Properties

Label 700.2.r.a.149.2
Level $700$
Weight $2$
Character 700.149
Analytic conductor $5.590$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 149.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 700.149
Dual form 700.2.r.a.249.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{3} +(0.866025 - 2.50000i) q^{7} +(-1.00000 + 1.73205i) q^{9} +O(q^{10})\) \(q+(0.866025 - 0.500000i) q^{3} +(0.866025 - 2.50000i) q^{7} +(-1.00000 + 1.73205i) q^{9} +(-3.00000 - 5.19615i) q^{11} +2.00000i q^{13} +(5.19615 - 3.00000i) q^{17} +(4.00000 - 6.92820i) q^{19} +(-0.500000 - 2.59808i) q^{21} +(-2.59808 - 1.50000i) q^{23} +5.00000i q^{27} -3.00000 q^{29} +(-1.00000 - 1.73205i) q^{31} +(-5.19615 - 3.00000i) q^{33} +(6.92820 + 4.00000i) q^{37} +(1.00000 + 1.73205i) q^{39} -3.00000 q^{41} +5.00000i q^{43} +(-5.50000 - 4.33013i) q^{49} +(3.00000 - 5.19615i) q^{51} +(10.3923 - 6.00000i) q^{53} -8.00000i q^{57} +(0.500000 - 0.866025i) q^{61} +(3.46410 + 4.00000i) q^{63} +(6.06218 - 3.50000i) q^{67} -3.00000 q^{69} +(-8.66025 + 5.00000i) q^{73} +(-15.5885 + 3.00000i) q^{77} +(-2.00000 + 3.46410i) q^{79} +(-0.500000 - 0.866025i) q^{81} +3.00000i q^{83} +(-2.59808 + 1.50000i) q^{87} +(-1.50000 + 2.59808i) q^{89} +(5.00000 + 1.73205i) q^{91} +(-1.73205 - 1.00000i) q^{93} +10.0000i q^{97} +12.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} + O(q^{10}) \) \( 4 q - 4 q^{9} - 12 q^{11} + 16 q^{19} - 2 q^{21} - 12 q^{29} - 4 q^{31} + 4 q^{39} - 12 q^{41} - 22 q^{49} + 12 q^{51} + 2 q^{61} - 12 q^{69} - 8 q^{79} - 2 q^{81} - 6 q^{89} + 20 q^{91} + 48 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 0.500000i 0.500000 0.288675i −0.228714 0.973494i \(-0.573452\pi\)
0.728714 + 0.684819i \(0.240119\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.866025 2.50000i 0.327327 0.944911i
\(8\) 0 0
\(9\) −1.00000 + 1.73205i −0.333333 + 0.577350i
\(10\) 0 0
\(11\) −3.00000 5.19615i −0.904534 1.56670i −0.821541 0.570149i \(-0.806886\pi\)
−0.0829925 0.996550i \(-0.526448\pi\)
\(12\) 0 0
\(13\) 2.00000i 0.554700i 0.960769 + 0.277350i \(0.0894562\pi\)
−0.960769 + 0.277350i \(0.910544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.19615 3.00000i 1.26025 0.727607i 0.287129 0.957892i \(-0.407299\pi\)
0.973123 + 0.230285i \(0.0739659\pi\)
\(18\) 0 0
\(19\) 4.00000 6.92820i 0.917663 1.58944i 0.114708 0.993399i \(-0.463407\pi\)
0.802955 0.596040i \(-0.203260\pi\)
\(20\) 0 0
\(21\) −0.500000 2.59808i −0.109109 0.566947i
\(22\) 0 0
\(23\) −2.59808 1.50000i −0.541736 0.312772i 0.204046 0.978961i \(-0.434591\pi\)
−0.745782 + 0.666190i \(0.767924\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.00000i 0.962250i
\(28\) 0 0
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) −1.00000 1.73205i −0.179605 0.311086i 0.762140 0.647412i \(-0.224149\pi\)
−0.941745 + 0.336327i \(0.890815\pi\)
\(32\) 0 0
\(33\) −5.19615 3.00000i −0.904534 0.522233i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.92820 + 4.00000i 1.13899 + 0.657596i 0.946180 0.323640i \(-0.104907\pi\)
0.192809 + 0.981236i \(0.438240\pi\)
\(38\) 0 0
\(39\) 1.00000 + 1.73205i 0.160128 + 0.277350i
\(40\) 0 0
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) 5.00000i 0.762493i 0.924473 + 0.381246i \(0.124505\pi\)
−0.924473 + 0.381246i \(0.875495\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) 0 0
\(49\) −5.50000 4.33013i −0.785714 0.618590i
\(50\) 0 0
\(51\) 3.00000 5.19615i 0.420084 0.727607i
\(52\) 0 0
\(53\) 10.3923 6.00000i 1.42749 0.824163i 0.430570 0.902557i \(-0.358312\pi\)
0.996922 + 0.0783936i \(0.0249791\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 8.00000i 1.05963i
\(58\) 0 0
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 0 0
