Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [700,2,Mod(199,700)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(700, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("700.199");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 700.t (of order \(6\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.58952814149\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 140) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
199.1 | −1.41125 | − | 0.0915727i | 2.59647 | + | 1.49907i | 1.98323 | + | 0.258463i | 0 | −3.52698 | − | 2.35332i | 1.65899 | − | 2.06101i | −2.77516 | − | 0.546365i | 2.99443 | + | 5.18651i | 0 | ||||
199.2 | −1.35728 | − | 0.397222i | −0.963833 | − | 0.556469i | 1.68443 | + | 1.07828i | 0 | 1.08715 | + | 1.13814i | −1.26433 | + | 2.32410i | −1.85793 | − | 2.13263i | −0.880685 | − | 1.52539i | 0 | ||||
199.3 | −1.29442 | + | 0.569639i | 2.62152 | + | 1.51353i | 1.35102 | − | 1.47470i | 0 | −4.25550 | − | 0.465823i | 0.602834 | + | 2.57616i | −0.908739 | + | 2.67847i | 3.08156 | + | 5.33743i | 0 | ||||
199.4 | −1.14053 | + | 0.836177i | −2.62152 | − | 1.51353i | 0.601615 | − | 1.90737i | 0 | 4.25550 | − | 0.465823i | −0.602834 | − | 2.57616i | 0.908739 | + | 2.67847i | 3.08156 | + | 5.33743i | 0 | ||||
199.5 | −0.790498 | − | 1.17265i | 0.573616 | + | 0.331177i | −0.750225 | + | 1.85396i | 0 | −0.0650866 | − | 0.934447i | −2.03775 | + | 1.68748i | 2.76710 | − | 0.585797i | −1.28064 | − | 2.21814i | 0 | ||||
199.6 | −0.626319 | + | 1.26796i | −2.59647 | − | 1.49907i | −1.21545 | − | 1.58830i | 0 | 3.52698 | − | 2.35332i | −1.65899 | + | 2.06101i | 2.77516 | − | 0.546365i | 2.99443 | + | 5.18651i | 0 | ||||
199.7 | −0.334637 | + | 1.37405i | 0.963833 | + | 0.556469i | −1.77604 | − | 0.919616i | 0 | −1.08715 | + | 1.13814i | 1.26433 | − | 2.32410i | 1.85793 | − | 2.13263i | −0.880685 | − | 1.52539i | 0 | ||||
199.8 | −0.299797 | − | 1.38207i | −2.37047 | − | 1.36859i | −1.82024 | + | 0.828682i | 0 | −1.18083 | + | 3.68646i | 2.43939 | − | 1.02440i | 1.69100 | + | 2.26727i | 2.24609 | + | 3.89033i | 0 | ||||
199.9 | −0.242400 | − | 1.39328i | 0.703249 | + | 0.406021i | −1.88248 | + | 0.675465i | 0 | 0.395235 | − | 1.07825i | 2.62428 | + | 0.336411i | 1.39743 | + | 2.45910i | −1.17029 | − | 2.02701i | 0 | ||||
199.10 | 0.620297 | + | 1.27092i | −0.573616 | − | 0.331177i | −1.23046 | + | 1.57669i | 0 | 0.0650866 | − | 0.934447i | 2.03775 | − | 1.68748i | −2.76710 | − | 0.585797i | −1.28064 | − | 2.21814i | 0 | ||||
199.11 | 0.942109 | − | 1.05472i | 0.780530 | + | 0.450639i | −0.224860 | − | 1.98732i | 0 | 1.21064 | − | 0.398687i | −1.30833 | − | 2.29962i | −2.30790 | − | 1.63511i | −1.09385 | − | 1.89460i | 0 | ||||
199.12 | 1.04701 | + | 0.950668i | 2.37047 | + | 1.36859i | 0.192463 | + | 1.99072i | 0 | 1.18083 | + | 3.68646i | −2.43939 | + | 1.02440i | −1.69100 | + | 2.26727i | 2.24609 | + | 3.89033i | 0 | ||||
199.13 | 1.08542 | + | 0.906567i | −0.703249 | − | 0.406021i | 0.356272 | + | 1.96801i | 0 | −0.395235 | − | 1.07825i | −2.62428 | − | 0.336411i | −1.39743 | + | 2.45910i | −1.17029 | − | 2.02701i | 0 | ||||
199.14 | 1.09557 | − | 0.894275i | −1.55083 | − | 0.895374i | 0.400544 | − | 1.95948i | 0 | −2.49976 | + | 0.405928i | 2.56598 | + | 0.644798i | −1.31349 | − | 2.50494i | 0.103389 | + | 0.179074i | 0 | ||||
199.15 | 1.32225 | − | 0.501653i | 1.55083 | + | 0.895374i | 1.49669 | − | 1.32662i | 0 | 2.49976 | + | 0.405928i | −2.56598 | − | 0.644798i | 1.31349 | − | 2.50494i | 0.103389 | + | 0.179074i | 0 | ||||
