Properties

Label 700.2.t.d
Level $700$
Weight $2$
Character orbit 700.t
Analytic conductor $5.590$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,2,Mod(199,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32 q + 2 q^{4} + 16 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 32 q + 2 q^{4} + 16 q^{9} + 14 q^{12} + 8 q^{13} - 2 q^{14} - 14 q^{16} - 54 q^{18} - 12 q^{21} - 36 q^{24} + 30 q^{26} - 32 q^{28} + 40 q^{29} - 60 q^{32} + 24 q^{33} + 60 q^{36} + 60 q^{37} + 46 q^{38} - 78 q^{42} + 18 q^{44} + 2 q^{46} + 28 q^{48} + 16 q^{49} + 46 q^{52} + 12 q^{53} - 12 q^{54} - 4 q^{56} - 42 q^{58} + 24 q^{61} - 8 q^{62} - 4 q^{64} + 24 q^{66} + 4 q^{68} - 90 q^{72} + 24 q^{73} - 38 q^{74} - 20 q^{77} - 36 q^{81} - 8 q^{82} + 20 q^{84} + 28 q^{86} + 78 q^{88} + 60 q^{89} - 72 q^{93} - 18 q^{94} - 60 q^{96} + 48 q^{97} + 124 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
199.1 −1.41125 0.0915727i 2.59647 + 1.49907i 1.98323 + 0.258463i 0 −3.52698 2.35332i 1.65899 2.06101i −2.77516 0.546365i 2.99443 + 5.18651i 0
199.2 −1.35728 0.397222i −0.963833 0.556469i 1.68443 + 1.07828i 0 1.08715 + 1.13814i −1.26433 + 2.32410i −1.85793 2.13263i −0.880685 1.52539i 0
199.3 −1.29442 + 0.569639i 2.62152 + 1.51353i 1.35102 1.47470i 0 −4.25550 0.465823i 0.602834 + 2.57616i −0.908739 + 2.67847i 3.08156 + 5.33743i 0
199.4 −1.14053 + 0.836177i −2.62152 1.51353i 0.601615 1.90737i 0 4.25550 0.465823i −0.602834 2.57616i 0.908739 + 2.67847i 3.08156 + 5.33743i 0
199.5 −0.790498 1.17265i 0.573616 + 0.331177i −0.750225 + 1.85396i 0 −0.0650866 0.934447i −2.03775 + 1.68748i 2.76710 0.585797i −1.28064 2.21814i 0
199.6 −0.626319 + 1.26796i −2.59647 1.49907i −1.21545 1.58830i 0 3.52698 2.35332i −1.65899 + 2.06101i 2.77516 0.546365i 2.99443 + 5.18651i 0
199.7 −0.334637 + 1.37405i 0.963833 + 0.556469i −1.77604 0.919616i 0 −1.08715 + 1.13814i 1.26433 2.32410i 1.85793 2.13263i −0.880685 1.52539i 0
199.8 −0.299797 1.38207i −2.37047 1.36859i −1.82024 + 0.828682i 0 −1.18083 + 3.68646i 2.43939 1.02440i 1.69100 + 2.26727i 2.24609 + 3.89033i 0
199.9 −0.242400 1.39328i 0.703249 + 0.406021i −1.88248 + 0.675465i 0 0.395235 1.07825i 2.62428 + 0.336411i 1.39743 + 2.45910i −1.17029 2.02701i 0
199.10 0.620297 + 1.27092i −0.573616 0.331177i −1.23046 + 1.57669i 0 0.0650866 0.934447i 2.03775 1.68748i −2.76710 0.585797i −1.28064 2.21814i 0
199.11 0.942109 1.05472i 0.780530 + 0.450639i −0.224860 1.98732i 0 1.21064 0.398687i −1.30833 2.29962i −2.30790 1.63511i −1.09385 1.89460i 0
199.12 1.04701 + 0.950668i 2.37047 + 1.36859i 0.192463 + 1.99072i 0 1.18083 + 3.68646i −2.43939 + 1.02440i −1.69100 + 2.26727i 2.24609 + 3.89033i 0
199.13 1.08542 + 0.906567i −0.703249 0.406021i 0.356272 + 1.96801i 0 −0.395235 1.07825i −2.62428 0.336411i −1.39743 + 2.45910i −1.17029 2.02701i 0
199.14 1.09557 0.894275i −1.55083 0.895374i 0.400544 1.95948i 0 −2.49976 + 0.405928i 2.56598 + 0.644798i −1.31349 2.50494i 0.103389 + 0.179074i 0
