Properties

Label 700.2.p.e.451.3
Level $700$
Weight $2$
Character 700.451
Analytic conductor $5.590$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,2,Mod(451,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 451.3
Character \(\chi\) \(=\) 700.451
Dual form 700.2.p.e.551.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.24320 - 0.674125i) q^{2} +(-0.366453 + 0.634715i) q^{3} +(1.09111 + 1.67615i) q^{4} +(0.883452 - 0.542044i) q^{6} +(0.664037 - 2.56107i) q^{7} +(-0.226536 - 2.81934i) q^{8} +(1.23142 + 2.13289i) q^{9} +(-2.33007 - 1.34527i) q^{11} +(-1.46372 + 0.0783137i) q^{12} -3.95118i q^{13} +(-2.55201 + 2.73628i) q^{14} +(-1.61896 + 3.65773i) q^{16} +(1.22891 + 0.709509i) q^{17} +(-0.0930760 - 3.48175i) q^{18} +(-1.61265 - 2.79319i) q^{19} +(1.38221 + 1.35998i) q^{21} +(1.98987 + 3.24320i) q^{22} +(-4.25426 + 2.45620i) q^{23} +(1.87249 + 0.889369i) q^{24} +(-2.66359 + 4.91212i) q^{26} -4.00375 q^{27} +(5.01727 - 1.68138i) q^{28} +5.17926 q^{29} +(3.81745 - 6.61201i) q^{31} +(4.47846 - 3.45592i) q^{32} +(1.70772 - 0.985953i) q^{33} +(-1.04948 - 1.71050i) q^{34} +(-2.23142 + 4.39127i) q^{36} +(-2.23990 - 3.87963i) q^{37} +(0.121890 + 4.55962i) q^{38} +(2.50787 + 1.44792i) q^{39} -0.325509i q^{41} +(-0.801566 - 2.62252i) q^{42} -9.28165i q^{43} +(-0.287494 - 5.37338i) q^{44} +(6.94469 - 0.185649i) q^{46} +(3.28287 + 5.68610i) q^{47} +(-1.72834 - 2.36796i) q^{48} +(-6.11811 - 3.40128i) q^{49} +(-0.900672 + 0.520003i) q^{51} +(6.62277 - 4.31117i) q^{52} +(0.807955 - 1.39942i) q^{53} +(4.97748 + 2.69903i) q^{54} +(-7.37094 - 1.29197i) q^{56} +2.36383 q^{57} +(-6.43888 - 3.49147i) q^{58} +(3.81745 - 6.61201i) q^{59} +(12.3842 - 7.15003i) q^{61} +(-9.20319 + 5.64664i) q^{62} +(6.28018 - 1.73744i) q^{63} +(-7.89736 + 1.27737i) q^{64} +(-2.78770 + 0.0745223i) q^{66} +(-2.62109 - 1.51329i) q^{67} +(0.151627 + 2.83398i) q^{68} -3.60032i q^{69} -15.4089i q^{71} +(5.73438 - 3.95498i) q^{72} +(1.22891 + 0.709509i) q^{73} +(0.169301 + 6.33314i) q^{74} +(2.92222 - 5.75071i) q^{76} +(-4.99257 + 5.07415i) q^{77} +(-2.14171 - 3.49068i) q^{78} +(-10.5765 + 6.10637i) q^{79} +(-2.22709 + 3.85743i) q^{81} +(-0.219434 + 0.404674i) q^{82} -5.26172 q^{83} +(-0.771396 + 3.80068i) q^{84} +(-6.25699 + 11.5390i) q^{86} +(-1.89795 + 3.28735i) q^{87} +(-3.26492 + 6.87401i) q^{88} +(-4.10930 + 2.37250i) q^{89} +(-10.1192 - 2.62373i) q^{91} +(-8.75882 - 4.45079i) q^{92} +(2.79783 + 4.84598i) q^{93} +(-0.248133 - 9.28205i) q^{94} +(0.552378 + 4.10898i) q^{96} -8.35134i q^{97} +(5.31316 + 8.35286i) q^{98} -6.62638i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 6 q^{4} - 4 q^{9} - 22 q^{14} + 18 q^{16} - 52 q^{21} + 48 q^{24} - 18 q^{26} - 28 q^{36} + 26 q^{44} - 22 q^{46} - 48 q^{54} - 16 q^{56} + 36 q^{61} - 36 q^{64} - 24 q^{66} - 14 q^{74} + 72 q^{81}+ \cdots + 60 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.24320 0.674125i −0.879078 0.476679i
