17.7021 8.01355i −0.878539 0.397706i
\(407\) 39.0048 1.93339
\(408\) −2.43698 + 0.794030i −0.120649 + 0.0393103i
\(409\) −1.94474 1.12280i −0.0961611 0.0555186i 0.451148 0.892449i \(-0.351015\pi\)
−0.547309 + 0.836930i \(0.684348\pi\)
\(410\) 0 0
\(411\) −0.710344 1.23035i −0.0350387 0.0606888i
\(412\) 1.70189 12.1577i 0.0838459 0.598967i
\(413\) −3.30948 19.5077i −0.162849 0.959910i
\(414\) 11.7263 + 0.816769i 0.576318 + 0.0401420i
\(415\) 0 0
\(416\) −25.2359 + 21.2342i −1.23729 + 1.04109i
\(417\) 1.94774 + 1.12453i 0.0953814 + 0.0550685i
\(418\) −18.8069 + 9.17907i −0.919873 + 0.448963i
\(419\) −18.3565 −0.896775 −0.448388 0.893839i \(-0.648002\pi\)
−0.448388 + 0.893839i \(0.648002\pi\)
\(420\) 0 0
\(421\) 2.27310 0.110784 0.0553921 0.998465i \(-0.482359\pi\)
0.0553921 + 0.998465i \(0.482359\pi\)
\(422\) −12.6888 + 6.19304i −0.617682 + 0.301472i
\(423\) −15.2963 8.83133i −0.743732 0.429394i
\(424\) −15.6026 14.0255i −0.757730 0.681140i
\(425\) 0 0
\(426\) 3.29394 + 0.229431i 0.159592 + 0.0111160i
\(427\) 1.36818 3.68456i 0.0662110 0.178308i
\(428\) 15.1879 + 2.12606i 0.734133 + 0.102767i
\(429\) −6.97610 12.0830i −0.336809 0.583371i
\(430\) 0 0
\(431\) 11.1379 + 6.43048i 0.536494 + 0.309745i 0.743657 0.668561i \(-0.233090\pi\)
−0.207163 + 0.978307i \(0.566423\pi\)
\(432\) 14.2926 3.58013i 0.687653 0.172249i
\(433\) −33.6307 −1.61619 −0.808094 0.589054i \(-0.799501\pi\)
−0.808094 + 0.589054i \(0.799501\pi\)
\(434\) 26.9649 19.3364i 1.29436 0.928179i
\(435\) 0 0
\(436\) 0.971716 + 2.40131i 0.0465368 + 0.115002i
\(437\) 6.64577 11.5108i 0.317910 0.550637i
\(438\) −4.01547 2.70688i −0.191867 0.129340i
\(439\) 12.4435 + 21.5528i 0.593896 + 1.02866i 0.993702 + 0.112058i \(0.0357442\pi\)
−0.399806 + 0.916600i \(0.630922\pi\)
\(440\) 0 0
\(441\) −16.9258 + 5.91313i −0.805992 + 0.281578i
\(442\) 11.2533 + 0.783818i 0.535263 + 0.0372824i
\(443\) −3.97386 6.88293i −0.188804 0.327018i 0.756048 0.654516i \(-0.227128\pi\)
−0.944852 + 0.327498i \(0.893794\pi\)
\(444\) −8.79859 + 11.2744i −0.417563 + 0.535058i
\(445\) 0 0
\(446\) 21.3742 10.4321i 1.01210 0.493976i
\(447\) 12.6420i 0.597944i
\(448\) 20.3741 5.73550i 0.962586 0.270977i
\(449\) −14.3027 −0.674988 −0.337494 0.941328i \(-0.609579\pi\)
−0.337494 + 0.941328i \(0.609579\pi\)
\(450\) 0 0
\(451\) −1.50431 + 2.60554i −0.0708352 + 0.122690i
\(452\) −11.2038 8.74356i −0.526985 0.411262i
\(453\) −3.18127 5.51013i −0.149469 0.258888i
\(454\) 1.94898 27.9815i 0.0914702 1.31324i
\(455\) 0 0
\(456\) 1.58918 7.50673i 0.0744202 0.351535i
\(457\) −19.2073 + 11.0893i −0.898478 + 0.518737i −0.876706 0.481026i \(-0.840264\pi\)
−0.0217719 + 0.999763i \(0.506931\pi\)
\(458\) −16.3387 11.0141i −0.763456 0.514655i
\(459\) −4.36438 2.51977i −0.203712 0.117613i
\(460\) 0 0
\(461\) 32.8587i 1.53038i 0.643803 + 0.765192i \(0.277356\pi\)
−0.643803 + 0.765192i \(0.722644\pi\)
\(462\) 0.880635 + 8.91061i 0.0409708 + 0.414559i
\(463\) 3.31392 0.154011 0.0770055 0.997031i \(-0.475464\pi\)
0.0770055 + 0.997031i \(0.475464\pi\)
\(464\) 5.04746 + 20.1505i 0.234323 + 0.935464i
\(465\) 0 0
\(466\) 11.9911 + 8.08337i 0.555479 + 0.374455i
\(467\) −30.4264 + 17.5667i −1.40797 + 0.812890i −0.995192 0.0979429i \(-0.968774\pi\)
−0.412775 + 0.910833i \(0.635440\pi\)
\(468\) −29.5776 4.14039i −1.36722 0.191390i
\(469\) 1.12297 + 6.61930i 0.0518538 + 0.305651i
\(470\) 0 0
\(471\) −9.44307 + 5.45196i −0.435114 + 0.251213i
\(472\) −14.1410 + 15.7310i −0.650890 + 0.724079i
\(473\) −9.71973 5.61169i −0.446914 0.258026i
\(474\) 4.65916 + 9.54608i 0.214002 + 0.438466i
\(475\) 0 0
\(476\) −6.37176 3.43660i −0.292049 0.157516i
\(477\) 18.9984i 0.869877i
\(478\) 21.7117 10.5968i 0.993068 0.484687i
\(479\) 11.1633 19.3354i 0.510065 0.883459i −0.489867 0.871797i \(-0.662955\pi\)
0.999932 0.0116615i \(-0.00371206\pi\)
\(480\) 0 0
\(481\) 54.5097 31.4712i 2.48543 1.43496i
\(482\) 1.81631 26.0767i 0.0827306 1.18776i
