Properties

Label 700.2.p.e.451.7
Level $700$
Weight $2$
Character 700.451
Analytic conductor $5.590$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,2,Mod(451,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 451.7
Character \(\chi\) \(=\) 700.451
Dual form 700.2.p.e.551.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.285823 + 1.38503i) q^{2} +(-1.29809 + 2.24836i) q^{3} +(-1.83661 - 0.791746i) q^{4} +(-2.74302 - 2.44053i) q^{6} +(0.603960 + 2.57589i) q^{7} +(1.62154 - 2.31746i) q^{8} +(-1.87009 - 3.23909i) q^{9} +(-3.12008 - 1.80138i) q^{11} +(4.16422 - 3.10161i) q^{12} -0.818282i q^{13} +(-3.74031 + 0.100253i) q^{14} +(2.74628 + 2.90826i) q^{16} +(-6.40537 - 3.69814i) q^{17} +(5.02075 - 1.66432i) q^{18} +(-1.65329 - 2.86358i) q^{19} +(-6.57554 - 1.98583i) q^{21} +(3.38675 - 3.80652i) q^{22} +(2.19550 - 1.26758i) q^{23} +(3.10559 + 6.65408i) q^{24} +(1.13334 + 0.233884i) q^{26} +1.92166 q^{27} +(0.930214 - 5.20910i) q^{28} +2.04334 q^{29} +(0.955727 - 1.65537i) q^{31} +(-4.81297 + 2.97243i) q^{32} +(8.10030 - 4.67671i) q^{33} +(6.95283 - 7.81461i) q^{34} +(0.870092 + 7.42959i) q^{36} +(3.58360 + 6.20697i) q^{37} +(4.43869 - 1.47138i) q^{38} +(1.83980 + 1.06221i) q^{39} -2.65824i q^{41} +(4.62987 - 8.53972i) q^{42} +2.39696i q^{43} +(4.30413 + 5.77873i) q^{44} +(1.12810 + 3.40314i) q^{46} +(0.667376 + 1.15593i) q^{47} +(-10.1037 + 2.39944i) q^{48} +(-6.27046 + 3.11147i) q^{49} +(16.6295 - 9.60106i) q^{51} +(-0.647871 + 1.50287i) q^{52} +(-0.905503 + 1.56838i) q^{53} +(-0.549253 + 2.66155i) q^{54} +(6.94888 + 2.77725i) q^{56} +8.58450 q^{57} +(-0.584034 + 2.83009i) q^{58} +(0.955727 - 1.65537i) q^{59} +(-8.46625 + 4.88799i) q^{61} +(2.01956 + 1.79685i) q^{62} +(7.21411 - 6.77344i) q^{63} +(-2.74124 - 7.51569i) q^{64} +(4.16213 + 12.5559i) q^{66} +(-8.02134 - 4.63112i) q^{67} +(8.83618 + 11.8635i) q^{68} +6.58172i q^{69} -1.38422i q^{71} +(-10.5389 - 0.918444i) q^{72} +(-6.40537 - 3.69814i) q^{73} +(-9.62111 + 3.18929i) q^{74} +(0.769222 + 6.56827i) q^{76} +(2.75576 - 9.12495i) q^{77} +(-1.99704 + 2.24457i) q^{78} +(6.70979 - 3.87390i) q^{79} +(3.11579 - 5.39670i) q^{81} +(3.68173 + 0.759784i) q^{82} -10.4973 q^{83} +(10.5044 + 8.85335i) q^{84} +(-3.31986 - 0.685105i) q^{86} +(-2.65245 + 4.59418i) q^{87} +(-9.23393 + 4.30966i) q^{88} +(9.19133 - 5.30662i) q^{89} +(2.10781 - 0.494210i) q^{91} +(-5.03589 + 0.589761i) q^{92} +(2.48125 + 4.29764i) q^{93} +(-1.79175 + 0.593945i) q^{94} +(-0.435416 - 14.6798i) q^{96} +7.32005i q^{97} +(-2.51724 - 9.57411i) q^{98} +13.4750i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 6 q^{4} - 4 q^{9} - 22 q^{14} + 18 q^{16} - 52 q^{21} + 48 q^{24} - 18 q^{26} - 28 q^{36} + 26 q^{44} - 22 q^{46} - 48 q^{54} - 16 q^{56} + 36 q^{61} - 36 q^{64} - 24 q^{66} - 14 q^{74} + 72 q^{81}+ \cdots + 60 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.285823 + 1.38503i −0.202107 + 0.979363i
\(3\) −1.29809 + 2.24836i −0.749454 + 1.29809i 0.198630 + 0.980075i \(0.436351\pi\)
−0.948084 + 0.318019i \(0.896983\pi\)
\(4\) −1.83661 0.791746i −0.918305 0.395873i
\(5\) 0 0
\(6\) −2.74302 2.44053i −1.11983 0.996342i
\(7\) 0.603960 + 2.57589i 0.228275 + 0.973597i
\(8\) 1.62154 2.31746i 0.573300 0.819346i
\(9\) −1.87009 3.23909i −0.623364 1.07970i
\(10\) 0 0
\(11\) −3.12008 1.80138i −0.940738 0.543136i −0.0505467 0.998722i \(-0.516096\pi\)
−0.890192 + 0.455586i \(0.849430\pi\)
\(12\) 4.16422 3.10161i 1.20211 0.895357i
\(13\) 0.818282i 0.226951i −0.993541 0.113475i \(-0.963802\pi\)
0.993541 0.113475i \(-0.0361983\pi\)
\(14\) −3.74031 + 0.100253i −0.999641 + 0.0267937i
\(15\) 0 0
\(16\) 2.74628 + 2.90826i 0.686569 + 0.727064i
\(17\) −6.40537 3.69814i −1.55353 0.896931i −0.997850 0.0655347i \(-0.979125\pi\)
−0.555680 0.831396i \(-0.687542\pi\)
\(18\) 5.02075 1.66432i 1.18340 0.392285i
\(19\) −1.65329 2.86358i −0.379291 0.656951i 0.611668 0.791114i \(-0.290499\pi\)
−0.990959 + 0.134163i \(0.957165\pi\)
\(20\) 0 0
\(21\) −6.57554 1.98583i −1.43490 0.433344i
\(22\) 3.38675 3.80652i 0.722057 0.811553i
\(23\) 2.19550 1.26758i 0.457794 0.264308i −0.253322 0.967382i \(-0.581523\pi\)
0.711116 + 0.703074i \(0.248190\pi\)
\(24\) 3.10559 + 6.65408i 0.633925 + 1.35826i
\(25\) 0 0
\(26\) 1.13334 + 0.233884i 0.222267 + 0.0458684i
\(27\) 1.92166 0.369823
\(28\) 0.930214 5.20910i 0.175794 0.984427i
\(29\) 2.04334 0.379439 0.189720 0.981838i \(-0.439242\pi\)
0.189720 + 0.981838i \(0.439242\pi\)
\(30\) 0 0
\(31\) 0.955727 1.65537i 0.171654 0.297313i −0.767345 0.641235i \(-0.778422\pi\)
0.938998 + 0.343922i \(0.111756\pi\)
\(32\) −4.81297 + 2.97243i −0.850821 + 0.525456i
\(33\) 8.10030 4.67671i 1.41008 0.814111i
\(34\) 6.95283 7.81461i 1.19240 1.34019i
\(35\) 0 0
\(36\) 0.870092 + 7.42959i 0.145015 + 1.23827i
\(37\) 3.58360 + 6.20697i 0.589140 + 1.02042i 0.994345 + 0.106195i \(0.0338666\pi\)
−0.405206 + 0.914226i \(0.632800\pi\)
\(38\) 4.43869 1.47138i 0.720051 0.238689i
\(39\) 1.83980 + 1.06221i 0.294603 + 0.170089i
\(40\) 0 0
\(41\) 2.65824i 0.415147i −0.978219 0.207573i \(-0.933443\pi\)
0.978219 0.207573i \(-0.0665566\pi\)
\(42\) 4.62987 8.53972i 0.714405 1.31771i
\(43\) 2.39696i 0.365533i 0.983156 + 0.182766i \(0.0585052\pi\)
−0.983156 + 0.182766i \(0.941495\pi\)
\(44\) 4.30413 + 5.77873i 0.648872 + 0.871177i
\(45\) 0 0
\(46\) 1.12810 + 3.40314i 0.166330 + 0.501766i
\(47\) 0.667376 + 1.15593i 0.0973468 + 0.168610i 0.910586 0.413320i \(-0.135631\pi\)
−0.813239 + 0.581930i \(0.802298\pi\)
\(48\) −10.1037 + 2.39944i −1.45835 + 0.346330i
\(49\) −6.27046 + 3.11147i −0.895781 + 0.444496i
\(50\) 0 0
\(51\) 16.6295 9.60106i 2.32860 1.34442i
\(52\) −0.647871 + 1.50287i −0.0898436 + 0.208410i
\(53\) −0.905503 + 1.56838i −0.124380 + 0.215433i −0.921491 0.388401i \(-0.873028\pi\)
0.797110 + 0.603834i \(0.206361\pi\)
\(54\) −0.549253 + 2.66155i −0.0747439 + 0.362191i
\(55\) 0 0
\(56\) 6.94888 + 2.77725i 0.928583 + 0.371126i
\(57\) 8.58450 1.13705
\(58\) −0.584034 + 2.83009i −0.0766874 + 0.371609i
\(59\) 0.955727 1.65537i 0.124425 0.215510i −0.797083 0.603870i \(-0.793625\pi\)
0.921508 + 0.388359i \(0.126958\pi\)
\(60\) 0 0
\(61\) −8.46625 + 4.88799i −1.08399 + 0.625843i −0.931970 0.362534i \(-0.881912\pi\)
−0.152021 + 0.988377i \(0.548578\pi\)
\(62\) 2.01956 + 1.79685i 0.256485 + 0.228200i
\(63\) 7.21411 6.77344i 0.908892 0.853374i
\(64\) −2.74124 7.51569i −0.342655 0.939461i
\(65\) 0 0
\(66\) 4.16213 + 12.5559i 0.512323 + 1.54552i
\(67\) −8.02134 4.63112i −0.979963 0.565782i −0.0777041 0.996976i \(-0.524759\pi\)
−0.902259 + 0.431195i \(0.858092\pi\)
\(68\) 8.83618 + 11.8635i 1.07154 + 1.43866i
\(69\) 6.58172i 0.792346i
\(70\) 0 0
\(71\) 1.38422i 0.164277i −0.996621 0.0821385i \(-0.973825\pi\)
0.996621 0.0821385i \(-0.0261750\pi\)
\(72\) −10.5389 0.918444i −1.24202 0.108240i
\(73\) −6.40537 3.69814i −0.749692 0.432835i 0.0758908 0.997116i \(-0.475820\pi\)
−0.825583 + 0.564281i \(0.809153\pi\)
\(74\) −9.62111 + 3.18929i −1.11843 + 0.370748i