\(61\) 0.500000 0.866025i 0.0640184 0.110883i −0.832240 0.554416i \(-0.812942\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 0 0
\(63\) 3.46410 + 4.00000i 0.436436 + 0.503953i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.06218 3.50000i 0.740613 0.427593i −0.0816792 0.996659i \(-0.526028\pi\)
0.822292 + 0.569066i \(0.192695\pi\)
\(68\) 0 0
\(69\) −3.00000 −0.361158
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −8.66025 + 5.00000i −1.01361 + 0.585206i −0.912245 0.409644i \(-0.865653\pi\)
−0.101361 + 0.994850i \(0.532320\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −15.5885 + 3.00000i −1.77647 + 0.341882i
\(78\) 0 0
\(79\) −2.00000 + 3.46410i −0.225018 + 0.389742i −0.956325 0.292306i \(-0.905577\pi\)
0.731307 + 0.682048i \(0.238911\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 3.00000i 0.329293i 0.986353 + 0.164646i \(0.0526483\pi\)
−0.986353 + 0.164646i \(0.947352\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −2.59808 + 1.50000i −0.278543 + 0.160817i
\(88\) 0 0
\(89\) −1.50000 + 2.59808i −0.159000 + 0.275396i −0.934508 0.355942i \(-0.884160\pi\)
0.775509 + 0.631337i \(0.217494\pi\)
\(90\) 0 0
\(91\) 5.00000 + 1.73205i 0.524142 + 0.181568i
\(92\) 0 0
\(93\) −1.73205 1.00000i −0.179605 0.103695i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.0000i 1.01535i 0.861550 + 0.507673i \(0.169494\pi\)
−0.861550 + 0.507673i \(0.830506\pi\)
\(98\) 0 0
\(99\) 12.0000 1.20605
\(100\) 0 0
\(101\) 1.50000 + 2.59808i 0.149256 + 0.258518i 0.930953 0.365140i \(-0.118979\pi\)
−0.781697 + 0.623658i \(0.785646\pi\)
\(102\) 0 0
\(103\) 6.06218 + 3.50000i 0.597324 + 0.344865i 0.767988 0.640464i \(-0.221258\pi\)
−0.170664 + 0.985329i \(0.554591\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.59808 1.50000i −0.251166 0.145010i 0.369132 0.929377i \(-0.379655\pi\)
−0.620298 + 0.784366i \(0.712988\pi\)
\(108\) 0 0
\(109\) 8.50000 + 14.7224i 0.814152 + 1.41015i 0.909935 + 0.414751i \(0.136131\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 8.00000 0.759326
\(112\) 0 0
\(113\) 12.0000i 1.12887i −0.825479 0.564433i \(-0.809095\pi\)
0.825479 0.564433i \(-0.190905\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −3.46410 2.00000i −0.320256 0.184900i
\(118\) 0 0
\(119\) −3.00000 15.5885i −0.275010 1.42899i
\(120\) 0 0
\(121\) −12.5000 + 21.6506i −1.13636 + 1.96824i
\(122\) 0 0
\(123\) −2.59808 + 1.50000i −0.234261 + 0.135250i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 8.00000i 0.709885i −0.934888 0.354943i \(-0.884500\pi\)
0.934888 0.354943i \(-0.115500\pi\)
\(128\) 0 0
\(129\) 2.50000 + 4.33013i 0.220113 + 0.381246i
\(130\) 0 0
\(131\) −6.00000 + 10.3923i −0.524222 + 0.907980i 0.475380 + 0.879781i \(0.342311\pi\)
−0.999602 + 0.0281993i \(0.991023\pi\)
\(132\) 0 0
\(133\) −13.8564 16.0000i −1.20150 1.38738i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.3923 6.00000i 0.887875 0.512615i 0.0146279 0.999893i \(-0.495344\pi\)
0.873247 + 0.487278i \(0.162010\pi\)
\(138\) 0 0
\(139\) −2.00000 −0.169638 −0.0848189 0.996396i \(-0.527031\pi\)
−0.0848189 + 0.996396i \(0.527031\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 10.3923 6.00000i 0.869048 0.501745i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −6.92820 1.00000i −0.571429 0.0824786i
\(148\) 0 0
\(149\) −7.50000 + 12.9904i −0.614424 + 1.06421i 0.376061 + 0.926595i \(0.377278\pi\)
−0.990485 + 0.137619i \(0.956055\pi\)
\(150\) 0 0
\(151\) 5.00000 + 8.66025i 0.406894 + 0.704761i 0.994540 0.104357i \(-0.0332784\pi\)
−0.587646 + 0.809118i \(0.699945\pi\)
\(152\) 0 0
\(153\) 12.0000i 0.970143i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −12.1244 + 7.00000i −0.967629 + 0.558661i −0.898513 0.438948i \(-0.855351\pi\)