\(483\) −3.62719 4.38007i −0.165043 0.199300i
\(484\) −4.06732 0.569361i −0.184878 0.0258800i
\(485\) 0 0
\(486\) 17.0317 + 11.4812i 0.772572 + 0.520799i
\(487\) 3.59259 6.22255i 0.162796 0.281971i −0.773074 0.634315i \(-0.781282\pi\)
0.935870 + 0.352344i \(0.114615\pi\)
\(488\) −3.99504 + 1.30168i −0.180847 + 0.0589245i
\(489\) 4.73989i 0.214345i
\(490\) 0 0
\(491\) 5.80059i 0.261777i −0.991397 0.130889i \(-0.958217\pi\)
0.991397 0.130889i \(-0.0417830\pi\)
\(492\) −0.413796 1.02257i −0.0186554 0.0461012i
\(493\) 3.55252 6.15314i 0.159997 0.277124i
\(494\) −18.8766 + 28.0023i −0.849301 + 1.25988i
\(495\) 0 0
\(496\) −34.1089 9.74027i −1.53153 0.437351i
\(497\) 5.94840 + 7.18308i 0.266822 + 0.322205i
\(498\) −6.06591 0.422506i −0.271820 0.0189329i
\(499\) −34.3466 + 19.8300i −1.53757 + 0.887715i −0.538587 + 0.842570i \(0.681042\pi\)
−0.998980 + 0.0451448i \(0.985625\pi\)
\(500\) 0 0
\(501\) 4.54135 7.86585i 0.202892 0.351420i
\(502\) −10.2543 21.0099i −0.457672 0.937716i
\(503\) 8.22384i 0.366683i −0.983049 0.183341i \(-0.941309\pi\)
0.983049 0.183341i \(-0.0586914\pi\)
\(504\) 16.1967 + 10.2488i 0.721457 + 0.456518i
\(505\) 0 0
\(506\) 14.9012 7.27283i 0.662438 0.323317i
\(507\) −12.0414 6.95209i −0.534776 0.308753i
\(508\) 20.9397 26.8318i 0.929050 1.19047i
\(509\) 28.2081 16.2860i 1.25030 0.721863i 0.279134 0.960252i \(-0.409953\pi\)
0.971170 + 0.238389i \(0.0766194\pi\)
\(510\) 0 0
\(511\) −2.28781 13.4854i −0.101207 0.596560i
\(512\) −18.3386 13.2550i −0.810459 0.585796i
\(513\) 13.0657 7.54347i 0.576864 0.333052i
\(514\) −4.89712 + 7.26456i −0.216003 + 0.320426i
\(515\) 0 0
\(516\) 3.81462 1.54363i 0.167929 0.0679544i
\(517\) −24.9150 −1.09576
\(518\) −40.1983 + 3.97280i −1.76621 + 0.174555i
\(519\) 2.59934i 0.114098i
\(520\) 0 0
\(521\) −4.88783 2.82199i −0.214140 0.123634i 0.389094 0.921198i \(-0.372788\pi\)
−0.603234 + 0.797564i \(0.706121\pi\)
\(522\) −10.5148 + 15.5980i −0.460219 + 0.682704i
\(523\) 2.36780 1.36705i 0.103537 0.0597770i −0.447338 0.894365i \(-0.647628\pi\)
0.550874 + 0.834588i \(0.314294\pi\)
\(524\) −2.38897 0.334418i −0.104363 0.0146091i
\(525\) 0 0
\(526\) −29.8434 2.07867i −1.30123 0.0906342i
\(527\) 6.06633 + 10.5072i 0.264254 + 0.457701i
\(528\) 6.87843 6.65696i 0.299345 0.289707i
\(529\) 6.23437 10.7982i 0.271060 0.469489i
\(530\) 0 0
\(531\) −19.1547 −0.831245
\(532\) 18.4474 11.3755i 0.799797 0.493191i
\(533\) 4.85504i 0.210295i
\(534\) 3.85844 + 7.90550i 0.166971 + 0.342104i
\(535\) 0 0
\(536\) 4.79828 5.33781i 0.207254 0.230558i
\(537\) −6.80697 11.7900i −0.293743 0.508777i
\(538\) −3.04491 + 43.7157i −0.131275 + 1.88472i
\(539\) −16.5064 + 19.1614i −0.710980 + 0.825341i
\(540\) 0 0
\(541\) −14.1500 24.5085i −0.608355 1.05370i −0.991512 0.130018i \(-0.958497\pi\)
0.383157 0.923683i \(-0.374837\pi\)
\(542\) 18.2116 27.0157i 0.782254 1.16042i
\(543\) −4.32526 + 7.49157i −0.185615 + 0.321494i
\(544\) 1.35431 + 7.61987i 0.0580657 + 0.326699i
\(545\) 0 0
\(546\) 8.42026 + 11.7421i 0.360354 + 0.502517i
\(547\) −20.7596 −0.887616 −0.443808 0.896122i \(-0.646373\pi\)
−0.443808 + 0.896122i \(0.646373\pi\)
\(548\) −3.97656 + 1.60916i −0.169870 + 0.0687400i
\(549\) −3.29514 1.90245i −0.140633 0.0811946i
\(550\) 0 0
\(551\) 10.6352 + 18.4207i 0.453075 + 0.784749i
\(552\) −1.25915 + 5.94779i −0.0535930 + 0.253155i
\(553\) −10.4442 + 28.1266i −0.444133 + 1.19606i
\(554\) −0.682514 + 9.79885i −0.0289973 + 0.416313i
\(555\) 0 0
\(556\) 4.17810 5.35375i 0.177191 0.227049i
\(557\) −16.2445 9.37876i −0.688301 0.397391i 0.114674 0.993403i \(-0.463418\pi\)
−0.802975 + 0.596012i \(0.796751\pi\)
\(558\) −14.0893 28.8673i −0.596446 1.22205i
\(559\) −18.1113 −0.766025
\(560\) 0 0
\(561\) −3.27401 −0.138229
\(562\) −2.63248 5.39365i −0.111045 0.227518i
\(563\) 28.9028 + 16.6870i 1.21811 + 0.703274i 0.964513 0.264037i \(-0.0850540\pi\)
