# Properties

 Label 700.2.r.c Level $700$ Weight $2$ Character orbit 700.r Analytic conductor $5.590$ Analytic rank $0$ Dimension $4$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$700 = 2^{2} \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 700.r (of order $$6$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$5.58952814149$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\zeta_{12})$$ Defining polynomial: $$x^{4} - x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 140) Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{12}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + 3 \zeta_{12} q^{3} + ( 3 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{7} + 6 \zeta_{12}^{2} q^{9} +O(q^{10})$$ $$q + 3 \zeta_{12} q^{3} + ( 3 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{7} + 6 \zeta_{12}^{2} q^{9} + ( 2 - 2 \zeta_{12}^{2} ) q^{11} -6 \zeta_{12}^{3} q^{13} + 2 \zeta_{12} q^{17} + ( 6 + 3 \zeta_{12}^{2} ) q^{21} + ( -9 \zeta_{12} + 9 \zeta_{12}^{3} ) q^{23} + 9 \zeta_{12}^{3} q^{27} -3 q^{29} + ( -2 + 2 \zeta_{12}^{2} ) q^{31} + ( 6 \zeta_{12} - 6 \zeta_{12}^{3} ) q^{33} + ( -8 \zeta_{12} + 8 \zeta_{12}^{3} ) q^{37} + ( 18 - 18 \zeta_{12}^{2} ) q^{39} + 5 q^{41} + \zeta_{12}^{3} q^{43} + ( -8 \zeta_{12} + 8 \zeta_{12}^{3} ) q^{47} + ( 8 - 3 \zeta_{12}^{2} ) q^{49} + 6 \zeta_{12}^{2} q^{51} -4 \zeta_{12} q^{53} + ( -8 + 8 \zeta_{12}^{2} ) q^{59} -7 \zeta_{12}^{2} q^{61} + ( 12 \zeta_{12} + 6 \zeta_{12}^{3} ) q^{63} -3 \zeta_{12} q^{67} -27 q^{69} + 8 q^{71} -14 \zeta_{12} q^{73} + ( 2 \zeta_{12} - 6 \zeta_{12}^{3} ) q^{77} + 4 \zeta_{12}^{2} q^{79} + ( -9 + 9 \zeta_{12}^{2} ) q^{81} -\zeta_{12}^{3} q^{83} -9 \zeta_{12} q^{87} + 13 \zeta_{12}^{2} q^{89} + ( 6 - 18 \zeta_{12}^{2} ) q^{91} + ( -6 \zeta_{12} + 6 \zeta_{12}^{3} ) q^{93} + 10 \zeta_{12}^{3} q^{97} + 12 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + 12q^{9} + O(q^{10})$$ $$4q + 12q^{9} + 4q^{11} + 30q^{21} - 12q^{29} - 4q^{31} + 36q^{39} + 20q^{41} + 26q^{49} + 12q^{51} - 16q^{59} - 14q^{61} - 108q^{69} + 32q^{71} + 8q^{79} - 18q^{81} + 26q^{89} - 12q^{91} + 48q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/700\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$351$$ $$477$$ $$\chi(n)$$ $$-\zeta_{12}^{2}$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
149.1
 −0.866025 + 0.500000i 0.866025 − 0.500000i −0.866025 − 0.500000i 0.866025 + 0.500000i
0 −2.59808 + 1.50000i 0 0 0 −2.59808 0.500000i 0 3.00000 5.19615i 0
149.2 0 2.59808 1.50000i 0 0 0 2.59808 + 0.500000i 0 3.00000 5.19615i 0
249.1 0 −2.59808 1.50000i 0 0 0 −2.59808 + 0.500000i 0 3.00000 + 5.19615i 0