−0.0691164 + 0.997609i \(0.522018\pi\)
\(158\) 0 0
\(159\) 6.00000 10.3923i 0.475831 0.824163i
\(160\) 0 0
\(161\) −6.00000 + 5.19615i −0.472866 + 0.409514i
\(162\) 0 0
\(163\) 13.8564 + 8.00000i 1.08532 + 0.626608i 0.932326 0.361619i \(-0.117776\pi\)
0.152992 + 0.988227i \(0.451109\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 21.0000i 1.62503i 0.582941 + 0.812514i \(0.301902\pi\)
−0.582941 + 0.812514i \(0.698098\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 8.00000 + 13.8564i 0.611775 + 1.05963i
\(172\) 0 0
\(173\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3.00000 5.19615i −0.224231 0.388379i 0.731858 0.681457i \(-0.238654\pi\)
−0.956088 + 0.293079i \(0.905320\pi\)
\(180\) 0 0
\(181\) 17.0000 1.26360 0.631800 0.775131i \(-0.282316\pi\)
0.631800 + 0.775131i \(0.282316\pi\)
\(182\) 0 0
\(183\) 1.00000i 0.0739221i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −31.1769 18.0000i −2.27988 1.31629i
\(188\) 0 0
\(189\) 12.5000 + 4.33013i 0.909241 + 0.314970i
\(190\) 0 0
\(191\) 9.00000 15.5885i 0.651217 1.12794i −0.331611 0.943416i \(-0.607592\pi\)
0.982828 0.184525i \(-0.0590746\pi\)
\(192\) 0 0
\(193\) 1.73205 1.00000i 0.124676 0.0719816i −0.436365 0.899770i \(-0.643734\pi\)
0.561041 + 0.827788i \(0.310401\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.0000i 1.28245i 0.767354 + 0.641223i \(0.221573\pi\)
−0.767354 + 0.641223i \(0.778427\pi\)
\(198\) 0 0
\(199\) 10.0000 + 17.3205i 0.708881 + 1.22782i 0.965272 + 0.261245i \(0.0841331\pi\)
−0.256391 + 0.966573i \(0.582534\pi\)
\(200\) 0 0
\(201\) 3.50000 6.06218i 0.246871 0.427593i
\(202\) 0 0
\(203\) −2.59808 + 7.50000i −0.182349 + 0.526397i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 5.19615 3.00000i 0.361158 0.208514i
\(208\) 0 0
\(209\) −48.0000 −3.32023
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −5.19615 + 1.00000i −0.352738 + 0.0678844i
\(218\) 0 0
\(219\) −5.00000 + 8.66025i −0.337869 + 0.585206i
\(220\) 0 0
\(221\) 6.00000 + 10.3923i 0.403604 + 0.699062i
\(222\) 0 0
\(223\) 8.00000i 0.535720i 0.963458 + 0.267860i \(0.0863164\pi\)
−0.963458 + 0.267860i \(0.913684\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.3923 6.00000i 0.689761 0.398234i −0.113761 0.993508i \(-0.536290\pi\)
0.803523 + 0.595274i \(0.202957\pi\)
\(228\) 0 0
\(229\) 1.00000 1.73205i 0.0660819 0.114457i −0.831092 0.556136i \(-0.812283\pi\)
0.897173 + 0.441679i \(0.145617\pi\)
\(230\) 0 0
\(231\) −12.0000 + 10.3923i −0.789542 + 0.683763i
\(232\) 0 0
\(233\) −5.19615 3.00000i −0.340411 0.196537i 0.320043 0.947403i \(-0.396303\pi\)
−0.660454 + 0.750867i \(0.729636\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 4.00000i 0.259828i
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) −13.0000 22.5167i −0.837404 1.45043i −0.892058 0.451920i \(-0.850739\pi\)
0.0546547 0.998505i \(-0.482594\pi\)
\(242\) 0 0
\(243\) −13.8564 8.00000i −0.888889 0.513200i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 13.8564 + 8.00000i 0.881662 + 0.509028i
\(248\) 0 0
\(249\) 1.50000 + 2.59808i 0.0950586 + 0.164646i
\(250\) 0 0
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) 0 0
\(253\) 18.0000i 1.13165i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −20.7846 12.0000i −1.29651 0.748539i −0.316709 0.948523i \(-0.602578\pi\)
−0.979799 + 0.199983i \(0.935911\pi\)
\(258\) 0 0
\(259\) 16.0000 13.8564i 0.994192 0.860995i
\(260\) 0 0
\(261\) 3.00000 5.19615i 0.185695 0.321634i
\(262\) 0 0
\(263\) −2.59808 + 1.50000i −0.160204 + 0.0924940i −0.577959 0.816066i \(-0.696151\pi\)
0.417755 + 0.908560i \(0.362817\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 3.00000i 0.183597i