0.253594 + 0.967311i \(0.418387\pi\)
\(564\) 5.62027 7.20171i 0.236656 0.303247i
\(565\) 0 0
\(566\) −0.838399 + 12.0369i −0.0352405 + 0.505948i
\(567\) 2.32064 + 13.6790i 0.0974579 + 0.574464i
\(568\) 2.06494 9.75407i 0.0866431 0.409272i
\(569\) 6.51501 + 11.2843i 0.273124 + 0.473064i 0.969660 0.244457i \(-0.0786099\pi\)
−0.696536 + 0.717521i \(0.745277\pi\)
\(570\) 0 0
\(571\) 28.5406 + 16.4779i 1.19439 + 0.689579i 0.959298 0.282395i \(-0.0911290\pi\)
0.235088 + 0.971974i \(0.424462\pi\)
\(572\) −39.0528 + 15.8032i −1.63288 + 0.660763i
\(573\) −8.26295 −0.345190
\(574\) 1.28496 2.83849i 0.0536331 0.118476i
\(575\) 0 0
\(576\) −2.17519 20.3745i −0.0906330 0.848938i
\(577\) −18.1937 + 31.5124i −0.757414 + 1.31188i 0.186751 + 0.982407i \(0.440204\pi\)
−0.944165 + 0.329473i \(0.893129\pi\)
\(578\) −11.9588 + 17.7402i −0.497422 + 0.737893i
\(579\) 6.31373 + 10.9357i 0.262390 + 0.454472i
\(580\) 0 0
\(581\) −10.9542 13.2279i −0.454457 0.548786i
\(582\) −0.0223370 + 0.320692i −0.000925898 + 0.0132931i
\(583\) −13.3996 23.2088i −0.554955 0.961210i
\(584\) −9.77547 + 10.8747i −0.404512 + 0.449997i
\(585\) 0 0
\(586\) 15.6513 + 32.0677i 0.646549 + 1.32470i
\(587\) 28.4245i 1.17321i −0.809875 0.586603i \(-0.800465\pi\)
0.809875 0.586603i \(-0.199535\pi\)
\(588\) −1.81516 9.09357i −0.0748561 0.375013i
\(589\) −36.3217 −1.49661
\(590\) 0 0
\(591\) −0.639794 + 1.10816i −0.0263176 + 0.0455835i
\(592\) 30.0314 + 31.0306i 1.23428 + 1.27535i
\(593\) 3.78574 + 6.55710i 0.155462 + 0.269268i 0.933227 0.359287i \(-0.116980\pi\)
−0.777765 + 0.628555i \(0.783647\pi\)
\(594\) 18.7756 + 1.30777i 0.770371 + 0.0536583i
\(595\) 0 0
\(596\) 37.8042 + 5.29198i 1.54852 + 0.216768i
\(597\) −11.7962 + 6.81052i −0.482785 + 0.278736i
\(598\) 14.9565 22.1870i 0.611616 0.907292i
\(599\) 41.0937 + 23.7255i 1.67904 + 0.969397i 0.962272 + 0.272090i \(0.0877147\pi\)
0.716772 + 0.697307i \(0.245619\pi\)
\(600\) 0 0
\(601\) 13.3242i 0.543506i −0.962367 0.271753i \(-0.912397\pi\)
0.962367 0.271753i \(-0.0876034\pi\)
\(602\) 10.5887 + 4.79341i 0.431564 + 0.195365i
\(603\) 6.49954 0.264682
\(604\) −17.8090 + 7.20663i −0.724639 + 0.293234i
\(605\) 0 0
\(606\) 2.37519 3.52344i 0.0964854 0.143130i
\(607\) −13.0610 + 7.54080i −0.530132 + 0.306072i −0.741070 0.671428i \(-0.765681\pi\)
0.210938 + 0.977499i \(0.432348\pi\)
\(608\) −21.7827 7.89460i −0.883405 0.320168i
\(609\) 8.97261 1.52221i 0.363588 0.0616829i
\(610\) 0 0
\(611\) −34.8191 + 20.1028i −1.40863 + 0.813272i
\(612\) −4.31174 + 5.52499i −0.174292 + 0.223334i
\(613\) 4.50739 + 2.60234i 0.182052 + 0.105108i 0.588256 0.808675i \(-0.299815\pi\)
−0.406205 + 0.913782i \(0.633148\pi\)
\(614\) 37.1915 18.1521i 1.50093 0.732558i
\(615\) 0 0
\(616\) 27.0147 + 1.09660i 1.08845 + 0.0441831i
\(617\) 35.7404i 1.43885i 0.694569 + 0.719426i \(0.255595\pi\)
−0.694569 + 0.719426i \(0.744405\pi\)
\(618\) 2.52189 + 5.16706i 0.101445 + 0.207850i
\(619\) 19.1219 33.1200i 0.768573 1.33121i −0.169764 0.985485i \(-0.554301\pi\)
0.938337 0.345722i \(-0.112366\pi\)
\(620\) 0 0
\(621\) −10.3523 + 5.97690i −0.415423 + 0.239845i
\(622\) 32.0901 + 2.23515i 1.28670 + 0.0896215i
\(623\) −8.64929 + 23.2928i −0.346526 + 0.933205i
\(624\) 4.24151 14.8531i 0.169796 0.594599i
\(625\) 0 0
\(626\) −5.20528 + 7.72169i −0.208045 + 0.308621i
\(627\) 4.90071 8.48828i 0.195716 0.338989i
\(628\) 12.3505 + 30.5205i 0.492838 + 1.21790i
\(629\) 14.7700i 0.588918i
\(630\) 0 0
\(631\) 12.0334i 0.479042i −0.970891 0.239521i \(-0.923010\pi\)
0.970891 0.239521i \(-0.0769904\pi\)
\(632\) 30.4967 9.93659i 1.21309 0.395256i
\(633\) 3.30647 5.72697i 0.131420 0.227627i
\(634\) 16.5599 + 11.1632i 0.657676 + 0.443347i
\(635\) 0 0
\(636\) 9.73118 + 1.36221i 0.385866 + 0.0540152i
\(637\) −7.60740 + 40.0966i −0.301416 + 1.58869i
\(638\) −1.84376 + 26.4709i −0.0729952 + 1.04799i
\(639\) 7.81897 4.51429i 0.309314 0.178582i
\(640\) 0 0