199.15 1.32225 0.501653i 1.55083 + 0.895374i 1.49669 1.32662i 0 2.49976 + 0.405928i −2.56598 0.644798i 1.31349 2.50494i 0.103389 + 0.179074i 0
199.16 1.38447 0.288532i −0.780530 0.450639i 1.83350 0.798926i 0 −1.21064 0.398687i 1.30833 + 2.29962i 2.30790 1.63511i −1.09385 1.89460i 0
299.1 −1.41125 + 0.0915727i 2.59647 1.49907i 1.98323 0.258463i 0 −3.52698 + 2.35332i 1.65899 + 2.06101i −2.77516 + 0.546365i 2.99443 5.18651i 0
299.2 −1.35728 + 0.397222i −0.963833 + 0.556469i 1.68443 1.07828i 0 1.08715 1.13814i −1.26433 2.32410i −1.85793 + 2.13263i −0.880685 + 1.52539i 0
299.3 −1.29442 0.569639i 2.62152 1.51353i 1.35102 + 1.47470i 0 −4.25550 + 0.465823i 0.602834 2.57616i −0.908739 2.67847i 3.08156 5.33743i 0
299.4 −1.14053 0.836177i −2.62152 + 1.51353i 0.601615 + 1.90737i 0 4.25550 + 0.465823i −0.602834 + 2.57616i 0.908739 2.67847i 3.08156 5.33743i 0
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 199.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
35.i odd 6 1 inner
140.s even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 700.2.t.d 32
4.b odd 2 1 inner 700.2.t.d 32
5.b even 2 1 700.2.t.c 32
5.c odd 4 1 140.2.o.a 32
5.c odd 4 1 700.2.p.c 32
7.d odd 6 1 700.2.t.c 32
20.d odd 2 1 700.2.t.c 32
20.e even 4 1 140.2.o.a 32
20.e even 4 1 700.2.p.c 32
28.f even 6 1 700.2.t.c 32
35.f even 4 1 980.2.o.f 32
35.i odd 6 1 inner 700.2.t.d 32
35.k even 12 1 140.2.o.a 32
35.k even 12 1 700.2.p.c 32
35.k even 12 1 980.2.g.a 32
35.l odd 12 1 980.2.g.a 32
35.l odd 12 1 980.2.o.f 32
140.j odd 4 1 980.2.o.f 32
140.s even 6 1 inner 700.2.t.d 32
140.w even 12 1 980.2.g.a 32
140.w even 12 1 980.2.o.f 32
140.x odd 12 1 140.2.o.a 32
140.x odd 12 1 700.2.p.c 32
140.x odd 12 1 980.2.g.a 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.o.a 32 5.c odd 4 1
140.2.o.a 32 20.e even 4 1
140.2.o.a 32 35.k even 12 1
140.2.o.a 32 140.x odd 12 1
700.2.p.c 32 5.c odd 4 1
700.2.p.c 32 20.e even 4 1
700.2.p.c 32 35.k even 12 1
700.2.p.c 32 140.x odd 12 1
700.2.t.c 32 5.b even 2 1
700.2.t.c 32 7.d odd 6 1
700.2.t.c 32 20.d odd 2 1
700.2.t.c 32 28.f even 6 1
700.2.t.d 32 1.a even 1 1 trivial
700.2.t.d 32 4.b odd 2 1 inner
700.2.t.d 32 35.i odd 6 1 inner
700.2.t.d 32 140.s even 6 1 inner
980.2.g.a 32 35.k even 12 1
980.2.g.a 32 35.l odd 12 1
980.2.g.a 32 140.w even 12 1
980.2.g.a 32 140.x odd 12 1
980.2.o.f 32 35.f even 4 1
980.2.o.f 32 35.l odd 12 1
980.2.o.f 32 140.j odd 4 1
980.2.o.f 32 140.w even 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(700, [\chi])\):

\( T_{3}^{32} - 32 T_{3}^{30} + 629 T_{3}^{28} - 7904 T_{3}^{26} + 73006 T_{3}^{24} - 483232 T_{3}^{22} + \cdots + 331776 \) Copy content Toggle raw display
\( T_{13}^{8} - 2T_{13}^{7} - 51T_{13}^{6} + 112T_{13}^{5} + 724T_{13}^{4} - 1392T_{13}^{3} - 3708T_{13}^{2} + 4752T_{13} + 5856 \) Copy content Toggle raw display