\(75\) 0 0
\(76\) 0.769222 + 6.56827i 0.0882358 + 0.753433i
\(77\) 2.75576 9.12495i 0.314048 1.03988i
\(78\) −1.99704 + 2.24457i −0.226121 + 0.254147i
\(79\) 6.70979 3.87390i 0.754910 0.435848i −0.0725552 0.997364i \(-0.523115\pi\)
0.827465 + 0.561517i \(0.189782\pi\)
\(80\) 0 0
\(81\) 3.11579 5.39670i 0.346199 0.599634i
\(82\) 3.68173 + 0.759784i 0.406579 + 0.0839041i
\(83\) −10.4973 −1.15223 −0.576113 0.817370i \(-0.695431\pi\)
−0.576113 + 0.817370i \(0.695431\pi\)
\(84\) 10.5044 + 8.85335i 1.14613 + 0.965980i
\(85\) 0 0
\(86\) −3.31986 0.685105i −0.357989 0.0738768i
\(87\) −2.65245 + 4.59418i −0.284372 + 0.492547i
\(88\) −9.23393 + 4.30966i −0.984341 + 0.459411i
\(89\) 9.19133 5.30662i 0.974279 0.562500i 0.0737410 0.997277i \(-0.476506\pi\)
0.900538 + 0.434777i \(0.143173\pi\)
\(90\) 0 0
\(91\) 2.10781 0.494210i 0.220958 0.0518073i
\(92\) −5.03589 + 0.589761i −0.525027 + 0.0614868i
\(93\) 2.48125 + 4.29764i 0.257293 + 0.445645i
\(94\) −1.79175 + 0.593945i −0.184805 + 0.0612607i
\(95\) 0 0
\(96\) −0.435416 14.6798i −0.0444395 1.49825i
\(97\) 7.32005i 0.743239i 0.928385 + 0.371619i \(0.121197\pi\)
−0.928385 + 0.371619i \(0.878803\pi\)
\(98\) −2.51724 9.57411i −0.254280 0.967131i
\(99\) 13.4750i 1.35428i
\(100\) 0 0
\(101\) −5.50608 3.17894i −0.547875 0.316316i 0.200389 0.979716i \(-0.435779\pi\)
−0.748265 + 0.663400i \(0.769113\pi\)
\(102\) 8.54465 + 25.7766i 0.846047 + 2.55226i
\(103\) −0.511038 0.885144i −0.0503541 0.0872158i 0.839750 0.542974i \(-0.182702\pi\)
−0.890104 + 0.455758i \(0.849368\pi\)
\(104\) −1.89634 1.32687i −0.185951 0.130111i
\(105\) 0 0
\(106\) −1.91343 1.70243i −0.185849 0.165354i
\(107\) 6.28003 3.62578i 0.607114 0.350517i −0.164721 0.986340i \(-0.552672\pi\)
0.771835 + 0.635823i \(0.219339\pi\)
\(108\) −3.52933 1.52146i −0.339610 0.146403i
\(109\) −3.98588 + 6.90375i −0.381778 + 0.661259i −0.991316 0.131498i \(-0.958021\pi\)
0.609538 + 0.792756i \(0.291355\pi\)
\(110\) 0 0
\(111\) −18.6074 −1.76613
\(112\) −5.83272 + 8.83059i −0.551140 + 0.834413i
\(113\) −7.61610 −0.716462 −0.358231 0.933633i \(-0.616620\pi\)
−0.358231 + 0.933633i \(0.616620\pi\)
\(114\) −2.45365 + 11.8898i −0.229805 + 1.11358i
\(115\) 0 0
\(116\) −3.75282 1.61781i −0.348441 0.150210i
\(117\) −2.65049 + 1.53026i −0.245038 + 0.141473i
\(118\) 2.01956 + 1.79685i 0.185916 + 0.165414i
\(119\) 5.65744 18.7331i 0.518616 1.71726i
\(120\) 0 0
\(121\) 0.989917 + 1.71459i 0.0899925 + 0.155872i
\(122\) −4.35016 13.1231i −0.393845 1.18811i
\(123\) 5.97668 + 3.45064i 0.538899 + 0.311134i
\(124\) −3.06593 + 2.28357i −0.275328 + 0.205071i
\(125\) 0 0
\(126\) 7.31946 + 11.9277i 0.652069 + 1.06261i
\(127\) 8.78136i 0.779220i −0.920980 0.389610i \(-0.872610\pi\)
0.920980 0.389610i \(-0.127390\pi\)
\(128\) 11.1930 1.64855i 0.989327 0.145712i
\(129\) −5.38923 3.11147i −0.474495 0.273950i
\(130\) 0 0
\(131\) −6.69467 11.5955i −0.584916 1.01310i −0.994886 0.101005i \(-0.967794\pi\)
0.409970 0.912099i \(-0.365539\pi\)
\(132\) −18.5799 + 2.17592i −1.61717 + 0.189389i
\(133\) 6.37777 5.98819i 0.553023 0.519242i
\(134\) 8.70692 9.78611i 0.752164 0.845391i
\(135\) 0 0
\(136\) −18.9568 + 8.84752i −1.62553 + 0.758668i
\(137\) 2.61208 4.52425i 0.223165 0.386533i −0.732602 0.680657i \(-0.761694\pi\)
0.955767 + 0.294124i \(0.0950278\pi\)
\(138\) −9.11588 1.88121i −0.775995 0.160139i
\(139\) −21.9442 −1.86128 −0.930641 0.365933i \(-0.880750\pi\)
−0.930641 + 0.365933i \(0.880750\pi\)
\(140\) 0 0
\(141\) −3.46527 −0.291828
\(142\) 1.91719 + 0.395643i 0.160887 + 0.0332016i
\(143\) −1.47403 + 2.55310i −0.123265 + 0.213501i
\(144\) 4.28433 14.3342i 0.357027 1.19451i
\(145\) 0 0
\(146\) 6.95283 7.81461i 0.575421 0.646742i
\(147\) 1.14392 18.1373i 0.0943492 1.49594i
\(148\) −1.66733 14.2371i −0.137054 1.17028i
\(149\) −11.9749 20.7411i −0.981019 1.69917i −0.658444 0.752630i \(-0.728785\pi\)
−0.322575 0.946544i \(-0.604548\pi\)
\(150\) 0 0
\(151\) 6.06876 + 3.50380i 0.493869 + 0.285135i 0.726178 0.687507i \(-0.241295\pi\)
−0.232309 + 0.972642i \(0.574628\pi\)
\(152\) −9.31711 0.811968i −0.755717 0.0658593i
\(153\) 27.6635i 2.23646i
\(154\) 11.8507 + 6.42492i 0.954953 + 0.517735i
\(155\) 0 0
\(156\) −2.53799 3.40751i −0.203202 0.272819i
\(157\) −5.56468 3.21277i −0.444110 0.256407i 0.261229 0.965277i \(-0.415872\pi\)
−0.705340 + 0.708870i \(0.749205\pi\)
\(158\) 3.44765 + 10.4005i 0.274280 + 0.827419i
\(159\) −2.35085 4.07180i −0.186435 0.322915i
\(160\) 0 0
\(161\) 4.59114 + 4.88982i 0.361832 + 0.385372i
\(162\) 6.58403 + 5.85796i 0.517290 + 0.460245i
\(163\) −16.0033 + 9.23950i −1.25347 + 0.723693i −0.971798 0.235816i \(-0.924224\pi\)
−0.281676 + 0.959510i \(0.590890\pi\)
\(164\) −2.10465 + 4.88214i −0.164345 + 0.381231i
\(165\) 0 0
\(166\) 3.00036 14.5390i 0.232873 1.12845i
\(167\) 1.82894 0.141527 0.0707637 0.997493i \(-0.477456\pi\)
0.0707637 + 0.997493i \(0.477456\pi\)
\(168\) −15.2646 + 12.0185i −1.17769 + 0.927245i
\(169\) 12.3304 0.948493
\(170\) 0 0
\(171\) −6.18361 + 10.7103i −0.472873 + 0.819039i
\(172\) 1.89778 4.40228i 0.144704 0.335671i
\(173\) −13.2065 + 7.62476i −1.00407 + 0.579700i −0.909450 0.415814i \(-0.863497\pi\)
−0.0946193 + 0.995514i \(0.530163\pi\)
\(174\) −5.60494 4.98684i −0.424909 0.378051i
\(175\) 0 0
\(176\) −3.32973 14.0211i −0.250988 1.05688i
\(177\) 2.48125 + 4.29764i 0.186502 + 0.323031i
\(178\) 4.72273 + 14.2470i 0.353983 + 1.06786i
\(179\) 10.8572 + 6.26844i 0.811509 + 0.468525i 0.847480 0.530828i \(-0.178119\pi\)
−0.0359707 + 0.999353i \(0.511452\pi\)
\(180\) 0 0
\(181\) 8.01839i 0.596002i 0.954566 + 0.298001i \(0.0963199\pi\)
−0.954566 + 0.298001i \(0.903680\pi\)
\(182\) 0.0820350 + 3.06063i 0.00608084 + 0.226869i
\(183\) 25.3803i 1.87616i
\(184\) 0.622535 7.14341i 0.0458939 0.526619i
\(185\) 0 0
\(186\) −6.66156 + 2.20823i −0.488449 + 0.161915i
\(187\) 13.3235 + 23.0770i 0.974310 + 1.68755i
\(188\) −0.310508 2.65139i −0.0226461 0.193372i
\(189\) 1.16060 + 4.94998i 0.0844215 + 0.360058i
\(190\) 0 0
\(191\) 5.85379 3.37969i 0.423565 0.244546i −0.273036 0.962004i \(-0.588028\pi\)
0.696602 + 0.717458i \(0.254695\pi\)
\(192\) 20.4564 + 3.59276i 1.47631 + 0.259285i
\(193\) 1.18001 2.04384i 0.0849392 0.147119i −0.820426 0.571753i \(-0.806264\pi\)
0.905365 + 0.424634i \(0.139597\pi\)
\(194\) −10.1385 2.09224i −0.727901 0.150214i
\(195\) 0 0
\(196\) 13.9799 0.749953i 0.998564 0.0535681i
\(197\) −20.3205 −1.44777 −0.723887 0.689918i \(-0.757647\pi\)
−0.723887 + 0.689918i \(0.757647\pi\)
\(198\) −18.6632 3.85145i −1.32634 0.273711i
\(199\) −5.72909 + 9.92308i −0.406125 + 0.703429i −0.994452 0.105195i \(-0.966453\pi\)
0.588327 + 0.808623i \(0.299787\pi\)
\(200\) 0 0
\(201\) 20.8249 12.0233i 1.46888 0.848056i
\(202\) 5.97668 6.71746i 0.420518 0.472639i
\(203\) 1.23410 + 5.26343i 0.0866166 + 0.369421i
\(204\) −38.1436 + 4.46706i −2.67058 + 0.312757i
\(205\) 0 0
\(206\) 1.37202 0.454808i 0.0955929 0.0316880i
\(207\) −8.21159 4.74097i −0.570745 0.329520i