\(641\) −11.4676 + 19.8625i −0.452944 + 0.784522i −0.998567 0.0535086i \(-0.982960\pi\)
0.545624 + 0.838030i \(0.316293\pi\)
\(642\) −6.45488 + 3.15044i −0.254754 + 0.124338i
\(643\) 1.23955i 0.0488833i 0.999701 + 0.0244416i \(0.00778079\pi\)
−0.999701 + 0.0244416i \(0.992219\pi\)
\(644\) −14.6164 + 9.01312i −0.575966 + 0.355167i
\(645\) 0 0
\(646\) 3.47585 + 7.12162i 0.136756 + 0.280196i
\(647\) −12.2469 7.07077i −0.481477 0.277981i 0.239555 0.970883i \(-0.422998\pi\)
−0.721032 + 0.692902i \(0.756332\pi\)
\(648\) 9.91579 11.0307i 0.389529 0.433329i
\(649\) −23.3998 + 13.5099i −0.918523 + 0.530309i
\(650\) 0 0
\(651\) −5.40978 + 14.5687i −0.212026 + 0.570992i
\(652\) 14.1740 + 1.98414i 0.555098 + 0.0777049i
\(653\) −14.8017 + 8.54579i −0.579237 + 0.334423i −0.760830 0.648951i \(-0.775208\pi\)
0.181593 + 0.983374i \(0.441875\pi\)
\(654\) −1.00602 0.678171i −0.0393386 0.0265186i
\(655\) 0 0
\(656\) −3.23110 + 0.809351i −0.126153 + 0.0315999i
\(657\) −13.2414 −0.516598
\(658\) 25.6774 2.53770i 1.00101 0.0989298i
\(659\) 3.45765i 0.134691i −0.997730 0.0673455i \(-0.978547\pi\)
0.997730 0.0673455i \(-0.0214530\pi\)
\(660\) 0 0
\(661\) 13.1317 + 7.58160i 0.510765 + 0.294890i 0.733148 0.680069i \(-0.238050\pi\)
−0.222383 + 0.974959i \(0.571384\pi\)
\(662\) −23.8311 16.0648i −0.926222 0.624377i
\(663\) −4.57547 + 2.64165i −0.177697 + 0.102593i
\(664\) −3.80267 + 17.9625i −0.147572 + 0.697079i
\(665\) 0 0
\(666\) −2.71715 + 39.0100i −0.105287 + 1.51161i
\(667\) −8.42657 14.5952i −0.326278 0.565130i
\(668\) −21.6208 16.8730i −0.836533 0.652836i
\(669\) −5.56972 + 9.64704i −0.215338 + 0.372976i
\(670\) 0 0
\(671\) −5.36721 −0.207199
\(672\) −6.41087 + 7.56125i −0.247305 + 0.291682i
\(673\) 11.2116i 0.432175i −0.976374 0.216087i \(-0.930670\pi\)
0.976374 0.216087i \(-0.0693296\pi\)
\(674\) 20.0428 9.78232i 0.772021 0.376801i
\(675\) 0 0
\(676\) −25.8299 + 33.0980i −0.993458 + 1.27300i
\(677\) −1.83818 3.18383i −0.0706471 0.122364i 0.828538 0.559933i \(-0.189173\pi\)
−0.899185 + 0.437568i \(0.855840\pi\)
\(678\) 6.64010 + 0.462500i 0.255011 + 0.0177622i
\(679\) −0.699331 + 0.579125i −0.0268379 + 0.0222248i
\(680\) 0 0
\(681\) 6.56852 + 11.3770i 0.251706 + 0.435968i
\(682\) −37.5719 25.3276i −1.43870 0.969845i
\(683\) 21.0938 36.5356i 0.807133 1.39800i −0.107708 0.994183i \(-0.534351\pi\)
0.914841 0.403814i \(-0.132316\pi\)
\(684\) −7.87019 19.4488i −0.300924 0.743645i
\(685\) 0 0
\(686\) 15.0598 21.4290i 0.574986 0.818163i
\(687\) 9.22865 0.352095
\(688\) −3.01921 12.0533i −0.115106 0.459528i
\(689\) −37.4523 21.6231i −1.42682 0.823773i
\(690\) 0 0
\(691\) 11.5615 + 20.0251i 0.439820 + 0.761790i 0.997675 0.0681478i \(-0.0217089\pi\)
−0.557855 + 0.829938i \(0.688376\pi\)
\(692\) −7.77298 1.08809i −0.295485 0.0413631i
\(693\) 15.6157 + 18.8569i 0.593190 + 0.716316i
\(694\) 4.29987 + 0.299497i 0.163221 + 0.0113688i
\(695\) 0 0
\(696\) −7.23552 6.50417i −0.274262 0.246540i
\(697\) 0.986645 + 0.569640i 0.0373718 + 0.0215766i
\(698\) −10.6816 + 5.21336i −0.404304 + 0.197329i
\(699\) −6.77301 −0.256179
\(700\) 0 0
\(701\) 29.3192 1.10737 0.553686 0.832725i \(-0.313221\pi\)
0.553686 + 0.832725i \(0.313221\pi\)
\(702\) 27.2943 13.3215i 1.03016 0.502789i
\(703\) 38.2931 + 22.1085i 1.44425 + 0.833839i
\(704\) −17.0274 23.3557i −0.641746 0.880252i
\(705\) 0 0
\(706\) −0.610622 0.0425314i −0.0229811 0.00160069i
\(707\) 11.8330 2.00747i 0.445025 0.0754986i
\(708\) 1.37342 9.81126i 0.0516163 0.368730i
\(709\) 1.67720 + 2.90499i 0.0629884 + 0.109099i 0.895800 0.444458i \(-0.146604\pi\)
−0.832811 + 0.553557i \(0.813270\pi\)
\(710\) 0 0
\(711\) 25.1539 + 14.5226i 0.943346 + 0.544641i
\(712\) 25.2556 8.22890i 0.946492 0.308391i
\(713\) 28.7786 1.07777
\(714\) 3.37419 0.333471i 0.126276 0.0124798i
\(715\) 0 0
\(716\) −38.1060 + 15.4200i −1.42409 + 0.576274i
\(717\) −5.65765 + 9.79934i −0.211289 + 0.365963i
\(718\) 31.6393 + 21.3284i 1.18077 + 0.795970i