249.2 0 2.59808 + 1.50000i 0 0 0 2.59808 0.500000i 0 3.00000 + 5.19615i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
7.c even 3 1 inner
35.j even 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 700.2.r.c 4
5.b even 2 1 inner 700.2.r.c 4
5.c odd 4 1 140.2.i.b 2
5.c odd 4 1 700.2.i.a 2
7.c even 3 1 inner 700.2.r.c 4
7.c even 3 1 4900.2.e.c 2
7.d odd 6 1 4900.2.e.b 2
15.e even 4 1 1260.2.s.b 2
20.e even 4 1 560.2.q.a 2
35.f even 4 1 980.2.i.a 2
35.i odd 6 1 4900.2.e.b 2
35.j even 6 1 inner 700.2.r.c 4
35.j even 6 1 4900.2.e.c 2
35.k even 12 1 980.2.a.i 1
35.k even 12 1 980.2.i.a 2
35.k even 12 1 4900.2.a.a 1
35.l odd 12 1 140.2.i.b 2
35.l odd 12 1 700.2.i.a 2
35.l odd 12 1 980.2.a.a 1
35.l odd 12 1 4900.2.a.v 1
105.w odd 12 1 8820.2.a.k 1
105.x even 12 1 1260.2.s.b 2
105.x even 12 1 8820.2.a.w 1
140.w even 12 1 560.2.q.a 2
140.w even 12 1 3920.2.a.bi 1
140.x odd 12 1 3920.2.a.d 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.i.b 2 5.c odd 4 1
140.2.i.b 2 35.l odd 12 1
560.2.q.a 2 20.e even 4 1
560.2.q.a 2 140.w even 12 1
700.2.i.a 2 5.c odd 4 1
700.2.i.a 2 35.l odd 12 1
700.2.r.c 4 1.a even 1 1 trivial
700.2.r.c 4 5.b even 2 1 inner
700.2.r.c 4 7.c even 3 1 inner
700.2.r.c 4 35.j even 6 1 inner
980.2.a.a 1 35.l odd 12 1
980.2.a.i 1 35.k even 12 1
980.2.i.a 2 35.f even 4 1
980.2.i.a 2 35.k even 12 1
1260.2.s.b 2 15.e even 4 1
1260.2.s.b 2 105.x even 12 1
3920.2.a.d 1 140.x odd 12 1
3920.2.a.bi 1 140.w even 12 1
4900.2.a.a 1 35.k even 12 1
4900.2.a.v 1 35.l odd 12 1
4900.2.e.b 2 7.d odd 6 1
4900.2.e.b 2 35.i odd 6 1
4900.2.e.c 2 7.c even 3 1
4900.2.e.c 2 35.j even 6 1
8820.2.a.k 1 105.w odd 12 1
8820.2.a.w 1 105.x even 12 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(700, [\chi])$$:

 $$T_{3}^{4} - 9 T_{3}^{2} + 81$$ $$T_{11}^{2} - 2 T_{11} + 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$81 - 9 T^{2} + T^{4}$$
$5$ $$T^{4}$$
$7$ $$49 - 13 T^{2} + T^{4}$$
$11$ $$( 4 - 2 T + T^{2} )^{2}$$
$13$ $$( 36 + T^{2} )^{2}$$
$17$ $$16 - 4 T^{2} + T^{4}$$
$19$ $$T^{4}$$
$23$ $$6561 - 81 T^{2} + T^{4}$$
$29$ $$( 3 + T )^{4}$$
$31$ $$( 4 + 2 T + T^{2} )^{2}$$
$37$ $$4096 - 64 T^{2} + T^{4}$$
$41$ $$( -5 + T )^{4}$$
$43$ $$( 1 + T^{2} )^{2}$$
$47$ $$4096 - 64 T^{2} + T^{4}$$
$53$ $$256 - 16 T^{2} + T^{4}$$
$59$ $$( 64 + 8 T + T^{2} )^{2}$$
$61$ $$( 49 + 7 T + T^{2} )^{2}$$
$67$ $$81 - 9 T^{2} + T^{4}$$
$71$ $$( -8 + T )^{4}$$
$73$ $$38416 - 196 T^{2} + T^{4}$$
$79$ $$( 16 - 4 T + T^{2} )^{2}$$
$83$ $$( 1 + T^{2} )^{2}$$
$89$ $$( 169 - 13 T + T^{2} )^{2}$$
$97$ $$( 100 + T^{2} )^{2}$$