199.16 | 1.38447 | − | 0.288532i | −0.780530 | − | 0.450639i | 1.83350 | − | 0.798926i | 0 | −1.21064 | − | 0.398687i | 1.30833 | + | 2.29962i | 2.30790 | − | 1.63511i | −1.09385 | − | 1.89460i | 0 | ||||
299.1 | −1.41125 | + | 0.0915727i | 2.59647 | − | 1.49907i | 1.98323 | − | 0.258463i | 0 | −3.52698 | + | 2.35332i | 1.65899 | + | 2.06101i | −2.77516 | + | 0.546365i | 2.99443 | − | 5.18651i | 0 | ||||
299.2 | −1.35728 | + | 0.397222i | −0.963833 | + | 0.556469i | 1.68443 | − | 1.07828i | 0 | 1.08715 | − | 1.13814i | −1.26433 | − | 2.32410i | −1.85793 | + | 2.13263i | −0.880685 | + | 1.52539i | 0 | ||||
299.3 | −1.29442 | − | 0.569639i | 2.62152 | − | 1.51353i | 1.35102 | + | 1.47470i | 0 | −4.25550 | + | 0.465823i | 0.602834 | − | 2.57616i | −0.908739 | − | 2.67847i | 3.08156 | − | 5.33743i | 0 | ||||
299.4 | −1.14053 | − | 0.836177i | −2.62152 | + | 1.51353i | 0.601615 | + | 1.90737i | 0 | 4.25550 | + | 0.465823i | −0.602834 | + | 2.57616i | 0.908739 | − | 2.67847i | 3.08156 | − | 5.33743i | 0 | ||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
35.i | odd | 6 | 1 | inner |
140.s | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 700.2.t.d | 32 | |
4.b | odd | 2 | 1 | inner | 700.2.t.d | 32 | |
5.b | even | 2 | 1 | 700.2.t.c | 32 | ||
5.c | odd | 4 | 1 | 140.2.o.a | ✓ | 32 | |
5.c | odd | 4 | 1 | 700.2.p.c | 32 | ||
7.d | odd | 6 | 1 | 700.2.t.c | 32 | ||
20.d | odd | 2 | 1 | 700.2.t.c | 32 | ||
20.e | even | 4 | 1 | 140.2.o.a | ✓ | 32 | |
20.e | even | 4 | 1 | 700.2.p.c | 32 | ||
28.f | even | 6 | 1 | 700.2.t.c | 32 | ||
35.f | even | 4 | 1 | 980.2.o.f | 32 | ||
35.i | odd | 6 | 1 | inner | 700.2.t.d | 32 | |
35.k | even | 12 | 1 | 140.2.o.a | ✓ | 32 | |
35.k | even | 12 | 1 | 700.2.p.c | 32 | ||
35.k | even | 12 | 1 | 980.2.g.a | 32 | ||
35.l | odd | 12 | 1 | 980.2.g.a | 32 | ||
35.l | odd | 12 | 1 | 980.2.o.f | 32 | ||
140.j | odd | 4 | 1 | 980.2.o.f | 32 | ||
140.s | even | 6 | 1 | inner | 700.2.t.d | 32 | |
140.w | even | 12 | 1 | 980.2.g.a | 32 | ||
140.w | even | 12 | 1 | 980.2.o.f | 32 | ||
140.x | odd | 12 | 1 | 140.2.o.a | ✓ | 32 | |
140.x | odd | 12 | 1 | 700.2.p.c | 32 | ||
140.x | odd | 12 | 1 | 980.2.g.a | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
140.2.o.a | ✓ | 32 | 5.c | odd | 4 | 1 | |
140.2.o.a | ✓ | 32 | 20.e | even | 4 | 1 | |
140.2.o.a | ✓ | 32 | 35.k | even | 12 | 1 | |
140.2.o.a | ✓ | 32 | 140.x | odd | 12 | 1 | |
700.2.p.c | 32 | 5.c | odd | 4 | 1 | ||
700.2.p.c | 32 | 20.e | even | 4 | 1 | ||
700.2.p.c | 32 | 35.k | even | 12 | 1 | ||
700.2.p.c | 32 | 140.x | odd | 12 | 1 | ||
700.2.t.c | 32 | 5.b | even | 2 | 1 | ||
700.2.t.c | 32 | 7.d | odd | 6 | 1 | ||
700.2.t.c | 32 | 20.d | odd | 2 | 1 | ||
700.2.t.c | 32 | 28.f | even | 6 | 1 | ||
700.2.t.d | 32 | 1.a | even | 1 | 1 | trivial | |
700.2.t.d | 32 | 4.b | odd | 2 | 1 | inner | |
700.2.t.d | 32 | 35.i | odd | 6 | 1 | inner | |
700.2.t.d | 32 | 140.s | even | 6 | 1 | inner | |
980.2.g.a | 32 | 35.k | even | 12 | 1 | ||
980.2.g.a | 32 | 35.l | odd | 12 | 1 | ||
980.2.g.a | 32 | 140.w | even | 12 | 1 | ||
980.2.g.a | 32 | 140.x | odd | 12 | 1 | ||
980.2.o.f | 32 | 35.f | even | 4 | 1 | ||
980.2.o.f | 32 | 35.l | odd | 12 | 1 | ||
980.2.o.f | 32 | 140.j | odd | 4 | 1 | ||
980.2.o.f | 32 | 140.w | even | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(700, [\chi])\):
\( T_{3}^{32} - 32 T_{3}^{30} + 629 T_{3}^{28} - 7904 T_{3}^{26} + 73006 T_{3}^{24} - 483232 T_{3}^{22} + \cdots + 331776 \) |
\( T_{13}^{8} - 2T_{13}^{7} - 51T_{13}^{6} + 112T_{13}^{5} + 724T_{13}^{4} - 1392T_{13}^{3} - 3708T_{13}^{2} + 4752T_{13} + 5856 \) |