\(208\) 2.37978 2.24723i 0.165008 0.155817i
\(209\) 11.9128i 0.824026i
\(210\) 0 0
\(211\) 22.0647i 1.51900i 0.650510 + 0.759498i \(0.274555\pi\)
−0.650510 + 0.759498i \(0.725445\pi\)
\(212\) 2.90481 2.16357i 0.199503 0.148595i
\(213\) 3.11224 + 1.79685i 0.213247 + 0.123118i
\(214\) 3.22683 + 9.73436i 0.220582 + 0.665427i
\(215\) 0 0
\(216\) 3.11603 4.45336i 0.212019 0.303013i
\(217\) 4.84127 + 1.46208i 0.328647 + 0.0992522i
\(218\) −8.42263 7.49381i −0.570453 0.507545i
\(219\) 16.6295 9.60106i 1.12372 0.648780i
\(220\) 0 0
\(221\) −3.02612 + 5.24140i −0.203559 + 0.352575i
\(222\) 5.31841 25.7718i 0.356948 1.72969i
\(223\) 23.5776 1.57887 0.789436 0.613833i \(-0.210373\pi\)
0.789436 + 0.613833i \(0.210373\pi\)
\(224\) −10.5635 10.6025i −0.705804 0.708408i
\(225\) 0 0
\(226\) 2.17685 10.5485i 0.144802 0.701677i
\(227\) −10.4634 + 18.1231i −0.694478 + 1.20287i 0.275879 + 0.961192i \(0.411031\pi\)
−0.970356 + 0.241678i \(0.922302\pi\)
\(228\) −15.7664 6.79674i −1.04415 0.450125i
\(229\) −4.48735 + 2.59077i −0.296533 + 0.171203i −0.640884 0.767638i \(-0.721432\pi\)
0.344352 + 0.938841i \(0.388099\pi\)
\(230\) 0 0
\(231\) 16.9390 + 18.0410i 1.11450 + 1.18701i
\(232\) 3.31335 4.73536i 0.217532 0.310892i
\(233\) −10.3847 17.9868i −0.680324 1.17836i −0.974882 0.222722i \(-0.928506\pi\)
0.294558 0.955634i \(-0.404828\pi\)
\(234\) −1.36189 4.10839i −0.0890294 0.268574i
\(235\) 0 0
\(236\) −3.06593 + 2.28357i −0.199575 + 0.148648i
\(237\) 20.1147i 1.30659i
\(238\) 24.3288 + 13.1901i 1.57700 + 0.854984i
\(239\) 21.1286i 1.36670i 0.730092 + 0.683349i \(0.239477\pi\)
−0.730092 + 0.683349i \(0.760523\pi\)
\(240\) 0 0
\(241\) 1.57448 + 0.909029i 0.101421 + 0.0585557i 0.549853 0.835262i \(-0.314684\pi\)
−0.448431 + 0.893817i \(0.648017\pi\)
\(242\) −2.65769 + 0.880996i −0.170843 + 0.0566326i
\(243\) 10.9716 + 19.0035i 0.703832 + 1.21907i
\(244\) 19.4192 2.27422i 1.24319 0.145592i
\(245\) 0 0
\(246\) −6.48750 + 7.29160i −0.413628 + 0.464896i
\(247\) −2.34322 + 1.35286i −0.149095 + 0.0860803i
\(248\) −2.28650 4.89910i −0.145193 0.311093i
\(249\) 13.6264 23.6017i 0.863540 1.49570i
\(250\) 0 0
\(251\) 14.0187 0.884856 0.442428 0.896804i \(-0.354117\pi\)
0.442428 + 0.896804i \(0.354117\pi\)
\(252\) −18.6123 + 6.72844i −1.17247 + 0.423852i
\(253\) −9.13352 −0.574220
\(254\) 12.1624 + 2.50991i 0.763140 + 0.157486i
\(255\) 0 0
\(256\) −0.915918 + 15.9738i −0.0572449 + 0.998360i
\(257\) −15.4780 + 8.93624i −0.965492 + 0.557427i −0.897859 0.440283i \(-0.854878\pi\)
−0.0676333 + 0.997710i \(0.521545\pi\)
\(258\) 5.84985 6.57491i 0.364196 0.409336i
\(259\) −13.8242 + 12.9797i −0.858991 + 0.806521i
\(260\) 0 0
\(261\) −3.82124 6.61858i −0.236529 0.409680i
\(262\) 17.9736 5.95805i 1.11041 0.368090i
\(263\) −18.9629 10.9482i −1.16930 0.675097i −0.215787 0.976440i \(-0.569232\pi\)
−0.953516 + 0.301343i \(0.902565\pi\)
\(264\) 2.29684 26.3556i 0.141361 1.62207i
\(265\) 0 0
\(266\) 6.47091 + 10.5450i 0.396757 + 0.646553i
\(267\) 27.5539i 1.68627i
\(268\) 11.0654 + 14.8564i 0.675928 + 0.907501i
\(269\) −2.49661 1.44142i −0.152221 0.0878847i 0.421955 0.906617i \(-0.361344\pi\)
−0.574176 + 0.818732i \(0.694677\pi\)
\(270\) 0 0
\(271\) −8.47793 14.6842i −0.514997 0.892002i −0.999849 0.0174049i \(-0.994460\pi\)
0.484851 0.874597i \(-0.338874\pi\)
\(272\) −6.83578 28.7846i −0.414480 1.74532i
\(273\) −1.62497 + 5.38065i −0.0983476 + 0.325652i
\(274\) 5.51963 + 4.91094i 0.333453 + 0.296681i
\(275\) 0 0
\(276\) 5.21105 12.0881i 0.313668 0.727616i
\(277\) 13.4258 23.2541i 0.806677 1.39720i −0.108477 0.994099i \(-0.534597\pi\)
0.915153 0.403106i \(-0.132069\pi\)
\(278\) 6.27215 30.3933i 0.376179 1.82287i
\(279\) −7.14919 −0.428011
\(280\) 0 0
\(281\) 24.9497 1.48838 0.744188 0.667971i \(-0.232837\pi\)
0.744188 + 0.667971i \(0.232837\pi\)
\(282\) 0.990452 4.79950i 0.0589806 0.285806i
\(283\) −4.91910 + 8.52014i −0.292410 + 0.506470i −0.974379 0.224912i \(-0.927791\pi\)
0.681969 + 0.731381i \(0.261124\pi\)
\(284\) −1.09595 + 2.54228i −0.0650328 + 0.150857i
\(285\) 0 0
\(286\) −3.11481 2.77132i −0.184183 0.163871i
\(287\) 6.84733 1.60547i 0.404185 0.0947678i
\(288\) 18.6287 + 10.0309i 1.09770 + 0.591079i
\(289\) 18.8525 + 32.6535i 1.10897 + 1.92079i
\(290\) 0 0
\(291\) −16.4581 9.50211i −0.964793 0.557024i
\(292\) 8.83618 + 11.8635i 0.517098 + 0.694257i
\(293\) 23.4039i 1.36727i −0.729823 0.683636i \(-0.760398\pi\)
0.729823 0.683636i \(-0.239602\pi\)
\(294\) 24.7937 + 6.76841i 1.44600 + 0.394742i
\(295\) 0 0
\(296\) 20.1953 + 1.75999i 1.17383 + 0.102297i
\(297\) −5.99571 3.46163i −0.347907 0.200864i
\(298\) 32.1497 10.6573i 1.86238 0.617358i
\(299\) −1.03723 1.79654i −0.0599848 0.103897i
\(300\) 0 0
\(301\) −6.17431 + 1.44767i −0.355881 + 0.0834421i
\(302\) −6.58746 + 7.40395i −0.379066 + 0.426049i
\(303\) 14.2948 8.25311i 0.821215 0.474129i
\(304\) 3.78764 12.6724i 0.217236 0.726811i
\(305\) 0 0
\(306\) −38.3147 7.90685i −2.19031 0.452004i
\(307\) −2.18529 −0.124721 −0.0623606 0.998054i \(-0.519863\pi\)
−0.0623606 + 0.998054i \(0.519863\pi\)
\(308\) −12.2859 + 14.5771i −0.700053 + 0.830608i
\(309\) 2.65350 0.150952
\(310\) 0 0
\(311\) −14.4501 + 25.0282i −0.819388 + 1.41922i 0.0867457 + 0.996230i \(0.472353\pi\)
−0.906134 + 0.422991i \(0.860980\pi\)
\(312\) 5.44492 2.54125i 0.308258 0.143870i
\(313\) 5.50189 3.17652i 0.310985 0.179548i −0.336382 0.941726i \(-0.609203\pi\)
0.647367 + 0.762178i \(0.275870\pi\)
\(314\) 6.04030 6.78897i 0.340874 0.383124i
\(315\) 0 0
\(316\) −15.3904 + 1.80240i −0.865778 + 0.101393i
\(317\) −9.40153 16.2839i −0.528043 0.914597i −0.999466 0.0326894i \(-0.989593\pi\)
0.471423 0.881907i \(-0.343741\pi\)
\(318\) 6.31149 2.09219i 0.353931 0.117324i
\(319\) −6.37538 3.68083i −0.356953 0.206087i
\(320\) 0 0
\(321\) 18.8264i 1.05079i
\(322\) −8.08480 + 4.96124i −0.450548 + 0.276479i
\(323\) 24.4564i 1.36079i
\(324\) −9.99530 + 7.44473i −0.555295 + 0.413596i
\(325\) 0 0
\(326\) −8.22287 24.8059i −0.455423 1.37387i
\(327\) −10.3481 17.9234i −0.572250 0.991167i
\(328\) −6.16035 4.31042i −0.340149 0.238003i
\(329\) −2.57448 + 2.41723i −0.141936 + 0.133266i
\(330\) 0 0
\(331\) −11.3353 + 6.54441i −0.623042 + 0.359713i −0.778052 0.628199i \(-0.783792\pi\)
0.155010 + 0.987913i \(0.450459\pi\)
\(332\) 19.2794 + 8.31117i 1.05809 + 0.456135i
\(333\) 13.4033 23.2152i 0.734497 1.27219i
\(334\) −0.522752 + 2.53313i −0.0286037 + 0.138607i
\(335\) 0 0
\(336\) −12.2830 24.5770i −0.670091 1.34079i
\(337\) −11.7319 −0.639079 −0.319539 0.947573i \(-0.603528\pi\)
−0.319539 + 0.947573i \(0.603528\pi\)
\(338\) −3.52431 + 17.0780i −0.191697 + 0.928920i
\(339\) 9.88640 17.1238i 0.536956 0.930035i
\(340\) 0 0
\(341\) −5.96388 + 3.44325i −0.322962 + 0.186462i
\(342\) −13.0667 11.6257i −0.706566 0.628648i
\(343\) −11.8019 14.2729i −0.637245 0.770661i
\(344\) 5.55485 + 3.88675i 0.299498 + 0.209560i
\(345\) 0 0
\(346\) −6.78580 20.4707i −0.364807 1.10051i