\(3\) −0.366453 + 0.634715i −0.211572 + 0.366453i −0.952207 0.305455i \(-0.901191\pi\)
0.740635 + 0.671908i \(0.234525\pi\)
\(4\) 1.09111 + 1.67615i 0.545555 + 0.838075i
\(5\) 0 0
\(6\) 0.883452 0.542044i 0.360668 0.221289i
\(7\) 0.664037 2.56107i 0.250982 0.967992i
\(8\) −0.226536 2.81934i −0.0800926 0.996787i
\(9\) 1.23142 + 2.13289i 0.410475 + 0.710964i
\(10\) 0 0
\(11\) −2.33007 1.34527i −0.702542 0.405613i 0.105751 0.994393i \(-0.466275\pi\)
−0.808294 + 0.588780i \(0.799609\pi\)
\(12\) −1.46372 + 0.0783137i −0.422539 + 0.0226072i
\(13\) 3.95118i 1.09586i −0.836524 0.547930i \(-0.815416\pi\)
0.836524 0.547930i \(-0.184584\pi\)
\(14\) −2.55201 + 2.73628i −0.682054 + 0.731302i
\(15\) 0 0
\(16\) −1.61896 + 3.65773i −0.404740 + 0.914432i
\(17\) 1.22891 + 0.709509i 0.298053 + 0.172081i 0.641568 0.767066i \(-0.278284\pi\)
−0.343515 + 0.939147i \(0.611618\pi\)
\(18\) −0.0930760 3.48175i −0.0219382 0.820657i
\(19\) −1.61265 2.79319i −0.369966 0.640801i 0.619593 0.784923i \(-0.287297\pi\)
−0.989560 + 0.144122i \(0.953964\pi\)
\(20\) 0 0
\(21\) 1.38221 + 1.35998i 0.301622 + 0.296773i
\(22\) 1.98987 + 3.24320i 0.424242 + 0.691452i
\(23\) −4.25426 + 2.45620i −0.887074 + 0.512152i −0.872984 0.487748i \(-0.837818\pi\)
−0.0140897 + 0.999901i \(0.504485\pi\)
\(24\) 1.87249 + 0.889369i 0.382221 + 0.181542i
\(25\) 0 0
\(26\) −2.66359 + 4.91212i −0.522373 + 0.963345i
\(27\) −4.00375 −0.770522
\(28\) 5.01727 1.68138i 0.948174 0.317751i
\(29\) 5.17926 0.961765 0.480882 0.876785i \(-0.340316\pi\)
0.480882 + 0.876785i \(0.340316\pi\)
\(30\) 0 0
\(31\) 3.81745 6.61201i 0.685634 1.18755i −0.287603 0.957750i \(-0.592858\pi\)
0.973237 0.229803i \(-0.0738082\pi\)
\(32\) 4.47846 3.45592i 0.791688 0.610926i
\(33\) 1.70772 0.985953i 0.297276 0.171632i
\(34\) −1.04948 1.71050i −0.179985 0.293349i
\(35\) 0 0
\(36\) −2.23142 + 4.39127i −0.371904 + 0.731878i
\(37\) −2.23990 3.87963i −0.368238 0.637806i 0.621052 0.783769i \(-0.286705\pi\)
−0.989290 + 0.145963i \(0.953372\pi\)
\(38\) 0.121890 + 4.55962i 0.0197732 + 0.739669i
\(39\) 2.50787 + 1.44792i 0.401581 + 0.231853i
\(40\) 0 0
\(41\) 0.325509i 0.0508359i −0.999677 0.0254180i \(-0.991908\pi\)
0.999677 0.0254180i \(-0.00809166\pi\)
\(42\) −0.801566 2.62252i −0.123684 0.404663i
\(43\) 9.28165i 1.41544i −0.706494 0.707719i \(-0.749724\pi\)
0.706494 0.707719i \(-0.250276\pi\)
\(44\) −0.287494 5.37338i −0.0433413 0.810067i
\(45\) 0 0
\(46\) 6.94469 0.185649i 1.02394 0.0273725i
\(47\) 3.28287 + 5.68610i 0.478856 + 0.829403i 0.999706 0.0242453i \(-0.00771827\pi\)
−0.520850 + 0.853648i \(0.674385\pi\)
\(48\) −1.72834 2.36796i −0.249465 0.341786i
\(49\) −6.11811 3.40128i −0.874016 0.485898i
\(50\) 0 0
\(51\) −0.900672 + 0.520003i −0.126119 + 0.0728150i
\(52\) 6.62277 4.31117i 0.918412 0.597851i
\(53\) 0.807955 1.39942i 0.110981 0.192225i −0.805185 0.593024i \(-0.797934\pi\)