\(268\) 0 0
\(269\) −7.50000 12.9904i −0.457283 0.792038i 0.541533 0.840679i \(-0.317844\pi\)
−0.998816 + 0.0486418i \(0.984511\pi\)
\(270\) 0 0
\(271\) 8.00000 13.8564i 0.485965 0.841717i −0.513905 0.857847i \(-0.671801\pi\)
0.999870 + 0.0161307i \(0.00513477\pi\)
\(272\) 0 0
\(273\) 5.19615 1.00000i 0.314485 0.0605228i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 19.0526 11.0000i 1.14476 0.660926i 0.197153 0.980373i \(-0.436830\pi\)
0.947604 + 0.319447i \(0.103497\pi\)
\(278\) 0 0
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 17.3205 10.0000i 1.02960 0.594438i 0.112728 0.993626i \(-0.464041\pi\)
0.916869 + 0.399188i \(0.130708\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.59808 + 7.50000i −0.153360 + 0.442711i
\(288\) 0 0
\(289\) 9.50000 16.4545i 0.558824 0.967911i
\(290\) 0 0
\(291\) 5.00000 + 8.66025i 0.293105 + 0.507673i
\(292\) 0 0
\(293\) 12.0000i 0.701047i −0.936554 0.350524i \(-0.886004\pi\)
0.936554 0.350524i \(-0.113996\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 25.9808 15.0000i 1.50756 0.870388i
\(298\) 0 0
\(299\) 3.00000 5.19615i 0.173494 0.300501i
\(300\) 0 0
\(301\) 12.5000 + 4.33013i 0.720488 + 0.249584i
\(302\) 0 0
\(303\) 2.59808 + 1.50000i 0.149256 + 0.0861727i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 19.0000i 1.08439i 0.840254 + 0.542194i \(0.182406\pi\)
−0.840254 + 0.542194i \(0.817594\pi\)
\(308\) 0 0
\(309\) 7.00000 0.398216
\(310\) 0 0
\(311\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(312\) 0 0
\(313\) 3.46410 + 2.00000i 0.195803 + 0.113047i 0.594696 0.803951i \(-0.297272\pi\)
−0.398894 + 0.916997i \(0.630606\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.5885 + 9.00000i 0.875535 + 0.505490i 0.869184 0.494489i \(-0.164645\pi\)
0.00635137 + 0.999980i \(0.497978\pi\)
\(318\) 0 0
\(319\) 9.00000 + 15.5885i 0.503903 + 0.872786i
\(320\) 0 0
\(321\) −3.00000 −0.167444
\(322\) 0 0
\(323\) 48.0000i 2.67079i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 14.7224 + 8.50000i 0.814152 + 0.470051i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 11.0000 19.0526i 0.604615 1.04722i −0.387498 0.921871i \(-0.626660\pi\)
0.992112 0.125353i \(-0.0400062\pi\)
\(332\) 0 0
\(333\) −13.8564 + 8.00000i −0.759326 + 0.438397i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 20.0000i 1.08947i −0.838608 0.544735i \(-0.816630\pi\)
0.838608 0.544735i \(-0.183370\pi\)
\(338\) 0 0
\(339\) −6.00000 10.3923i −0.325875 0.564433i
\(340\) 0 0
\(341\) −6.00000 + 10.3923i −0.324918 + 0.562775i
\(342\) 0 0
\(343\) −15.5885 + 10.0000i −0.841698 + 0.539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 23.3827 13.5000i 1.25525 0.724718i 0.283101 0.959090i \(-0.408637\pi\)
0.972147 + 0.234372i \(0.0753034\pi\)
\(348\) 0 0
\(349\) 1.00000 0.0535288 0.0267644 0.999642i \(-0.491480\pi\)
0.0267644 + 0.999642i \(0.491480\pi\)
\(350\) 0 0
\(351\) −10.0000 −0.533761
\(352\) 0 0
\(353\) −10.3923 + 6.00000i −0.553127 + 0.319348i −0.750382 0.661004i \(-0.770130\pi\)
0.197256 + 0.980352i \(0.436797\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −10.3923 12.0000i −0.550019 0.635107i
\(358\) 0 0
\(359\) 3.00000 5.19615i 0.158334 0.274242i −0.775934 0.630814i \(-0.782721\pi\)
0.934268 + 0.356572i \(0.116054\pi\)
\(360\) 0 0
\(361\) −22.5000 38.9711i −1.18421 2.05111i
\(362\) 0 0
\(363\) 25.0000i 1.31216i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −4.33013 + 2.50000i −0.226031 + 0.130499i −0.608740 0.793370i \(-0.708325\pi\)
0.382709 + 0.923869i \(0.374991\pi\)
\(368\) 0 0
\(369\) 3.00000 5.19615i 0.156174 0.270501i
\(370\) 0 0
\(371\) −6.00000 31.1769i −0.311504 1.61862i
\(372\) 0 0