\(347\) 3.82065 + 2.20585i 0.205103 + 0.118416i 0.599034 0.800724i \(-0.295552\pi\)
−0.393930 + 0.919140i \(0.628885\pi\)
\(348\) 8.50894 6.33765i 0.456127 0.339734i
\(349\) 18.3479i 0.982142i 0.871120 + 0.491071i \(0.163394\pi\)
−0.871120 + 0.491071i \(0.836606\pi\)
\(350\) 0 0
\(351\) 1.57246i 0.0839316i
\(352\) 20.3713 0.604231i 1.08579 0.0322056i
\(353\) 10.1742 + 5.87406i 0.541516 + 0.312645i 0.745693 0.666289i \(-0.232118\pi\)
−0.204177 + 0.978934i \(0.565452\pi\)
\(354\) −6.66156 + 2.20823i −0.354058 + 0.117366i
\(355\) 0 0
\(356\) −21.0824 + 2.46899i −1.11736 + 0.130856i
\(357\) 34.7749 + 37.0373i 1.84048 + 1.96022i
\(358\) −11.7852 + 13.2459i −0.622868 + 0.700070i
\(359\) 0.171388 0.0989510i 0.00904552 0.00522243i −0.495470 0.868625i \(-0.665004\pi\)
0.504516 + 0.863402i \(0.331671\pi\)
\(360\) 0 0
\(361\) 4.03326 6.98581i 0.212277 0.367674i
\(362\) −11.1057 2.29184i −0.583703 0.120456i
\(363\) −5.14002 −0.269781
\(364\) −4.26251 0.761178i −0.223416 0.0398966i
\(365\) 0 0
\(366\) 35.1524 + 7.25426i 1.83745 + 0.379186i
\(367\) 3.76412 6.51964i 0.196485 0.340323i −0.750901 0.660415i \(-0.770381\pi\)
0.947386 + 0.320092i \(0.103714\pi\)
\(368\) 9.71590 + 2.90398i 0.506476 + 0.151380i
\(369\) −8.61028 + 4.97115i −0.448233 + 0.258787i
\(370\) 0 0
\(371\) −4.58686 1.38524i −0.238138 0.0719182i
\(372\) −1.15444 9.85761i −0.0598550 0.511093i
\(373\) 15.5696 + 26.9674i 0.806164 + 1.39632i 0.915503 + 0.402312i \(0.131793\pi\)
−0.109339 + 0.994005i \(0.534873\pi\)
\(374\) −35.7704 + 11.8575i −1.84964 + 0.613137i
\(375\) 0 0
\(376\) 3.76100 + 0.327763i 0.193959 + 0.0169031i
\(377\) 1.67203i 0.0861140i
\(378\) −7.18760 + 0.192651i −0.369690 + 0.00990891i
\(379\) 16.3396i 0.839307i −0.907684 0.419654i \(-0.862152\pi\)
0.907684 0.419654i \(-0.137848\pi\)
\(380\) 0 0
\(381\) 19.7437 + 11.3990i 1.01150 + 0.583990i
\(382\) 3.00782 + 9.07366i 0.153893 + 0.464249i
\(383\) −4.42434 7.66318i −0.226073 0.391570i 0.730568 0.682840i \(-0.239256\pi\)
−0.956641 + 0.291270i \(0.905922\pi\)
\(384\) −10.8230 + 27.3058i −0.552307 + 1.39344i
\(385\) 0 0
\(386\) 2.49351 + 2.21853i 0.126916 + 0.112920i
\(387\) 7.76397 4.48253i 0.394665 0.227860i
\(388\) 5.79562 13.4441i 0.294228 0.682520i
\(389\) 4.67264 8.09325i 0.236912 0.410344i −0.722915 0.690937i \(-0.757198\pi\)
0.959827 + 0.280594i \(0.0905313\pi\)
\(390\) 0 0
\(391\) −18.7507 −0.948263
\(392\) −2.95707 + 19.5769i −0.149354 + 0.988784i
\(393\) 34.7612 1.75347
\(394\) 5.80806 28.1445i 0.292606 1.41790i
\(395\) 0 0
\(396\) 10.6687 24.7483i 0.536125 1.24365i
\(397\) 17.5826 10.1513i 0.882446 0.509480i 0.0109817 0.999940i \(-0.496504\pi\)
0.871464 + 0.490459i \(0.163171\pi\)
\(398\) −12.1063 10.7712i −0.606831 0.539912i
\(399\) 5.18470 + 22.1128i 0.259559 + 1.10702i
\(400\) 0 0
\(401\) 5.54334 + 9.60135i 0.276821 + 0.479469i 0.970593 0.240726i \(-0.0773857\pi\)
−0.693772 + 0.720195i \(0.744052\pi\)
\(402\) 10.7003 + 32.2796i 0.533684 + 1.60996i
\(403\) −1.35456 0.782054i −0.0674753 0.0389569i
\(404\) 7.59561 + 10.1979i 0.377896 + 0.507363i
\(405\) 0 0
\(406\) −7.64274 + 0.204851i −0.379303 + 0.0101666i
\(407\) 25.8216i 1.27993i
\(408\) 4.71530 54.1067i 0.233442 2.67868i
\(409\) −5.09812 2.94340i −0.252086 0.145542i 0.368633 0.929575i \(-0.379826\pi\)
−0.620719 + 0.784033i \(0.713159\pi\)
\(410\) 0 0
\(411\) 6.78145 + 11.7458i 0.334504 + 0.579378i
\(412\) 0.237769 + 2.03028i 0.0117140 + 0.100025i
\(413\) 4.84127 + 1.46208i 0.238223 + 0.0719441i
\(414\) 8.91343 10.0182i 0.438071 0.492369i
\(415\) 0 0
\(416\) 2.43229 + 3.93837i 0.119253 + 0.193094i
\(417\) 28.4856 49.3385i 1.39495 2.41612i
\(418\) −16.4996 3.40495i −0.807020 0.166542i
\(419\) 16.7262 0.817126 0.408563 0.912730i \(-0.366030\pi\)
0.408563 + 0.912730i \(0.366030\pi\)
\(420\) 0 0
\(421\) −1.18823 −0.0579109 −0.0289555 0.999581i \(-0.509218\pi\)
−0.0289555 + 0.999581i \(0.509218\pi\)
\(422\) −30.5602 6.30659i −1.48765 0.307000i
\(423\) 2.49611 4.32339i 0.121365 0.210210i
\(424\) 2.16635 + 4.64165i 0.105207 + 0.225418i
\(425\) 0 0
\(426\) −3.37824 + 3.79696i −0.163676 + 0.183963i
\(427\) −17.7042 18.8560i −0.856767 0.912506i
\(428\) −14.4047 + 1.68696i −0.696276 + 0.0815421i
\(429\) −3.82687 6.62833i −0.184763 0.320019i
\(430\) 0 0
\(431\) 20.8669 + 12.0475i 1.00512 + 0.580307i 0.909760 0.415135i \(-0.136266\pi\)
0.0953622 + 0.995443i \(0.469599\pi\)
\(432\) 5.27740 + 5.58867i 0.253909 + 0.268885i
\(433\) 14.9805i 0.719916i −0.932968 0.359958i \(-0.882791\pi\)
0.932968 0.359958i \(-0.117209\pi\)
\(434\) −3.40876 + 6.28741i −0.163626 + 0.301805i
\(435\) 0 0
\(436\) 12.7865 9.52369i 0.612363 0.456102i
\(437\) −7.25962 4.19134i −0.347275 0.200499i
\(438\) 8.54465 + 25.7766i 0.408279 + 1.23165i
\(439\) 8.66266 + 15.0042i 0.413446 + 0.716110i 0.995264 0.0972091i \(-0.0309916\pi\)
−0.581818 + 0.813319i \(0.697658\pi\)
\(440\) 0 0
\(441\) 21.8047 + 14.4919i 1.03832 + 0.690090i
\(442\) −6.39456 5.68938i −0.304158 0.270616i
\(443\) 21.8520 12.6162i 1.03822 0.599416i 0.118890 0.992907i \(-0.462066\pi\)
0.919328 + 0.393492i \(0.128733\pi\)
\(444\) 34.1745 + 14.7323i 1.62185 + 0.699164i
\(445\) 0 0
\(446\) −6.73901 + 32.6556i −0.319101 + 1.54629i
\(447\) 62.1779 2.94091
\(448\) 17.7040 11.6003i 0.836436 0.548064i
\(449\) −7.06145 −0.333251 −0.166625 0.986020i \(-0.553287\pi\)
−0.166625 + 0.986020i \(0.553287\pi\)
\(450\) 0 0
\(451\) −4.78848 + 8.29390i −0.225481 + 0.390544i
\(452\) 13.9878 + 6.03001i 0.657931 + 0.283628i
\(453\) −15.7556 + 9.09653i −0.740265 + 0.427392i
\(454\) −22.1103 19.6720i −1.03769 0.923255i
\(455\) 0 0
\(456\) 13.9201 19.8942i 0.651867 0.931633i
\(457\) 9.44078 + 16.3519i 0.441621 + 0.764910i 0.997810 0.0661459i \(-0.0210703\pi\)
−0.556189 + 0.831056i \(0.687737\pi\)
\(458\) −2.30571 6.95562i −0.107739 0.325015i
\(459\) −12.3089 7.10656i −0.574531 0.331706i
\(460\) 0 0
\(461\) 34.6087i 1.61189i −0.591992 0.805944i \(-0.701658\pi\)
0.591992 0.805944i \(-0.298342\pi\)
\(462\) −29.8288 + 18.3044i −1.38776 + 0.851600i
\(463\) 15.0235i 0.698202i 0.937085 + 0.349101i \(0.113513\pi\)
−0.937085 + 0.349101i \(0.886487\pi\)
\(464\) 5.61159 + 5.94257i 0.260511 + 0.275877i
\(465\) 0 0
\(466\) 27.8804 9.24206i 1.29154 0.428130i
\(467\) −12.7195 22.0309i −0.588590 1.01947i −0.994417 0.105518i \(-0.966350\pi\)
0.405828 0.913950i \(-0.366983\pi\)
\(468\) 6.07950 0.711981i 0.281025 0.0329113i
\(469\) 7.08472 23.4591i 0.327142 1.08324i
\(470\) 0 0
\(471\) 14.4470 8.34096i 0.665681 0.384331i
\(472\) −2.28650 4.89910i −0.105245 0.225499i
\(473\) 4.31782 7.47869i 0.198534 0.343871i
\(474\) −27.8595 5.74925i −1.27963 0.264072i
\(475\) 0 0
\(476\) −25.2223 + 29.9261i −1.15606 + 1.37166i
\(477\) 6.77350 0.310137
\(478\) −29.2638 6.03905i −1.33849 0.276220i
\(479\) −10.2844 + 17.8131i −0.469905 + 0.813900i −0.999408 0.0344084i \(-0.989045\pi\)
0.529502 + 0.848308i \(0.322379\pi\)
\(480\) 0 0
\(481\) 5.07906 2.93239i 0.231585 0.133706i
\(482\) −1.70906 + 1.92089i −0.0778453 + 0.0874939i