\(719\) −15.5142 26.8714i −0.578583 1.00213i −0.995642 0.0932556i \(-0.970273\pi\)
0.417059 0.908879i \(-0.363061\pi\)
\(720\) 0 0
\(721\) −5.65320 + 15.2242i −0.210536 + 0.566980i
\(722\) 3.13857 + 0.218609i 0.116805 + 0.00813579i
\(723\) 6.12138 + 10.6025i 0.227657 + 0.394313i
\(724\) 20.5920 + 16.0702i 0.765297 + 0.597243i
\(725\) 0 0
\(726\) 1.72862 0.843691i 0.0641553 0.0313123i
\(727\) 37.9906i 1.40899i 0.709707 + 0.704497i \(0.248827\pi\)
−0.709707 + 0.704497i \(0.751173\pi\)
\(728\) 38.6382 20.2644i 1.43203 0.751049i
\(729\) 6.11207 0.226373
\(730\) 0 0
\(731\) −2.12499 + 3.68058i −0.0785955 + 0.136131i
\(732\) 1.21072 1.55140i 0.0447496 0.0573413i
\(733\) −15.4876 26.8252i −0.572046 0.990813i −0.996356 0.0852956i \(-0.972817\pi\)
0.424310 0.905517i \(-0.360517\pi\)
\(734\) −2.04601 + 29.3745i −0.0755195 + 1.08423i
\(735\) 0 0
\(736\) 17.2590 + 6.25511i 0.636176 + 0.230566i
\(737\) 7.93996 4.58414i 0.292472 0.168859i
\(738\) −2.50110 1.68602i −0.0920669 0.0620633i
\(739\) 2.53077 + 1.46114i 0.0930957 + 0.0537488i 0.545825 0.837899i \(-0.316216\pi\)
−0.452729 + 0.891648i \(0.649550\pi\)
\(740\) 0 0
\(741\) 15.8167i 0.581039i
\(742\) 16.1735 + 22.5542i 0.593749 + 0.827990i
\(743\) −36.6505 −1.34457 −0.672287 0.740290i \(-0.734688\pi\)
−0.672287 + 0.740290i \(0.734688\pi\)
\(744\) 15.7963 5.14685i 0.579122 0.188693i
\(745\) 0 0
\(746\) −20.7107 13.9613i −0.758274 0.511161i
\(747\) −14.3989 + 8.31323i −0.526829 + 0.304165i
\(748\) −1.37052 + 9.79051i −0.0501110 + 0.357976i
\(749\) −19.0187 7.06219i −0.694927 0.258047i
\(750\) 0 0
\(751\) 31.3355 18.0915i 1.14345 0.660170i 0.196166 0.980571i \(-0.437151\pi\)
0.947282 + 0.320401i \(0.103818\pi\)
\(752\) −19.1831 19.8214i −0.699537 0.722811i
\(753\) 9.48259 + 5.47478i 0.345565 + 0.199512i
\(754\) 18.7814 + 38.4810i 0.683980 + 1.40140i
\(755\) 0 0
\(756\) −19.4833 + 0.564587i −0.708601 + 0.0205338i
\(757\) 1.44394i 0.0524807i 0.999656 + 0.0262404i \(0.00835352\pi\)
−0.999656 + 0.0262404i \(0.991646\pi\)
\(758\) 19.1338 9.33867i 0.694973 0.339196i
\(759\) −3.88297 + 6.72550i −0.140943 + 0.244120i
\(760\) 0 0
\(761\) −24.4509 + 14.1167i −0.886343 + 0.511730i −0.872744 0.488177i \(-0.837662\pi\)
−0.0135983 + 0.999908i \(0.504329\pi\)
\(762\) −1.10763 + 15.9022i −0.0401251 + 0.576076i
\(763\) −0.573178 3.37859i −0.0207505 0.122313i
\(764\) −3.45891 + 24.7093i −0.125139 + 0.893951i
\(765\) 0 0
\(766\) 35.5906 + 23.9920i 1.28594 + 0.866868i
\(767\) −21.8010 + 37.7605i −0.787189 + 1.36345i
\(768\) 10.5920 + 0.346723i 0.382206 + 0.0125113i
\(769\) 38.3866i 1.38426i −0.721774 0.692129i \(-0.756673\pi\)
0.721774 0.692129i \(-0.243327\pi\)
\(770\) 0 0
\(771\) 4.10328i 0.147776i
\(772\) 35.3448 14.3027i 1.27209 0.514765i
\(773\) −9.54086 + 16.5252i −0.343161 + 0.594372i −0.985018 0.172452i \(-0.944831\pi\)
0.641857 + 0.766824i \(0.278164\pi\)
\(774\) 6.28955 9.33013i 0.226073 0.335364i
\(775\) 0 0
\(776\) 0.949638 + 0.201039i 0.0340900 + 0.00721688i
\(777\) 14.5712 12.0666i 0.522738 0.432886i
\(778\) −8.85722 0.616928i −0.317547 0.0221179i
\(779\) −2.95373 + 1.70533i −0.105828 + 0.0611000i
\(780\) 0 0
\(781\) 6.36787 11.0295i 0.227860 0.394666i
\(782\) −2.75401 5.64265i −0.0984833 0.201781i
\(783\) 19.1296i 0.683637i
\(784\) −27.9530 + 1.62141i −0.998322 + 0.0579073i
\(785\) 0 0
\(786\) 1.01532 0.495547i 0.0362152 0.0176756i
\(787\) 4.41858 + 2.55107i 0.157505 + 0.0909358i 0.576681 0.816969i \(-0.304348\pi\)
−0.419176 + 0.907905i \(0.637681\pi\)
\(788\) 3.04598 + 2.37710i 0.108509 + 0.0846808i
\(789\) 12.1340 7.00559i 0.431983 0.249406i
\(790\) 0 0
\(791\) 11.9911 + 14.4800i 0.426354 + 0.514851i
\(792\) 5.42087 25.6063i 0.192622 0.909879i
\(793\) −7.50075 + 4.33056i −0.266359 + 0.153783i
\(794\) −7.68528 + 11.4006i −0.272740 + 0.404592i
\(795\) 0 0
\(796\) 15.4281 + 38.1259i 0.546833 + 1.35134i
\(797\) −25.6101 −0.907155 −0.453578 0.891217i \(-0.649852\pi\)