\(373\) 13.8564 + 8.00000i 0.717458 + 0.414224i 0.813816 0.581122i \(-0.197386\pi\)
−0.0963587 + 0.995347i \(0.530720\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.00000i 0.309016i
\(378\) 0 0
\(379\) −8.00000 −0.410932 −0.205466 0.978664i \(-0.565871\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) 0 0
\(381\) −4.00000 6.92820i −0.204926 0.354943i
\(382\) 0 0
\(383\) −2.59808 1.50000i −0.132755 0.0766464i 0.432151 0.901801i \(-0.357755\pi\)
−0.564907 + 0.825155i \(0.691088\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −8.66025 5.00000i −0.440225 0.254164i
\(388\) 0 0
\(389\) 3.00000 + 5.19615i 0.152106 + 0.263455i 0.932002 0.362454i \(-0.118061\pi\)
−0.779895 + 0.625910i \(0.784728\pi\)
\(390\) 0 0
\(391\) −18.0000 −0.910299
\(392\) 0 0
\(393\) 12.0000i 0.605320i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 22.5167 + 13.0000i 1.13008 + 0.652451i 0.943955 0.330075i \(-0.107074\pi\)
0.186124 + 0.982526i \(0.440407\pi\)
\(398\) 0 0
\(399\) −20.0000 6.92820i −1.00125 0.346844i
\(400\) 0 0
\(401\) −1.50000 + 2.59808i −0.0749064 + 0.129742i −0.901046 0.433724i \(-0.857199\pi\)
0.826139 + 0.563466i \(0.190532\pi\)
\(402\) 0 0
\(403\) 3.46410 2.00000i 0.172559 0.0996271i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 48.0000i 2.37927i
\(408\) 0 0
\(409\) 5.50000 + 9.52628i 0.271957 + 0.471044i 0.969363 0.245633i \(-0.0789957\pi\)
−0.697406 + 0.716677i \(0.745662\pi\)
\(410\) 0 0
\(411\) 6.00000 10.3923i 0.295958 0.512615i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −1.73205 + 1.00000i −0.0848189 + 0.0489702i
\(418\) 0 0
\(419\) −24.0000 −1.17248 −0.586238 0.810139i \(-0.699392\pi\)
−0.586238 + 0.810139i \(0.699392\pi\)
\(420\) 0 0
\(421\) 23.0000 1.12095 0.560476 0.828171i \(-0.310618\pi\)
0.560476 + 0.828171i \(0.310618\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.73205 2.00000i −0.0838198 0.0967868i
\(428\) 0 0
\(429\) 6.00000 10.3923i 0.289683 0.501745i
\(430\) 0 0
\(431\) −15.0000 25.9808i −0.722525 1.25145i −0.959985 0.280052i \(-0.909648\pi\)
0.237460 0.971397i \(-0.423685\pi\)
\(432\) 0 0
\(433\) 28.0000i 1.34559i −0.739827 0.672797i \(-0.765093\pi\)
0.739827 0.672797i \(-0.234907\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −20.7846 + 12.0000i −0.994263 + 0.574038i
\(438\) 0 0
\(439\) −14.0000 + 24.2487i −0.668184 + 1.15733i 0.310228 + 0.950662i \(0.399595\pi\)
−0.978412 + 0.206666i \(0.933739\pi\)
\(440\) 0 0
\(441\) 13.0000 5.19615i 0.619048 0.247436i
\(442\) 0 0
\(443\) −7.79423 4.50000i −0.370315 0.213801i 0.303281 0.952901i \(-0.401918\pi\)
−0.673596 + 0.739100i \(0.735251\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 15.0000i 0.709476i
\(448\) 0 0
\(449\) 9.00000 0.424736 0.212368 0.977190i \(-0.431882\pi\)
0.212368 + 0.977190i \(0.431882\pi\)
\(450\) 0 0
\(451\) 9.00000 + 15.5885i 0.423793 + 0.734032i
\(452\) 0 0
\(453\) 8.66025 + 5.00000i 0.406894 + 0.234920i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.46410 2.00000i −0.162044 0.0935561i 0.416785 0.909005i \(-0.363157\pi\)
−0.578829 + 0.815449i \(0.696490\pi\)
\(458\) 0 0
\(459\) 15.0000 + 25.9808i 0.700140 + 1.21268i
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) 29.0000i 1.34774i 0.738848 + 0.673872i \(0.235370\pi\)
−0.738848 + 0.673872i \(0.764630\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 28.5788 + 16.5000i 1.32247 + 0.763529i 0.984122 0.177492i \(-0.0567983\pi\)
0.338349 + 0.941021i \(0.390132\pi\)
\(468\) 0 0
\(469\) −3.50000 18.1865i −0.161615 0.839776i
\(470\) 0 0
\(471\) −7.00000 + 12.1244i −0.322543 + 0.558661i
\(472\) 0 0
\(473\) 25.9808 15.0000i 1.19460 0.689701i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 24.0000i 1.09888i
\(478\) 0 0