\(483\) −16.9538 + 3.97510i −0.771426 + 0.180873i
\(484\) −0.460576 3.93279i −0.0209353 0.178763i
\(485\) 0 0
\(486\) −29.4563 + 9.76443i −1.33616 + 0.442924i
\(487\) −25.1658 14.5295i −1.14037 0.658394i −0.193849 0.981031i \(-0.562097\pi\)
−0.946522 + 0.322638i \(0.895430\pi\)
\(488\) −2.40060 + 27.5462i −0.108670 + 1.24696i
\(489\) 47.9749i 2.16950i
\(490\) 0 0
\(491\) 9.51815i 0.429548i 0.976664 + 0.214774i \(0.0689015\pi\)
−0.976664 + 0.214774i \(0.931098\pi\)
\(492\) −8.24481 11.0695i −0.371705 0.499051i
\(493\) −13.0884 7.55657i −0.589470 0.340331i
\(494\) −1.20400 3.63210i −0.0541706 0.163416i
\(495\) 0 0
\(496\) 7.43893 1.76660i 0.334018 0.0793226i
\(497\) 3.56561 0.836015i 0.159940 0.0375004i
\(498\) 28.7943 + 25.6189i 1.29030 + 1.14801i
\(499\) −17.4855 + 10.0953i −0.782760 + 0.451927i −0.837407 0.546579i \(-0.815930\pi\)
0.0546477 + 0.998506i \(0.482596\pi\)
\(500\) 0 0
\(501\) −2.37413 + 4.11211i −0.106068 + 0.183716i
\(502\) −4.00688 + 19.4164i −0.178836 + 0.866595i
\(503\) 13.3134 0.593616 0.296808 0.954937i \(-0.404078\pi\)
0.296808 + 0.954937i \(0.404078\pi\)
\(504\) −3.99925 27.7018i −0.178141 1.23394i
\(505\) 0 0
\(506\) 2.61057 12.6502i 0.116054 0.562370i
\(507\) −16.0060 + 27.7233i −0.710853 + 1.23123i
\(508\) −6.95261 + 16.1279i −0.308472 + 0.715562i
\(509\) −12.4294 + 7.17613i −0.550925 + 0.318077i −0.749495 0.662010i \(-0.769704\pi\)
0.198570 + 0.980087i \(0.436370\pi\)
\(510\) 0 0
\(511\) 5.65744 18.7331i 0.250270 0.828703i
\(512\) −21.8623 5.83424i −0.966188 0.257839i
\(513\) −3.17706 5.50282i −0.140270 0.242956i
\(514\) −7.95298 23.9917i −0.350791 1.05823i
\(515\) 0 0
\(516\) 7.43442 + 9.98147i 0.327282 + 0.439410i
\(517\) 4.80879i 0.211490i
\(518\) −14.0260 22.8568i −0.616269 1.00427i
\(519\) 39.5906i 1.73783i
\(520\) 0 0
\(521\) −31.9571 18.4505i −1.40007 0.808330i −0.405669 0.914020i \(-0.632961\pi\)
−0.994399 + 0.105690i \(0.966295\pi\)
\(522\) 10.2591 3.40079i 0.449030 0.148848i
\(523\) −9.07509 15.7185i −0.396826 0.687323i 0.596506 0.802608i \(-0.296555\pi\)
−0.993332 + 0.115285i \(0.963222\pi\)
\(524\) 3.11481 + 26.5969i 0.136071 + 1.16189i
\(525\) 0 0
\(526\) 20.5837 23.1349i 0.897490 1.00873i
\(527\) −12.2436 + 7.06883i −0.533338 + 0.307923i
\(528\) 35.8467 + 10.7142i 1.56003 + 0.466276i
\(529\) −8.28651 + 14.3526i −0.360283 + 0.624028i
\(530\) 0 0
\(531\) −7.14919 −0.310248
\(532\) −16.4546 + 5.94841i −0.713397 + 0.257896i
\(533\) −2.17519 −0.0942178
\(534\) −38.1630 7.87554i −1.65147 0.340808i
\(535\) 0 0
\(536\) −23.7393 + 11.0796i −1.02538 + 0.478566i
\(537\) −28.1874 + 16.2740i −1.21638 + 0.702276i
\(538\) 2.70999 3.04588i 0.116836 0.131317i
\(539\) 25.1693 + 1.58743i 1.08412 + 0.0683756i
\(540\) 0 0
\(541\) 9.37629 + 16.2402i 0.403118 + 0.698221i 0.994100 0.108463i \(-0.0345930\pi\)
−0.590982 + 0.806685i \(0.701260\pi\)
\(542\) 22.7612 7.54509i 0.977678 0.324090i
\(543\) −18.0283 10.4086i −0.773667 0.446677i
\(544\) 41.8213 1.24046i 1.79307 0.0531842i
\(545\) 0 0
\(546\) −6.98790 3.78854i −0.299055 0.162135i
\(547\) 34.1580i 1.46049i 0.683185 + 0.730246i \(0.260594\pi\)
−0.683185 + 0.730246i \(0.739406\pi\)
\(548\) −8.37943 + 6.24119i −0.357952 + 0.266610i
\(549\) 31.6653 + 18.2820i 1.35144 + 0.780256i
\(550\) 0 0
\(551\) −3.37824 5.85128i −0.143918 0.249273i
\(552\) 15.2529 + 10.6725i 0.649206 + 0.454252i
\(553\) 14.0312 + 14.9440i 0.596667 + 0.635485i
\(554\) 28.3702 + 25.2416i 1.20534 + 1.07241i
\(555\) 0 0
\(556\) 40.3029 + 17.3742i 1.70923 + 0.736831i
\(557\) −20.2183 + 35.0192i −0.856679 + 1.48381i 0.0184005 + 0.999831i \(0.494143\pi\)
−0.875079 + 0.483980i \(0.839191\pi\)
\(558\) 2.04340 9.90183i 0.0865041 0.419178i
\(559\) 1.96139 0.0829579
\(560\) 0 0
\(561\) −69.1805 −2.92080
\(562\) −7.13120 + 34.5561i −0.300811 + 1.45766i
\(563\) −0.159465 + 0.276201i −0.00672065 + 0.0116405i −0.869366 0.494168i \(-0.835473\pi\)
0.862646 + 0.505809i \(0.168806\pi\)
\(564\) 6.36435 + 2.74361i 0.267987 + 0.115527i
\(565\) 0 0
\(566\) −10.3946 9.24835i −0.436920 0.388737i
\(567\) 15.7831 + 4.76655i 0.662830 + 0.200176i
\(568\) −3.20788 2.24457i −0.134600 0.0941800i
\(569\) 15.3058 + 26.5104i 0.641651 + 1.11137i 0.985064 + 0.172188i \(0.0550836\pi\)
−0.343413 + 0.939184i \(0.611583\pi\)
\(570\) 0 0
\(571\) 7.35081 + 4.24399i 0.307622 + 0.177606i 0.645862 0.763454i \(-0.276498\pi\)
−0.338240 + 0.941060i \(0.609832\pi\)
\(572\) 4.72864 3.52200i 0.197714 0.147262i
\(573\) 17.5486i 0.733103i
\(574\) 0.266495 + 9.94264i 0.0111233 + 0.414998i
\(575\) 0 0
\(576\) −19.2177 + 22.9342i −0.800735 + 0.955591i
\(577\) −2.91419 1.68251i −0.121319 0.0700438i 0.438112 0.898920i \(-0.355647\pi\)
−0.559432 + 0.828876i \(0.688981\pi\)
\(578\) −50.6145 + 16.7781i −2.10529 + 0.697879i
\(579\) 3.06354 + 5.30620i 0.127316 + 0.220518i
\(580\) 0 0
\(581\) −6.33993 27.0399i −0.263025 1.12180i
\(582\) 17.8648 20.0791i 0.740520 0.832305i
\(583\) 5.65048 3.26230i 0.234019 0.135111i
\(584\) −18.9568 + 8.84752i −0.784439 + 0.366113i
\(585\) 0 0
\(586\) 32.4151 + 6.68938i 1.33906 + 0.276336i
\(587\) −2.02359 −0.0835225 −0.0417613 0.999128i \(-0.513297\pi\)
−0.0417613 + 0.999128i \(0.513297\pi\)
\(588\) −16.4610 + 32.4054i −0.678842 + 1.33638i
\(589\) −6.32038 −0.260427
\(590\) 0 0
\(591\) 26.3779 45.6878i 1.08504 1.87935i
\(592\) −8.20992 + 27.4681i −0.337426 + 1.12893i
\(593\) −23.2318 + 13.4129i −0.954016 + 0.550802i −0.894326 0.447415i \(-0.852345\pi\)
−0.0596901 + 0.998217i \(0.519011\pi\)
\(594\) 6.50817 7.31483i 0.267033 0.300131i
\(595\) 0 0
\(596\) 5.57151 + 47.5743i 0.228218 + 1.94872i
\(597\) −14.8738 25.7622i −0.608744 1.05438i
\(598\) 2.78473 0.923107i 0.113876 0.0377487i
\(599\) −32.0964 18.5309i −1.31143 0.757152i −0.329093 0.944297i \(-0.606743\pi\)
−0.982332 + 0.187146i \(0.940076\pi\)
\(600\) 0 0
\(601\) 1.27911i 0.0521761i −0.999660 0.0260880i \(-0.991695\pi\)
0.999660 0.0260880i \(-0.00830503\pi\)
\(602\) −0.240301 8.96537i −0.00979396 0.365401i
\(603\) 34.6425i 1.41075i
\(604\) −8.37184 11.2400i −0.340645 0.457351i
\(605\) 0 0
\(606\) 7.34501 + 22.1576i 0.298371 + 0.900093i
\(607\) 11.3045 + 19.5800i 0.458836 + 0.794727i 0.998900 0.0468970i \(-0.0149333\pi\)
−0.540064 + 0.841624i \(0.681600\pi\)
\(608\) 16.4690 + 8.86805i 0.667907 + 0.359647i
\(609\) −13.4361 4.05773i −0.544458 0.164428i
\(610\) 0 0
\(611\) 0.945877 0.546102i 0.0382661 0.0220929i
\(612\) 21.9024 50.8070i 0.885353 2.05375i
\(613\) 1.50973 2.61492i 0.0609773 0.105616i −0.833925 0.551877i \(-0.813912\pi\)
0.894903 + 0.446262i \(0.147245\pi\)
\(614\) 0.624606 3.02669i 0.0252071 0.122147i
\(615\) 0 0
\(616\) −16.6781 21.1828i −0.671982 0.853479i
\(617\) 14.3344 0.577081 0.288540 0.957468i \(-0.406830\pi\)
0.288540 + 0.957468i \(0.406830\pi\)
\(618\) −0.758431 + 3.67517i −0.0305086 + 0.147837i
\(619\) −10.8987 + 18.8771i −0.438055 + 0.758733i −0.997539 0.0701078i \(-0.977666\pi\)
0.559485 + 0.828841i \(0.310999\pi\)
\(620\) 0 0