−0.453578 + 0.891217i \(0.649852\pi\)
\(798\) −4.18611 + 9.24718i −0.148187 + 0.327347i
\(799\) 9.43461i 0.333772i
\(800\) 0 0
\(801\) 20.8310 + 12.0268i 0.736027 + 0.424946i
\(802\) 5.52356 8.19384i 0.195044 0.289335i
\(803\) −16.1760 + 9.33922i −0.570839 + 0.329574i
\(804\) −0.466026 + 3.32913i −0.0164355 + 0.117409i
\(805\) 0 0
\(806\) −72.9429 5.08065i −2.56930 0.178958i
\(807\) −10.2621 17.7744i −0.361241 0.625688i
\(808\) −9.54212 8.57763i −0.335691 0.301760i
\(809\) 25.2381 43.7136i 0.887323 1.53689i 0.0442955 0.999018i \(-0.485896\pi\)
0.843028 0.537870i \(-0.180771\pi\)
\(810\) 0 0
\(811\) 3.15050 0.110629 0.0553145 0.998469i \(-0.482384\pi\)
0.0553145 + 0.998469i \(0.482384\pi\)
\(812\) −0.795986 27.4686i −0.0279336 0.963961i
\(813\) 15.2594i 0.535170i
\(814\) 24.1945 + 49.5718i 0.848018 + 1.73749i
\(815\) 0 0
\(816\) −2.52080 2.60467i −0.0882456 0.0911816i
\(817\) −6.36159 11.0186i −0.222564 0.385492i
\(818\) 0.220664 3.16807i 0.00771533 0.110769i
\(819\) 37.0379 + 13.7533i 1.29421 + 0.480578i
\(820\) 0 0
\(821\) 17.7416 + 30.7294i 0.619187 + 1.07246i 0.989634 + 0.143609i \(0.0458709\pi\)
−0.370448 + 0.928853i \(0.620796\pi\)
\(822\) 1.12305 1.66597i 0.0391709 0.0581074i
\(823\) 4.20565 7.28440i 0.146600 0.253918i −0.783369 0.621557i \(-0.786500\pi\)
0.929969 + 0.367639i \(0.119834\pi\)
\(824\) 16.5071 5.37843i 0.575052 0.187367i
\(825\) 0 0
\(826\) 22.7398 16.3066i 0.791219 0.567381i
\(827\) −4.33435 −0.150720 −0.0753601 0.997156i \(-0.524011\pi\)
−0.0753601 + 0.997156i \(0.524011\pi\)
\(828\) 6.23577 + 15.4098i 0.216708 + 0.535529i
\(829\) −20.9404 12.0899i −0.727289 0.419900i 0.0901408 0.995929i \(-0.471268\pi\)
−0.817429 + 0.576029i \(0.804602\pi\)
\(830\) 0 0
\(831\) −2.30023 3.98412i −0.0797942 0.138208i
\(832\) −42.6407 18.9013i −1.47830 0.655283i
\(833\) 7.25589 + 6.25050i 0.251402 + 0.216567i
\(834\) −0.221005 + 3.17296i −0.00765277 + 0.109871i
\(835\) 0 0
\(836\) −23.3317 18.2082i −0.806943 0.629744i
\(837\) 28.2896 + 16.3330i 0.977831 + 0.564551i
\(838\) −11.3865 23.3296i −0.393340 0.805909i
\(839\) −18.3056 −0.631979 −0.315989 0.948763i \(-0.602336\pi\)
−0.315989 + 0.948763i \(0.602336\pi\)
\(840\) 0 0
\(841\) −2.02999 −0.0699998
\(842\) 1.41000 + 2.88892i 0.0485917 + 0.0995588i
\(843\) 2.43437 + 1.40549i 0.0838442 + 0.0484075i
\(844\) −15.7417 12.2849i −0.541851 0.422864i
\(845\) 0 0
\(846\) 1.73563 24.9184i 0.0596722 0.856712i
\(847\) 5.09322 + 1.89126i 0.175005 + 0.0649845i
\(848\) 8.14704 28.5296i 0.279770 0.979711i
\(849\) −2.82560 4.89408i −0.0969743 0.167964i
\(850\) 0 0
\(851\) −30.3407 17.5172i −1.04006 0.600481i
\(852\) 1.75163 + 4.32864i 0.0600100 + 0.148297i
\(853\) −16.9533 −0.580469 −0.290234 0.956956i \(-0.593733\pi\)
−0.290234 + 0.956956i \(0.593733\pi\)
\(854\) 5.53145 0.546673i 0.189282 0.0187068i
\(855\) 0 0
\(856\) 6.71894 + 20.6213i 0.229649 + 0.704821i
\(857\) −25.2872 + 43.7988i −0.863795 + 1.49614i 0.00444284 + 0.999990i \(0.498586\pi\)
−0.868238 + 0.496147i \(0.834748\pi\)
\(858\) 11.0292 16.3611i 0.376530 0.558558i
\(859\) −2.51925 4.36346i −0.0859555 0.148879i 0.819842 0.572589i \(-0.194061\pi\)
−0.905798 + 0.423710i \(0.860728\pi\)
\(860\) 0 0
\(861\) 0.244083 + 1.43874i 0.00831832 + 0.0490321i
\(862\) −1.26379 + 18.1442i −0.0430448 + 0.617993i
\(863\) 5.87084 + 10.1686i 0.199846 + 0.346143i 0.948478 0.316842i \(-0.102623\pi\)
−0.748633 + 0.662985i \(0.769289\pi\)
\(864\) 13.4157 + 15.9440i 0.456412 + 0.542425i
\(865\) 0 0
\(866\) −20.8610 42.7418i −0.708887 1.45243i
\(867\) 10.0203i 0.340306i
\(868\) 41.3013 + 22.2758i 1.40186 + 0.756090i
\(869\) 40.9714 1.38986
\(870\) 0 0
\(871\) 7.39747 12.8128i 0.250654 0.434145i
\(872\) −2.44911 + 2.72450i −0.0829373 + 0.0922631i
\(873\) 0.439502 + 0.761240i 0.0148749 + 0.0257641i
\(874\) 18.7517 + 1.30610i 0.634284 + 0.0441795i
\(875\) 0 0
\(876\) 0.949429 6.78241i 0.0320782 0.229156i