\(479\) −15.0000 25.9808i −0.685367 1.18709i −0.973321 0.229447i \(-0.926308\pi\)
0.287954 0.957644i \(-0.407025\pi\)
\(480\) 0 0
\(481\) −8.00000 + 13.8564i −0.364769 + 0.631798i
\(482\) 0 0
\(483\) −2.59808 + 7.50000i −0.118217 + 0.341262i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −6.92820 + 4.00000i −0.313947 + 0.181257i −0.648691 0.761052i \(-0.724683\pi\)
0.334744 + 0.942309i \(0.391350\pi\)
\(488\) 0 0
\(489\) 16.0000 0.723545
\(490\) 0 0
\(491\) 6.00000 0.270776 0.135388 0.990793i \(-0.456772\pi\)
0.135388 + 0.990793i \(0.456772\pi\)
\(492\) 0 0
\(493\) −15.5885 + 9.00000i −0.702069 + 0.405340i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1.00000 1.73205i 0.0447661 0.0775372i −0.842774 0.538267i \(-0.819079\pi\)
0.887540 + 0.460730i \(0.152412\pi\)
\(500\) 0 0
\(501\) 10.5000 + 18.1865i 0.469105 + 0.812514i
\(502\) 0 0
\(503\) 9.00000i 0.401290i −0.979664 0.200645i \(-0.935696\pi\)
0.979664 0.200645i \(-0.0643038\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 7.79423 4.50000i 0.346154 0.199852i
\(508\) 0 0
\(509\) 19.5000 33.7750i 0.864322 1.49705i −0.00339621 0.999994i \(-0.501081\pi\)
0.867719 0.497056i \(-0.165586\pi\)
\(510\) 0 0
\(511\) 5.00000 + 25.9808i 0.221187 + 1.14932i
\(512\) 0 0
\(513\) 34.6410 + 20.0000i 1.52944 + 0.883022i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −15.0000 25.9808i −0.657162 1.13824i −0.981347 0.192244i \(-0.938423\pi\)
0.324185 0.945994i \(-0.394910\pi\)
\(522\) 0 0
\(523\) −38.1051 22.0000i −1.66622 0.961993i −0.969648 0.244507i \(-0.921374\pi\)
−0.696573 0.717486i \(-0.745293\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10.3923 6.00000i −0.452696 0.261364i
\(528\) 0 0
\(529\) −7.00000 12.1244i −0.304348 0.527146i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6.00000i 0.259889i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −5.19615 3.00000i −0.224231 0.129460i
\(538\) 0 0
\(539\) −6.00000 + 41.5692i −0.258438 + 1.79051i
\(540\) 0 0
\(541\) −8.50000 + 14.7224i −0.365444 + 0.632967i −0.988847 0.148933i \(-0.952416\pi\)
0.623404 + 0.781900i \(0.285749\pi\)
\(542\) 0 0
\(543\) 14.7224 8.50000i 0.631800 0.364770i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 19.0000i 0.812381i 0.913788 + 0.406191i \(0.133143\pi\)
−0.913788 + 0.406191i \(0.866857\pi\)
\(548\) 0 0
\(549\) 1.00000 + 1.73205i 0.0426790 + 0.0739221i
\(550\) 0 0
\(551\) −12.0000 + 20.7846i −0.511217 + 0.885454i
\(552\) 0 0
\(553\) 6.92820 + 8.00000i 0.294617 + 0.340195i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −25.9808 + 15.0000i −1.10084 + 0.635570i −0.936442 0.350824i \(-0.885902\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(558\) 0 0
\(559\) −10.0000 −0.422955
\(560\) 0 0
\(561\) −36.0000 −1.51992
\(562\) 0 0
\(563\) −7.79423 + 4.50000i −0.328488 + 0.189652i −0.655169 0.755482i \(-0.727403\pi\)
0.326682 + 0.945134i \(0.394069\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −2.59808 + 0.500000i −0.109109 + 0.0209980i
\(568\) 0 0
\(569\) −9.00000 + 15.5885i −0.377300 + 0.653502i −0.990668 0.136295i \(-0.956481\pi\)
0.613369 + 0.789797i \(0.289814\pi\)
\(570\) 0 0
\(571\) 8.00000 + 13.8564i 0.334790 + 0.579873i 0.983444 0.181210i \(-0.0580014\pi\)
−0.648655 + 0.761083i \(0.724668\pi\)
\(572\) 0 0
\(573\) 18.0000i 0.751961i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 8.66025 5.00000i 0.360531 0.208153i −0.308783 0.951133i \(-0.599922\pi\)
0.669314 + 0.742980i \(0.266588\pi\)
\(578\) 0 0
\(579\) 1.00000 1.73205i 0.0415586 0.0719816i
\(580\) 0 0
\(581\) 7.50000 + 2.59808i 0.311152 + 0.107786i
\(582\) 0 0
\(583\) −62.3538 36.0000i −2.58243 1.49097i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.0000i 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) 0 0