\(621\) 4.21901 2.43584i 0.169303 0.0977471i
\(622\) −30.5347 27.1674i −1.22433 1.08931i
\(623\) 19.2205 + 20.4709i 0.770052 + 0.820150i
\(624\) 1.96342 + 8.26771i 0.0785997 + 0.330973i
\(625\) 0 0
\(626\) 2.82701 + 8.52821i 0.112990 + 0.340856i
\(627\) −26.7843 15.4639i −1.06966 0.617570i
\(628\) 7.67646 + 10.3064i 0.306324 + 0.411271i
\(629\) 53.0106i 2.11367i
\(630\) 0 0
\(631\) 15.1512i 0.603160i −0.953441 0.301580i \(-0.902486\pi\)
0.953441 0.301580i \(-0.0975140\pi\)
\(632\) 1.90256 21.8313i 0.0756797 0.868404i
\(633\) −49.6094 28.6420i −1.97180 1.13842i
\(634\) 25.2409 8.36708i 1.00244 0.332299i
\(635\) 0 0
\(636\) 1.09378 + 9.33959i 0.0433710 + 0.370339i
\(637\) 2.54606 + 5.13101i 0.100879 + 0.203298i
\(638\) 6.92029 7.77803i 0.273977 0.307935i
\(639\) −4.48363 + 2.58863i −0.177370 + 0.102404i
\(640\) 0 0
\(641\) −14.9960 + 25.9739i −0.592308 + 1.02591i 0.401613 + 0.915809i \(0.368450\pi\)
−0.993921 + 0.110098i \(0.964884\pi\)
\(642\) −26.0751 5.38101i −1.02910 0.212372i
\(643\) 1.63196 0.0643583 0.0321792 0.999482i \(-0.489755\pi\)
0.0321792 + 0.999482i \(0.489755\pi\)
\(644\) −4.56063 12.6157i −0.179714 0.497129i
\(645\) 0 0
\(646\) −33.8728 6.99020i −1.33271 0.275026i
\(647\) −16.3832 + 28.3765i −0.644090 + 1.11560i 0.340421 + 0.940273i \(0.389430\pi\)
−0.984511 + 0.175323i \(0.943903\pi\)
\(648\) −7.45428 15.9717i −0.292832 0.627426i
\(649\) −5.96388 + 3.44325i −0.234103 + 0.135159i
\(650\) 0 0
\(651\) −9.57170 + 8.98703i −0.375145 + 0.352229i
\(652\) 36.7071 4.29883i 1.43756 0.168355i
\(653\) 11.2646 + 19.5109i 0.440819 + 0.763521i 0.997750 0.0670377i \(-0.0213548\pi\)
−0.556932 + 0.830558i \(0.688021\pi\)
\(654\) 27.7822 9.20948i 1.08637 0.360119i
\(655\) 0 0
\(656\) 7.73083 7.30025i 0.301838 0.285027i
\(657\) 27.6635i 1.07925i
\(658\) −2.61208 4.25663i −0.101830 0.165941i
\(659\) 19.2525i 0.749969i −0.927031 0.374985i \(-0.877648\pi\)
0.927031 0.374985i \(-0.122352\pi\)
\(660\) 0 0
\(661\) 30.1079 + 17.3828i 1.17106 + 0.676113i 0.953930 0.300030i \(-0.0969966\pi\)
0.217132 + 0.976142i \(0.430330\pi\)
\(662\) −5.82433 17.5702i −0.226369 0.682885i
\(663\) −7.85638 13.6077i −0.305117 0.528477i
\(664\) −17.0217 + 24.3270i −0.660570 + 0.944071i
\(665\) 0 0
\(666\) 28.3228 + 25.1994i 1.09749 + 0.976458i
\(667\) 4.48617 2.59009i 0.173705 0.100289i
\(668\) −3.35904 1.44805i −0.129965 0.0560268i
\(669\) −30.6059 + 53.0110i −1.18329 + 2.04952i
\(670\) 0 0
\(671\) 35.2205 1.35967
\(672\) 37.5506 9.98759i 1.44855 0.385280i
\(673\) −42.6368 −1.64353 −0.821764 0.569827i \(-0.807010\pi\)
−0.821764 + 0.569827i \(0.807010\pi\)
\(674\) 3.35325 16.2491i 0.129162 0.625890i
\(675\) 0 0
\(676\) −22.6462 9.76255i −0.871007 0.375483i
\(677\) −1.54611 + 0.892648i −0.0594219 + 0.0343073i −0.529417 0.848362i \(-0.677589\pi\)
0.469995 + 0.882669i \(0.344256\pi\)
\(678\) 20.8911 + 18.5873i 0.802319 + 0.713842i
\(679\) −18.8557 + 4.42102i −0.723615 + 0.169663i
\(680\) 0 0
\(681\) −27.1648 47.0509i −1.04096 1.80299i
\(682\) −3.06439 9.24431i −0.117341 0.353983i
\(683\) 7.45237 + 4.30263i 0.285157 + 0.164636i 0.635756 0.771890i \(-0.280689\pi\)
−0.350599 + 0.936526i \(0.614022\pi\)
\(684\) 19.8367 14.7749i 0.758477 0.564931i
\(685\) 0 0
\(686\) 23.1416 12.2665i 0.883549 0.468338i
\(687\) 13.4523i 0.513236i
\(688\) −6.97097 + 6.58271i −0.265766 + 0.250963i
\(689\) 1.28338 + 0.740957i 0.0488927 + 0.0282282i
\(690\) 0 0
\(691\) −20.1511 34.9027i −0.766583 1.32776i −0.939405 0.342808i \(-0.888622\pi\)
0.172822 0.984953i \(-0.444711\pi\)
\(692\) 30.2920 3.54755i 1.15153 0.134858i
\(693\) −34.7101 + 8.13834i −1.31853 + 0.309150i
\(694\) −4.14720 + 4.66123i −0.157426 + 0.176938i
\(695\) 0 0
\(696\) 6.34578 + 13.5966i 0.240536 + 0.515377i
\(697\) −9.83053 + 17.0270i −0.372358 + 0.644943i
\(698\) −25.4124 5.24425i −0.961874 0.198498i
\(699\) 53.9212 2.03949
\(700\) 0 0
\(701\) 37.3051 1.40899 0.704497 0.709707i \(-0.251172\pi\)
0.704497 + 0.709707i \(0.251172\pi\)
\(702\) 2.17790 + 0.449444i 0.0821995 + 0.0169632i
\(703\) 11.8495 20.5239i 0.446911 0.774072i
\(704\) −4.98570 + 28.3875i −0.187906 + 1.06990i
\(705\) 0 0
\(706\) −11.0438 + 12.4126i −0.415637 + 0.467154i
\(707\) 4.86315 16.1030i 0.182898 0.605617i
\(708\) −1.15444 9.85761i −0.0433866 0.370472i
\(709\) −4.02866 6.97784i −0.151299 0.262058i 0.780406 0.625273i \(-0.215012\pi\)
−0.931705 + 0.363215i \(0.881679\pi\)
\(710\) 0 0
\(711\) −25.0958 14.4891i −0.941168 0.543383i
\(712\) 2.60620 29.9054i 0.0976714 1.12075i
\(713\) 4.84582i 0.181477i
\(714\) −61.2371 + 37.5782i −2.29174 + 1.40633i
\(715\) 0 0
\(716\) −14.9775 20.1089i −0.559737 0.751503i
\(717\) −47.5049 27.4269i −1.77410 1.02428i
\(718\) 0.0880634 + 0.265660i 0.00328650 + 0.00991434i
\(719\) −5.87241 10.1713i −0.219004 0.379326i 0.735500 0.677525i \(-0.236947\pi\)
−0.954504 + 0.298199i \(0.903614\pi\)
\(720\) 0 0
\(721\) 1.97139 1.85097i 0.0734184 0.0689338i
\(722\) 8.52275 + 7.58289i 0.317184 + 0.282206i
\(723\) −4.08766 + 2.36001i −0.152022 + 0.0877697i
\(724\) 6.34853 14.7267i 0.235941 0.547312i
\(725\) 0 0
\(726\) 1.46913 7.11908i 0.0545247 0.264214i
\(727\) 33.3549 1.23706 0.618532 0.785760i \(-0.287728\pi\)
0.618532 + 0.785760i \(0.287728\pi\)
\(728\) 2.27258 5.68614i 0.0842273 0.210742i
\(729\) −38.2742 −1.41756
\(730\) 0 0
\(731\) 8.86429 15.3534i 0.327857 0.567866i
\(732\) −20.0947 + 46.6137i −0.742722 + 1.72289i
\(733\) 9.95934 5.75003i 0.367856 0.212382i −0.304665 0.952460i \(-0.598545\pi\)
0.672522 + 0.740077i \(0.265211\pi\)
\(734\) 7.95403 + 7.07688i 0.293588 + 0.261212i
\(735\) 0 0
\(736\) −6.79912 + 12.6268i −0.250619 + 0.465429i
\(737\) 16.6848 + 28.8989i 0.614593 + 1.06451i
\(738\) −4.42417 13.3463i −0.162856 0.491286i
\(739\) 9.70301 + 5.60203i 0.356931 + 0.206074i 0.667734 0.744400i \(-0.267265\pi\)
−0.310803 + 0.950474i \(0.600598\pi\)
\(740\) 0 0
\(741\) 7.02455i 0.258053i
\(742\) 3.22963 5.95700i 0.118564 0.218688i
\(743\) 43.7950i 1.60668i −0.595520 0.803341i \(-0.703054\pi\)
0.595520 0.803341i \(-0.296946\pi\)
\(744\) 13.9830 + 1.21859i 0.512643 + 0.0446759i
\(745\) 0 0
\(746\) −41.8007 + 13.8565i −1.53043 + 0.507322i
\(747\) 19.6309 + 34.0017i 0.718256 + 1.24406i
\(748\) −6.19898 52.9322i −0.226657 1.93539i
\(749\) 13.1325 + 13.9869i 0.479852 + 0.511069i
\(750\) 0 0
\(751\) −44.5322 + 25.7107i −1.62500 + 0.938196i −0.639450 + 0.768832i \(0.720838\pi\)
−0.985554 + 0.169364i \(0.945829\pi\)
\(752\) −1.52894 + 5.11541i −0.0557547 + 0.186540i
\(753\) −18.1976 + 31.5192i −0.663159 + 1.14862i
\(754\) 2.31581 + 0.477905i 0.0843369 + 0.0174043i
\(755\) 0 0
\(756\) 1.78755 10.0101i 0.0650126 0.364064i
\(757\) −18.1453 −0.659502 −0.329751 0.944068i \(-0.606965\pi\)
−0.329751 + 0.944068i \(0.606965\pi\)
\(758\) 22.6308 + 4.67022i 0.821987 + 0.169630i
\(759\) 11.8562 20.5355i 0.430352 0.745391i
\(760\) 0 0
\(761\) −28.4860 + 16.4464i −1.03262 + 0.596181i −0.917733 0.397198i \(-0.869983\pi\)
−0.114883 + 0.993379i \(0.536649\pi\)