\(877\) 20.9426 12.0912i 0.707180 0.408290i −0.102836 0.994698i \(-0.532792\pi\)
0.810016 + 0.586408i \(0.199458\pi\)
\(878\) −19.6731 + 29.1838i −0.663936 + 0.984905i
\(879\) −14.4734 8.35624i −0.488177 0.281849i
\(880\) 0 0
\(881\) 19.6285i 0.661301i 0.943753 + 0.330651i \(0.107268\pi\)
−0.943753 + 0.330651i \(0.892732\pi\)
\(882\) −18.0142 17.8434i −0.606568 0.600820i
\(883\) 11.2418 0.378315 0.189158 0.981947i \(-0.439424\pi\)
0.189158 + 0.981947i \(0.439424\pi\)
\(884\) 5.98420 + 14.7882i 0.201271 + 0.497380i
\(885\) 0 0
\(886\) 6.28266 9.31991i 0.211070 0.313109i
\(887\) 36.2085 20.9050i 1.21576 0.701920i 0.251753 0.967792i \(-0.418993\pi\)
0.964009 + 0.265871i \(0.0856596\pi\)
\(888\) −19.7865 4.18882i −0.663993 0.140568i
\(889\) −34.6779 + 28.7172i −1.16306 + 0.963143i
\(890\) 0 0
\(891\) 16.4082 9.47327i 0.549695 0.317366i
\(892\) 26.5167 + 20.6938i 0.887846 + 0.692881i
\(893\) −24.4604 14.1222i −0.818537 0.472583i
\(894\) −16.0669 + 7.84177i −0.537357 + 0.262268i
\(895\) 0 0
\(896\) 19.9274 + 22.3361i 0.665726 + 0.746196i
\(897\) 12.5320i 0.418430i
\(898\) −8.87195 18.1776i −0.296061 0.606594i
\(899\) −23.0272 + 39.8842i −0.768000 + 1.33021i
\(900\) 0 0
\(901\) −8.78851 + 5.07405i −0.292788 + 0.169041i
\(902\) −4.24455 0.295644i −0.141328 0.00984385i
\(903\) −5.36708 + 0.910527i −0.178605 + 0.0303005i
\(904\) 4.16262 19.6628i 0.138447 0.653974i
\(905\) 0 0
\(906\) 5.02958 7.46105i 0.167097 0.247877i
\(907\) 10.9044 18.8870i 0.362076 0.627133i −0.626227 0.779641i \(-0.715402\pi\)
0.988302 + 0.152508i \(0.0487349\pi\)
\(908\) 36.7711 14.8798i 1.22029 0.493805i
\(909\) 11.6189i 0.385374i
\(910\) 0 0
\(911\) 2.40991i 0.0798440i 0.999203 + 0.0399220i \(0.0127109\pi\)
−0.999203 + 0.0399220i \(0.987289\pi\)
\(912\) 10.5262 2.63669i 0.348557 0.0873095i
\(913\) −11.7267 + 20.3112i −0.388096 + 0.672202i
\(914\) −26.0078 17.5322i −0.860262 0.579913i
\(915\) 0 0
\(916\) 3.86316 27.5971i 0.127642 0.911835i
\(917\) 2.99154 + 1.11085i 0.0987893 + 0.0366833i
\(918\) 0.495214 7.10977i 0.0163445 0.234657i
\(919\) −13.1661 + 7.60145i −0.434310 + 0.250749i −0.701181 0.712983i \(-0.747343\pi\)
0.266871 + 0.963732i \(0.414010\pi\)
\(920\) 0 0
\(921\) −9.69140 + 16.7860i −0.319343 + 0.553118i
\(922\) −41.7607 + 20.3822i −1.37532 + 0.671251i
\(923\) 20.5518i 0.676470i
\(924\) −10.7784 + 6.64644i −0.354583 + 0.218652i
\(925\) 0 0
\(926\) 2.05562 + 4.21172i 0.0675517 + 0.138406i
\(927\) 13.6152 + 7.86074i 0.447182 + 0.258181i
\(928\) −22.4787 + 18.9142i −0.737900 + 0.620890i
\(929\) −18.0735 + 10.4347i −0.592971 + 0.342352i −0.766272 0.642517i \(-0.777890\pi\)
0.173300 + 0.984869i \(0.444557\pi\)
\(930\) 0 0
\(931\) −27.0662 + 9.45573i −0.887059 + 0.309899i
\(932\) −2.83522 + 20.2538i −0.0928706 + 0.663437i
\(933\) −13.0475 + 7.53299i −0.427157 + 0.246619i
\(934\) −41.1993 27.7729i −1.34808 0.908757i
\(935\) 0 0
\(936\) −13.0848 40.1590i −0.427690 1.31264i
\(937\) −10.9083 −0.356358 −0.178179 0.983998i \(-0.557021\pi\)
−0.178179 + 0.983998i \(0.557021\pi\)
\(938\) −7.71601 + 5.53313i −0.251937 + 0.180663i
\(939\) 4.36148i 0.142331i
\(940\) 0 0
\(941\) −42.7569 24.6857i −1.39383 0.804730i −0.400097 0.916473i \(-0.631023\pi\)
−0.993737 + 0.111743i \(0.964357\pi\)
\(942\) −12.7865 8.61952i −0.416607 0.280839i
\(943\) 2.34032 1.35118i 0.0762113 0.0440006i
\(944\) −28.7644 8.21408i −0.936202 0.267346i
\(945\) 0 0
\(946\) 1.10287 15.8339i 0.0358574 0.514804i
\(947\) 7.27929 + 12.6081i 0.236545 + 0.409708i 0.959721 0.280956i \(-0.0906515\pi\)
−0.723175 + 0.690664i \(0.757318\pi\)
\(948\) −9.24221 + 11.8428i −0.300173 + 0.384637i
\(949\) −15.0708 + 26.1034i −0.489218 + 0.847351i
\(950\) 0 0
\(951\) −9.35358 −0.303311
\(952\) 0.415250 10.2297i 0.0134583 0.331546i
\(953\) 9.87954i 0.320030i −0.987115 0.160015i \(-0.948846\pi\)
0.987115 0.160015i \(-0.0511542\pi\)
\(954\) 24.1454 11.7847i 0.781736 0.381542i