\(589\) −16.0000 −0.659269
\(590\) 0 0
\(591\) 9.00000 + 15.5885i 0.370211 + 0.641223i
\(592\) 0 0
\(593\) 10.3923 + 6.00000i 0.426761 + 0.246390i 0.697966 0.716131i \(-0.254089\pi\)
−0.271205 + 0.962522i \(0.587422\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 17.3205 + 10.0000i 0.708881 + 0.409273i
\(598\) 0 0
\(599\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 0 0
\(601\) −22.0000 −0.897399 −0.448699 0.893683i \(-0.648113\pi\)
−0.448699 + 0.893683i \(0.648113\pi\)
\(602\) 0 0
\(603\) 14.0000i 0.570124i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −37.2391 21.5000i −1.51149 0.872658i −0.999910 0.0134214i \(-0.995728\pi\)
−0.511578 0.859237i \(-0.670939\pi\)
\(608\) 0 0
\(609\) 1.50000 + 7.79423i 0.0607831 + 0.315838i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 1.73205 1.00000i 0.0699569 0.0403896i −0.464614 0.885514i \(-0.653807\pi\)
0.534570 + 0.845124i \(0.320473\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12.0000i 0.483102i 0.970388 + 0.241551i \(0.0776561\pi\)
−0.970388 + 0.241551i \(0.922344\pi\)
\(618\) 0 0
\(619\) 7.00000 + 12.1244i 0.281354 + 0.487319i 0.971718 0.236143i \(-0.0758832\pi\)
−0.690365 + 0.723462i \(0.742550\pi\)
\(620\) 0 0
\(621\) 7.50000 12.9904i 0.300965 0.521286i
\(622\) 0 0
\(623\) 5.19615 + 6.00000i 0.208179 + 0.240385i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −41.5692 + 24.0000i −1.66011 + 0.958468i
\(628\) 0 0
\(629\) 48.0000 1.91389
\(630\) 0 0
\(631\) 38.0000 1.51276 0.756378 0.654135i \(-0.226967\pi\)
0.756378 + 0.654135i \(0.226967\pi\)
\(632\) 0 0
\(633\) −3.46410 + 2.00000i −0.137686 + 0.0794929i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 8.66025 11.0000i 0.343132 0.435836i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 19.5000 + 33.7750i 0.770204 + 1.33403i 0.937451 + 0.348117i \(0.113179\pi\)
−0.167247 + 0.985915i \(0.553488\pi\)
\(642\) 0 0
\(643\) 20.0000i 0.788723i 0.918955 + 0.394362i \(0.129034\pi\)
−0.918955 + 0.394362i \(0.870966\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −18.1865 + 10.5000i −0.714986 + 0.412798i −0.812905 0.582397i \(-0.802115\pi\)
0.0979182 + 0.995194i \(0.468782\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −4.00000 + 3.46410i −0.156772 + 0.135769i
\(652\) 0 0
\(653\) 36.3731 + 21.0000i 1.42339 + 0.821794i 0.996587 0.0825519i \(-0.0263070\pi\)
0.426801 + 0.904345i \(0.359640\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 20.0000i 0.780274i
\(658\) 0 0
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) 12.5000 + 21.6506i 0.486194 + 0.842112i 0.999874 0.0158695i \(-0.00505163\pi\)
−0.513680 + 0.857982i \(0.671718\pi\)
\(662\) 0 0
\(663\) 10.3923 + 6.00000i 0.403604 + 0.233021i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 7.79423 + 4.50000i 0.301794 + 0.174241i
\(668\) 0 0
\(669\) 4.00000 + 6.92820i 0.154649 + 0.267860i
\(670\) 0 0
\(671\) −6.00000 −0.231627
\(672\) 0 0
\(673\) 32.0000i 1.23351i 0.787155 + 0.616755i \(0.211553\pi\)
−0.787155 + 0.616755i \(0.788447\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −15.5885 9.00000i −0.599113 0.345898i 0.169580 0.985517i \(-0.445759\pi\)
−0.768693 + 0.639618i \(0.779092\pi\)
\(678\) 0 0
\(679\) 25.0000 + 8.66025i 0.959412 + 0.332350i
\(680\) 0 0
\(681\) 6.00000 10.3923i 0.229920 0.398234i
\(682\) 0 0
\(683\) −12.9904 + 7.50000i −0.497063 + 0.286980i −0.727500 0.686108i \(-0.759318\pi\)
0.230437 + 0.973087i \(0.425985\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 2.00000i 0.0763048i
\(688\) 0 0
\(689\) 12.0000 + 20.7846i 0.457164 + 0.791831i
\(690\) 0 0
\(691\) −7.00000 + 12.1244i −0.266293 + 0.461232i −0.967901 0.251330i \(-0.919132\pi\)