\(762\) −21.4312 + 24.0875i −0.776370 + 0.872598i
\(763\) −20.1906 6.09762i −0.730950 0.220749i
\(764\) −13.4270 + 1.57246i −0.485771 + 0.0568895i
\(765\) 0 0
\(766\) 11.8783 3.93753i 0.429181 0.142269i
\(767\) −1.35456 0.782054i −0.0489102 0.0282383i
\(768\) −34.7259 22.7948i −1.25306 0.822535i
\(769\) 20.8502i 0.751876i 0.926645 + 0.375938i \(0.122679\pi\)
−0.926645 + 0.375938i \(0.877321\pi\)
\(770\) 0 0
\(771\) 46.4003i 1.67107i
\(772\) −3.78543 + 2.81947i −0.136241 + 0.101475i
\(773\) 7.52368 + 4.34380i 0.270608 + 0.156236i 0.629164 0.777273i \(-0.283397\pi\)
−0.358556 + 0.933508i \(0.616731\pi\)
\(774\) 3.98932 + 12.0345i 0.143393 + 0.432572i
\(775\) 0 0
\(776\) 16.9639 + 11.8697i 0.608970 + 0.426099i
\(777\) −11.2381 47.9306i −0.403165 1.71950i
\(778\) 9.87384 + 8.78497i 0.353994 + 0.314957i
\(779\) −7.61208 + 4.39484i −0.272731 + 0.157461i
\(780\) 0 0
\(781\) −2.49351 + 4.31888i −0.0892247 + 0.154542i
\(782\) 5.35937 25.9703i 0.191651 0.928694i
\(783\) 3.92660 0.140325
\(784\) −26.2694 9.69115i −0.938193 0.346113i
\(785\) 0 0
\(786\) −9.93555 + 48.1453i −0.354389 + 1.71729i
\(787\) 18.6062 32.2270i 0.663241 1.14877i −0.316518 0.948586i \(-0.602514\pi\)
0.979759 0.200180i \(-0.0641528\pi\)
\(788\) 37.3208 + 16.0887i 1.32950 + 0.573135i
\(789\) 49.2312 28.4237i 1.75268 1.01191i
\(790\) 0 0
\(791\) −4.59982 19.6183i −0.163551 0.697545i
\(792\) 31.2277 + 21.8501i 1.10963 + 0.776411i
\(793\) 3.99976 + 6.92778i 0.142036 + 0.246013i
\(794\) 9.03437 + 27.2539i 0.320618 + 0.967205i
\(795\) 0 0
\(796\) 18.3787 13.6889i 0.651415 0.485189i
\(797\) 21.3900i 0.757671i 0.925464 + 0.378835i \(0.123675\pi\)
−0.925464 + 0.378835i \(0.876325\pi\)
\(798\) −32.1087 + 0.860619i −1.13664 + 0.0304656i
\(799\) 9.87221i 0.349254i
\(800\) 0 0
\(801\) −34.3773 19.8477i −1.21466 0.701285i
\(802\) −14.8826 + 4.93341i −0.525522 + 0.174205i
\(803\) 13.3235 + 23.0770i 0.470176 + 0.814368i
\(804\) −47.7666 + 5.59403i −1.68460 + 0.197286i
\(805\) 0 0
\(806\) 1.47033 1.65257i 0.0517902 0.0582094i
\(807\) 6.48166 3.74219i 0.228165 0.131731i
\(808\) −16.2954 + 7.60536i −0.573269 + 0.267556i
\(809\) 12.1707 21.0803i 0.427900 0.741144i −0.568787 0.822485i \(-0.692587\pi\)
0.996686 + 0.0813411i \(0.0259203\pi\)
\(810\) 0 0
\(811\) 31.3778 1.10183 0.550913 0.834563i \(-0.314280\pi\)
0.550913 + 0.834563i \(0.314280\pi\)
\(812\) 1.90075 10.6440i 0.0667031 0.373530i
\(813\) 44.0206 1.54387
\(814\) 35.7637 + 7.38041i 1.25352 + 0.258683i
\(815\) 0 0
\(816\) 73.5917 + 21.9958i 2.57622 + 0.770006i
\(817\) 6.86389 3.96287i 0.240137 0.138643i
\(818\) 5.53386 6.21976i 0.193487 0.217469i
\(819\) −5.54259 5.90317i −0.193674 0.206274i
\(820\) 0 0
\(821\) −0.0785681 0.136084i −0.00274204 0.00474936i 0.864651 0.502373i \(-0.167539\pi\)
−0.867393 + 0.497623i \(0.834206\pi\)
\(822\) −18.2066 + 6.03528i −0.635027 + 0.210505i
\(823\) 16.1904 + 9.34753i 0.564362 + 0.325835i 0.754894 0.655846i \(-0.227688\pi\)
−0.190532 + 0.981681i \(0.561021\pi\)
\(824\) −2.87995 0.250982i −0.100328 0.00874338i
\(825\) 0 0
\(826\) −3.40876 + 6.28741i −0.118606 + 0.218767i
\(827\) 35.2960i 1.22736i 0.789554 + 0.613681i \(0.210312\pi\)
−0.789554 + 0.613681i \(0.789688\pi\)
\(828\) 11.3279 + 15.2088i 0.393670 + 0.528542i
\(829\) 14.2590 + 8.23245i 0.495237 + 0.285925i 0.726744 0.686908i \(-0.241033\pi\)
−0.231508 + 0.972833i \(0.574366\pi\)
\(830\) 0 0
\(831\) 34.8558 + 60.3720i 1.20913 + 2.09428i
\(832\) −6.14996 + 2.24311i −0.213211 + 0.0777659i
\(833\) 51.6713 + 3.25893i 1.79030 + 0.112915i
\(834\) 60.1934 + 53.5555i 2.08433 + 1.85447i
\(835\) 0 0
\(836\) 9.43191 21.8792i 0.326209 0.756707i
\(837\) 1.83658 3.18105i 0.0634814 0.109953i
\(838\) −4.78072 + 23.1662i −0.165147 + 0.800264i
\(839\) 54.8000 1.89191 0.945953 0.324303i \(-0.105130\pi\)
0.945953 + 0.324303i \(0.105130\pi\)
\(840\) 0 0
\(841\) −24.8248 −0.856026
\(842\) 0.339624 1.64574i 0.0117042 0.0567158i
\(843\) −32.3871 + 56.0960i −1.11547 + 1.93205i
\(844\) 17.4696 40.5243i 0.601329 1.39490i
\(845\) 0 0
\(846\) 5.27458 + 4.69291i 0.181344 + 0.161346i
\(847\) −3.81872 + 3.58546i −0.131213 + 0.123198i
\(848\) −7.04801 + 1.67376i −0.242030 + 0.0574773i
\(849\) −12.7709 22.1199i −0.438297 0.759152i
\(850\) 0 0
\(851\) 15.7356 + 9.08496i 0.539410 + 0.311428i
\(852\) −4.29332 5.76422i −0.147087 0.197479i
\(853\) 38.9225i 1.33268i 0.745648 + 0.666340i \(0.232140\pi\)
−0.745648 + 0.666340i \(0.767860\pi\)
\(854\) 31.1764 19.1314i 1.06683 0.654662i
\(855\) 0 0
\(856\) 1.78070 20.4331i 0.0608631 0.698388i
\(857\) −25.4206 14.6766i −0.868350 0.501342i −0.00155047 0.999999i \(-0.500494\pi\)
−0.866800 + 0.498657i \(0.833827\pi\)
\(858\) 10.2742 3.40580i 0.350757 0.116272i
\(859\) −23.6874 41.0277i −0.808202 1.39985i −0.914108 0.405471i \(-0.867107\pi\)
0.105905 0.994376i \(-0.466226\pi\)
\(860\) 0 0
\(861\) −5.27880 + 17.4793i −0.179901 + 0.595694i
\(862\) −22.6504 + 25.4578i −0.771474 + 0.867095i
\(863\) −20.5257 + 11.8505i −0.698704 + 0.403397i −0.806865 0.590737i \(-0.798837\pi\)
0.108161 + 0.994133i \(0.465504\pi\)
\(864\) −9.24887 + 5.71198i −0.314653 + 0.194326i
\(865\) 0 0
\(866\) 20.7484 + 4.28176i 0.705060 + 0.145500i
\(867\) −97.8892 −3.32449
\(868\) −7.73394 6.51832i −0.262507 0.221246i
\(869\) −27.9134 −0.946897
\(870\) 0 0
\(871\) −3.78957 + 6.56372i −0.128405 + 0.222403i
\(872\) 9.53591 + 20.4318i 0.322927 + 0.691908i
\(873\) 23.7103 13.6892i 0.802474 0.463308i
\(874\) 7.88009 8.85680i 0.266548 0.299586i
\(875\) 0 0
\(876\) −38.1436 + 4.46706i −1.28875 + 0.150928i
\(877\) 16.6020 + 28.7555i 0.560610 + 0.971004i 0.997443 + 0.0714621i \(0.0227665\pi\)
−0.436834 + 0.899542i \(0.643900\pi\)
\(878\) −23.2572 + 7.70951i −0.784893 + 0.260183i
\(879\) 52.6205 + 30.3805i 1.77485 + 1.02471i
\(880\) 0 0
\(881\) 19.2043i 0.647008i 0.946227 + 0.323504i \(0.104861\pi\)
−0.946227 + 0.323504i \(0.895139\pi\)
\(882\) −26.3040 + 26.0580i −0.885700 + 0.877420i
\(883\) 8.57526i 0.288581i 0.989535 + 0.144290i \(0.0460899\pi\)
−0.989535 + 0.144290i \(0.953910\pi\)
\(884\) 9.70767 7.23049i 0.326504 0.243188i
\(885\) 0 0
\(886\) 11.2281 + 33.8716i 0.377214 + 1.13794i
\(887\) −7.37543 12.7746i −0.247643 0.428930i 0.715229 0.698891i \(-0.246323\pi\)
−0.962871 + 0.269961i \(0.912989\pi\)
\(888\) −30.1725 + 43.1219i −1.01252 + 1.44707i
\(889\) 22.6199 5.30359i 0.758646 0.177877i
\(890\) 0 0
\(891\) −19.4430 + 11.2254i −0.651365 + 0.376066i
\(892\) −43.3028 18.6674i −1.44989 0.625032i
\(893\) 2.20673 3.82218i 0.0738455 0.127904i
\(894\) −17.7719 + 86.1182i −0.594380 + 2.88022i
\(895\) 0 0
\(896\) 11.0066 + 27.8362i 0.367704 + 0.929943i
\(897\) 5.38571 0.179824
\(898\) 2.01832 9.78032i 0.0673524 0.326373i
\(899\) 1.95288 3.38248i 0.0651321 0.112812i
\(900\) 0 0
\(901\) 11.6002 6.69736i 0.386457 0.223121i
\(902\) −10.1186 9.00277i −0.336914 0.299760i
\(903\) 4.75995 15.7613i 0.158401 0.524503i
\(904\) −12.3498 + 17.6500i −0.410747 + 0.587030i
\(905\) 0 0