\(955\) 0 0
\(956\) 26.9354 + 21.0205i 0.871152 + 0.679853i
\(957\) −6.21390 10.7628i −0.200867 0.347912i
\(958\) 31.4983 + 2.19394i 1.01766 + 0.0708829i
\(959\) 5.59494 0.949183i 0.180670 0.0306507i
\(960\) 0 0
\(961\) −23.8215 41.2601i −0.768437 1.33097i
\(962\) 73.8095 + 49.7558i 2.37971 + 1.60419i
\(963\) −9.81993 + 17.0086i −0.316443 + 0.548095i
\(964\) 34.2680 13.8669i 1.10370 0.446624i
\(965\) 0 0
\(966\) 3.31677 7.32680i 0.106715 0.235736i
\(967\) −15.5047 −0.498597 −0.249298 0.968427i \(-0.580200\pi\)
−0.249298 + 0.968427i \(0.580200\pi\)
\(968\) −1.79934 5.52240i −0.0578330 0.177497i
\(969\) −3.21427 1.85576i −0.103257 0.0596156i
\(970\) 0 0
\(971\) −16.5173 28.6089i −0.530067 0.918102i −0.999385 0.0350732i \(-0.988834\pi\)
0.469318 0.883029i \(-0.344500\pi\)
\(972\) −4.02701 + 28.7676i −0.129166 + 0.922721i
\(973\) −6.91927 + 5.72993i −0.221822 + 0.183693i
\(974\) 10.1368 + 0.706056i 0.324805 + 0.0226235i
\(975\) 0 0
\(976\) −4.13245 4.26993i −0.132276 0.136677i
\(977\) −44.1430 25.4860i −1.41226 0.815369i −0.416660 0.909062i \(-0.636799\pi\)
−0.995601 + 0.0936930i \(0.970133\pi\)
\(978\) −6.02400 + 2.94014i −0.192626 + 0.0940153i
\(979\) 33.9301 1.08441
\(980\) 0 0
\(981\) −3.31746 −0.105918
\(982\) 7.37207 3.59809i 0.235252 0.114820i
\(983\) −21.2423 12.2642i −0.677523 0.391168i 0.121398 0.992604i \(-0.461262\pi\)
−0.798921 + 0.601436i \(0.794596\pi\)
\(984\) 1.04293 1.16020i 0.0332474 0.0369859i
\(985\) 0 0
\(986\) 10.0238 + 0.698180i 0.319221 + 0.0222346i
\(987\) −9.30762 + 7.70775i −0.296265 + 0.245340i
\(988\) −47.2977 6.62093i −1.50474 0.210640i
\(989\) 5.04046 + 8.73034i 0.160277 + 0.277609i
\(990\) 0 0
\(991\) −45.8274 26.4585i −1.45576 0.840481i −0.456957 0.889489i \(-0.651061\pi\)
−0.998798 + 0.0490078i \(0.984394\pi\)
\(992\) −8.77857 49.3915i −0.278720 1.56818i
\(993\) 13.4606 0.427160
\(994\) −5.43933 + 12.0156i −0.172525 + 0.381111i
\(995\) 0 0
\(996\) −3.22570 7.97135i −0.102210 0.252582i
\(997\) 8.51148 14.7423i 0.269561 0.466894i −0.699187 0.714939i \(-0.746455\pi\)
0.968749 + 0.248045i \(0.0797880\pi\)
\(998\) −46.5075 31.3512i −1.47217 0.992406i
\(999\) −19.8834 34.4390i −0.629082 1.08960i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.t.d.199.10 32
4.3 odd 2 inner 700.2.t.d.199.5 32
5.2 odd 4 140.2.o.a.31.2 32
5.3 odd 4 700.2.p.c.451.15 32
5.4 even 2 700.2.t.c.199.7 32
7.5 odd 6 700.2.t.c.299.12 32
20.3 even 4 700.2.p.c.451.3 32
20.7 even 4 140.2.o.a.31.14 yes 32
20.19 odd 2 700.2.t.c.199.12 32
28.19 even 6 700.2.t.c.299.7 32
35.2 odd 12 980.2.o.f.411.14 32
35.12 even 12 140.2.o.a.131.14 yes 32
35.17 even 12 980.2.g.a.391.17 32
35.19 odd 6 inner 700.2.t.d.299.5 32
35.27 even 4 980.2.o.f.31.2 32
35.32 odd 12 980.2.g.a.391.18 32
35.33 even 12 700.2.p.c.551.3 32
140.19 even 6 inner 700.2.t.d.299.10 32
140.27 odd 4 980.2.o.f.31.14 32
140.47 odd 12 140.2.o.a.131.2 yes 32
140.67 even 12 980.2.g.a.391.19 32
140.87 odd 12 980.2.g.a.391.20 32
140.103 odd 12 700.2.p.c.551.15 32
140.107 even 12 980.2.o.f.411.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.o.a.31.2 32 5.2 odd 4
140.2.o.a.31.14 yes 32 20.7 even 4
140.2.o.a.131.2 yes 32 140.47 odd 12
140.2.o.a.131.14 yes 32 35.12 even 12
700.2.p.c.451.3 32 20.3 even 4
700.2.p.c.451.15 32 5.3 odd 4
700.2.p.c.551.3 32 35.33 even 12
700.2.p.c.551.15 32 140.103 odd 12
700.2.t.c.199.7 32 5.4 even 2
700.2.t.c.199.12 32 20.19 odd 2
700.2.t.c.299.7 32 28.19 even 6
700.2.t.c.299.12 32 7.5 odd 6
700.2.t.d.199.5 32 4.3 odd 2 inner
700.2.t.d.199.10 32 1.1 even 1 trivial
700.2.t.d.299.5 32 35.19 odd 6 inner
700.2.t.d.299.10 32 140.19 even 6 inner
980.2.g.a.391.17 32 35.17 even 12
980.2.g.a.391.18 32 35.32 odd 12
980.2.g.a.391.19 32 140.67 even 12
980.2.g.a.391.20 32 140.87 odd 12
980.2.o.f.31.2 32 35.27 even 4
980.2.o.f.31.14 32 140.27 odd 4
980.2.o.f.411.2 32 140.107 even 12
980.2.o.f.411.14 32 35.2 odd 12