0.701609 + 0.712562i \(0.252465\pi\)
\(692\) 0 0
\(693\) 10.3923 30.0000i 0.394771 1.13961i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −15.5885 + 9.00000i −0.590455 + 0.340899i
\(698\) 0 0
\(699\) −6.00000 −0.226941
\(700\) 0 0
\(701\) 27.0000 1.01978 0.509888 0.860241i \(-0.329687\pi\)
0.509888 + 0.860241i \(0.329687\pi\)
\(702\) 0 0
\(703\) 55.4256 32.0000i 2.09042 1.20690i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7.79423 1.50000i 0.293132 0.0564133i
\(708\) 0 0
\(709\) −0.500000 + 0.866025i −0.0187779 + 0.0325243i −0.875262 0.483650i \(-0.839311\pi\)
0.856484 + 0.516174i \(0.172644\pi\)
\(710\) 0 0
\(711\) −4.00000 6.92820i −0.150012 0.259828i
\(712\) 0 0
\(713\) 6.00000i 0.224702i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −5.19615 + 3.00000i −0.194054 + 0.112037i
\(718\) 0 0
\(719\) −15.0000 + 25.9808i −0.559406 + 0.968919i 0.438141 + 0.898906i \(0.355637\pi\)
−0.997546 + 0.0700124i \(0.977696\pi\)
\(720\) 0 0
\(721\) 14.0000 12.1244i 0.521387 0.451535i
\(722\) 0 0
\(723\) −22.5167 13.0000i −0.837404 0.483475i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 23.0000i 0.853023i −0.904482 0.426511i \(-0.859742\pi\)
0.904482 0.426511i \(-0.140258\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 15.0000 + 25.9808i 0.554795 + 0.960933i
\(732\) 0 0
\(733\) −1.73205 1.00000i −0.0639748 0.0369358i 0.467671 0.883902i \(-0.345093\pi\)
−0.531646 + 0.846967i \(0.678426\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −36.3731 21.0000i −1.33982 0.773545i
\(738\) 0 0
\(739\) −23.0000 39.8372i −0.846069 1.46543i −0.884690 0.466180i \(-0.845630\pi\)
0.0386212 0.999254i \(-0.487703\pi\)
\(740\) 0 0
\(741\) 16.0000 0.587775
\(742\) 0 0
\(743\) 39.0000i 1.43077i −0.698730 0.715386i \(-0.746251\pi\)
0.698730 0.715386i \(-0.253749\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −5.19615 3.00000i −0.190117 0.109764i
\(748\) 0 0
\(749\) −6.00000 + 5.19615i −0.219235 + 0.189863i
\(750\) 0 0
\(751\) −10.0000 + 17.3205i −0.364905 + 0.632034i −0.988761 0.149505i \(-0.952232\pi\)
0.623856 + 0.781540i \(0.285565\pi\)
\(752\) 0 0
\(753\) −15.5885 + 9.00000i −0.568075 + 0.327978i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 2.00000i 0.0726912i −0.999339 0.0363456i \(-0.988428\pi\)
0.999339 0.0363456i \(-0.0115717\pi\)
\(758\) 0 0
\(759\) 9.00000 + 15.5885i 0.326679 + 0.565825i
\(760\) 0 0
\(761\) −15.0000 + 25.9808i −0.543750 + 0.941802i 0.454935 + 0.890525i \(0.349663\pi\)
−0.998684 + 0.0512772i \(0.983671\pi\)
\(762\) 0 0
\(763\) 44.1673 8.50000i 1.59896 0.307721i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 34.0000 1.22607 0.613036 0.790055i \(-0.289948\pi\)
0.613036 + 0.790055i \(0.289948\pi\)
\(770\) 0 0
\(771\) −24.0000 −0.864339
\(772\) 0 0
\(773\) −36.3731 + 21.0000i −1.30825 + 0.755318i −0.981804 0.189899i \(-0.939184\pi\)
−0.326445 + 0.945216i \(0.605851\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 6.92820 20.0000i 0.248548 0.717496i
\(778\) 0 0
\(779\) −12.0000 + 20.7846i −0.429945 + 0.744686i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 15.0000i 0.536056i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 26.8468 15.5000i 0.956985 0.552515i 0.0617409 0.998092i \(-0.480335\pi\)
0.895244 + 0.445577i \(0.147001\pi\)
\(788\) 0 0
\(789\) −1.50000 + 2.59808i −0.0534014 + 0.0924940i
\(790\) 0 0
\(791\) −30.0000 10.3923i −1.06668 0.369508i
\(792\) 0 0
\(793\) 1.73205 + 1.00000i 0.0615069 + 0.0355110i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 12.0000i 0.425062i 0.977154 + 0.212531i \(0.0681706\pi\)
−0.977154 + 0.212531i \(0.931829\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0