\(906\) −8.09563 24.4220i −0.268959 0.811367i
\(907\) 41.2134 + 23.7946i 1.36847 + 0.790085i 0.990732 0.135828i \(-0.0433695\pi\)
0.377736 + 0.925914i \(0.376703\pi\)
\(908\) 33.5660 25.0007i 1.11393 0.829678i
\(909\) 23.7796i 0.788720i
\(910\) 0 0
\(911\) 34.7074i 1.14991i −0.818186 0.574954i \(-0.805020\pi\)
0.818186 0.574954i \(-0.194980\pi\)
\(912\) 23.5754 + 24.9659i 0.780660 + 0.826705i
\(913\) 32.7523 + 18.9095i 1.08394 + 0.625814i
\(914\) −25.3463 + 8.40200i −0.838380 + 0.277914i
\(915\) 0 0
\(916\) 10.2928 1.20540i 0.340082 0.0398276i
\(917\) 25.8255 24.2480i 0.852833 0.800739i
\(918\) 13.3610 15.0170i 0.440977 0.495635i
\(919\) −44.9270 + 25.9386i −1.48200 + 0.855635i −0.999792 0.0204194i \(-0.993500\pi\)
−0.482212 + 0.876055i \(0.660167\pi\)
\(920\) 0 0
\(921\) 2.83671 4.91333i 0.0934729 0.161900i
\(922\) 47.9340 + 9.89195i 1.57862 + 0.325774i
\(923\) −1.13269 −0.0372828
\(924\) −16.8264 46.5456i −0.553549 1.53124i
\(925\) 0 0
\(926\) −20.8080 4.29406i −0.683794 0.141112i
\(927\) −1.91138 + 3.31060i −0.0627778 + 0.108734i
\(928\) −9.83454 + 6.07369i −0.322835 + 0.199379i
\(929\) −37.9198 + 21.8930i −1.24411 + 0.718286i −0.969928 0.243393i \(-0.921740\pi\)
−0.274180 + 0.961678i \(0.588406\pi\)
\(930\) 0 0
\(931\) 19.2769 + 12.8118i 0.631774 + 0.419891i
\(932\) 4.83166 + 41.2568i 0.158266 + 1.35141i
\(933\) −37.5151 64.9780i −1.22819 2.12728i
\(934\) 34.1489 11.3200i 1.11739 0.370402i
\(935\) 0 0
\(936\) −0.751546 + 8.62379i −0.0245651 + 0.281877i
\(937\) 14.2224i 0.464624i −0.972641 0.232312i \(-0.925371\pi\)
0.972641 0.232312i \(-0.0746290\pi\)
\(938\) 30.4666 + 16.5177i 0.994771 + 0.539322i
\(939\) 16.4937i 0.538251i
\(940\) 0 0
\(941\) 4.80070 + 2.77169i 0.156498 + 0.0903544i 0.576204 0.817306i \(-0.304533\pi\)
−0.419706 + 0.907660i \(0.637867\pi\)
\(942\) 7.42320 + 22.3935i 0.241861 + 0.729619i
\(943\) −3.36951 5.83617i −0.109726 0.190052i
\(944\) 7.43893 1.76660i 0.242116 0.0574979i
\(945\) 0 0
\(946\) 9.12407 + 8.11789i 0.296649 + 0.263935i
\(947\) 51.5945 29.7881i 1.67660 0.967983i 0.712791 0.701377i \(-0.247431\pi\)
0.963805 0.266607i \(-0.0859024\pi\)
\(948\) 15.9257 36.9429i 0.517244 1.19985i
\(949\) −3.02612 + 5.24140i −0.0982321 + 0.170143i
\(950\) 0 0
\(951\) 48.8163 1.58298
\(952\) −34.2394 43.4872i −1.10971 1.40943i
\(953\) −12.2577 −0.397065 −0.198532 0.980094i \(-0.563617\pi\)
−0.198532 + 0.980094i \(0.563617\pi\)
\(954\) −1.93602 + 9.38149i −0.0626809 + 0.303737i
\(955\) 0 0
\(956\) 16.7285 38.8051i 0.541039 1.25505i
\(957\) 16.5517 9.55612i 0.535040 0.308906i
\(958\) −21.7321 19.3355i −0.702133 0.624703i
\(959\) 13.2316 + 3.99597i 0.427270 + 0.129037i
\(960\) 0 0
\(961\) 13.6732 + 23.6826i 0.441070 + 0.763956i
\(962\) 2.60974 + 7.87279i 0.0841414 + 0.253829i
\(963\) −23.4885 13.5611i −0.756906 0.437000i
\(964\) −2.17200 2.91612i −0.0699553 0.0939220i
\(965\) 0 0
\(966\) −0.659836 24.6177i −0.0212299 0.792062i
\(967\) 53.4551i 1.71900i −0.511137 0.859499i \(-0.670775\pi\)
0.511137 0.859499i \(-0.329225\pi\)
\(968\) 5.57867 + 0.486170i 0.179305 + 0.0156261i
\(969\) −54.9869 31.7467i −1.76643 1.01985i
\(970\) 0 0
\(971\) 11.1284 + 19.2749i 0.357126 + 0.618561i 0.987479 0.157748i \(-0.0504232\pi\)
−0.630353 + 0.776308i \(0.717090\pi\)
\(972\) −5.10475 43.5887i −0.163735 1.39811i
\(973\) −13.2534 56.5259i −0.424885 1.81214i
\(974\) 27.3167 30.7025i 0.875284 0.983772i
\(975\) 0 0
\(976\) −37.4662 11.1982i −1.19926 0.358447i
\(977\) 15.8974 27.5351i 0.508603 0.880926i −0.491347 0.870964i \(-0.663495\pi\)
0.999950 0.00996251i \(-0.00317122\pi\)
\(978\) 66.4466 + 13.7123i 2.12473 + 0.438472i
\(979\) −38.2369 −1.22206
\(980\) 0 0
\(981\) 29.8158 0.951947
\(982\) −13.1829 2.72051i −0.420684 0.0868148i
\(983\) 10.2927 17.8275i 0.328287 0.568609i −0.653885 0.756594i \(-0.726862\pi\)
0.982172 + 0.187985i \(0.0601955\pi\)
\(984\) 17.6881 8.25538i 0.563877 0.263172i
\(985\) 0 0
\(986\) 14.2070 15.9679i 0.452444 0.508522i
\(987\) −2.09288 8.92616i −0.0666172 0.284123i
\(988\) 5.37470 0.629440i 0.170992 0.0200252i
\(989\) 3.03832 + 5.26253i 0.0966131 + 0.167339i
\(990\) 0 0
\(991\) −32.2836 18.6390i −1.02552 0.592086i −0.109824 0.993951i \(-0.535029\pi\)
−0.915699 + 0.401865i \(0.868362\pi\)
\(992\) 0.320577 + 10.8081i 0.0101783 + 0.343156i
\(993\) 33.9810i 1.07836i
\(994\) 0.138772 + 5.17743i 0.00440158 + 0.164218i
\(995\) 0 0
\(996\) −43.7130 + 32.5584i −1.38510 + 1.03165i
\(997\) 10.9485 + 6.32111i 0.346742 + 0.200191i 0.663249 0.748399i \(-0.269177\pi\)
−0.316508 + 0.948590i \(0.602510\pi\)
\(998\) −8.98449 27.1034i −0.284399 0.857944i
\(999\) 6.88644 + 11.9277i 0.217877 + 0.377375i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.p.e.451.7 32
4.3 odd 2 inner 700.2.p.e.451.15 32
5.2 odd 4 140.2.s.b.59.2 yes 32
5.3 odd 4 140.2.s.b.59.15 yes 32
5.4 even 2 inner 700.2.p.e.451.10 32
7.5 odd 6 inner 700.2.p.e.551.15 32
20.3 even 4 140.2.s.b.59.10 yes 32
20.7 even 4 140.2.s.b.59.7 yes 32
20.19 odd 2 inner 700.2.p.e.451.2 32
28.19 even 6 inner 700.2.p.e.551.7 32
35.2 odd 12 980.2.s.e.19.10 32
35.3 even 12 980.2.c.d.979.7 32
35.12 even 12 140.2.s.b.19.10 yes 32
35.13 even 4 980.2.s.e.619.15 32
35.17 even 12 980.2.c.d.979.26 32
35.18 odd 12 980.2.c.d.979.8 32
35.19 odd 6 inner 700.2.p.e.551.2 32
35.23 odd 12 980.2.s.e.19.7 32
35.27 even 4 980.2.s.e.619.2 32
35.32 odd 12 980.2.c.d.979.25 32
35.33 even 12 140.2.s.b.19.7 yes 32
140.3 odd 12 980.2.c.d.979.28 32
140.19 even 6 inner 700.2.p.e.551.10 32
140.23 even 12 980.2.s.e.19.2 32
140.27 odd 4 980.2.s.e.619.7 32
140.47 odd 12 140.2.s.b.19.15 yes 32
140.67 even 12 980.2.c.d.979.6 32
140.83 odd 4 980.2.s.e.619.10 32
140.87 odd 12 980.2.c.d.979.5 32
140.103 odd 12 140.2.s.b.19.2 32
140.107 even 12 980.2.s.e.19.15 32
140.123 even 12 980.2.c.d.979.27 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.s.b.19.2 32 140.103 odd 12
140.2.s.b.19.7 yes 32 35.33 even 12
140.2.s.b.19.10 yes 32 35.12 even 12
140.2.s.b.19.15 yes 32 140.47 odd 12
140.2.s.b.59.2 yes 32 5.2 odd 4
140.2.s.b.59.7 yes 32 20.7 even 4
140.2.s.b.59.10 yes 32 20.3 even 4
140.2.s.b.59.15 yes 32 5.3 odd 4
700.2.p.e.451.2 32 20.19 odd 2 inner
700.2.p.e.451.7 32 1.1 even 1 trivial
700.2.p.e.451.10 32 5.4 even 2 inner
700.2.p.e.451.15 32 4.3 odd 2 inner
700.2.p.e.551.2 32 35.19 odd 6 inner
700.2.p.e.551.7 32 28.19 even 6 inner
700.2.p.e.551.10 32 140.19 even 6 inner
700.2.p.e.551.15 32 7.5 odd 6 inner
980.2.c.d.979.5 32 140.87 odd 12
980.2.c.d.979.6 32 140.67 even 12
980.2.c.d.979.7 32 35.3 even 12
980.2.c.d.979.8 32 35.18 odd 12
980.2.c.d.979.25 32 35.32 odd 12
980.2.c.d.979.26 32 35.17 even 12
980.2.c.d.979.27 32 140.123 even 12
980.2.c.d.979.28 32 140.3 odd 12
980.2.s.e.19.2 32 140.23 even 12
980.2.s.e.19.7 32 35.23 odd 12
980.2.s.e.19.10 32 35.2 odd 12
980.2.s.e.19.15 32 140.107 even 12
980.2.s.e.619.2 32 35.27 even 4
980.2.s.e.619.7 32 140.27 odd 4
980.2.s.e.619.10 32 140.83 odd 4
980.2.s.e.619.15 32 35.13 even 4