0.916166 + 0.400799i \(0.131267\pi\)
\(54\) 4.97748 + 2.69903i 0.677349 + 0.367292i
\(55\) 0 0
\(56\) −7.37094 1.29197i −0.984984 0.172647i
\(57\) 2.36383 0.313097
\(58\) −6.43888 3.49147i −0.845466 0.458453i
\(59\) 3.81745 6.61201i 0.496989 0.860811i −0.503005 0.864284i \(-0.667772\pi\)
0.999994 + 0.00347297i \(0.00110548\pi\)
\(60\) 0 0
\(61\) 12.3842 7.15003i 1.58564 0.915467i 0.591622 0.806215i \(-0.298488\pi\)
0.994014 0.109252i \(-0.0348455\pi\)
\(62\) −9.20319 + 5.64664i −1.16881 + 0.717124i
\(63\) 6.28018 1.73744i 0.791229 0.218897i
\(64\) −7.89736 + 1.27737i −0.987170 + 0.159671i
\(65\) 0 0
\(66\) −2.78770 + 0.0745223i −0.343142 + 0.00917306i
\(67\) −2.62109 1.51329i −0.320218 0.184878i 0.331272 0.943535i \(-0.392522\pi\)
−0.651490 + 0.758658i \(0.725856\pi\)
\(68\) 0.151627 + 2.83398i 0.0183875 + 0.343671i
\(69\) 3.60032i 0.433427i
\(70\) 0 0
\(71\) 15.4089i 1.82870i −0.404922 0.914351i \(-0.632701\pi\)
0.404922 0.914351i \(-0.367299\pi\)
\(72\) 5.73438 3.95498i 0.675803 0.466099i
\(73\) 1.22891 + 0.709509i 0.143833 + 0.0830418i 0.570189 0.821513i \(-0.306870\pi\)
−0.426357 + 0.904555i \(0.640203\pi\)
\(74\) 0.169301 + 6.33314i 0.0196808 + 0.736212i
\(75\) 0 0
\(76\) 2.92222 5.75071i 0.335202 0.659652i
\(77\) −4.99257 + 5.07415i −0.568956 + 0.578253i
\(78\) −2.14171 3.49068i −0.242501 0.395241i
\(79\) −10.5765 + 6.10637i −1.18995 + 0.687021i −0.958296 0.285776i \(-0.907749\pi\)
−0.231659 + 0.972797i \(0.574415\pi\)
\(80\) 0 0
\(81\) −2.22709 + 3.85743i −0.247454 + 0.428604i
\(82\) −0.219434 + 0.404674i −0.0242324 + 0.0446887i
\(83\) −5.26172 −0.577549 −0.288774 0.957397i \(-0.593248\pi\)
−0.288774 + 0.957397i \(0.593248\pi\)
\(84\) −0.771396 + 3.80068i −0.0841662 + 0.414688i
\(85\) 0 0
\(86\) −6.25699 + 11.5390i −0.674709 + 1.24428i
\(87\) −1.89795 + 3.28735i −0.203482 + 0.352441i
\(88\) −3.26492 + 6.87401i −0.348041 + 0.732772i
\(89\) −4.10930 + 2.37250i −0.435585 + 0.251485i −0.701723 0.712450i \(-0.747586\pi\)
0.266138 + 0.963935i \(0.414252\pi\)
\(90\) 0 0
\(91\) −10.1192 2.62373i −1.06078 0.275041i
\(92\) −8.75882 4.45079i −0.913170 0.464027i
\(93\) 2.79783 + 4.84598i 0.290121 + 0.502505i
\(94\) −0.248133 9.28205i −0.0255929 0.957370i
\(95\) 0 0
\(96\) 0.552378 + 4.10898i 0.0563768 + 0.419371i
\(97\) 8.35134i 0.847950i −0.905674 0.423975i \(-0.860634\pi\)
0.905674 0.423975i \(-0.139366\pi\)
\(98\) 5.31316 + 8.35286i 0.536711 + 0.843766i
\(99\) 6.62638i 0.665976i
\(100\) 0 0
\(101\) −0.241927 0.139677i −0.0240727 0.0138984i 0.487915 0.872891i \(-0.337757\pi\)
−0.511988 + 0.858993i \(0.671091\pi\)
\(102\) 1.47027 0.0393039i 0.145578 0.00389167i
\(103\) 6.70030 + 11.6053i 0.660200 + 1.14350i 0.980563 + 0.196206i \(0.0628620\pi\)
−0.320362 + 0.947295i \(0.603805\pi\)
\(104\) −11.1397 + 0.895084i −1.09234 + 0.0877703i
\(105\) 0 0
\(106\) −1.94784 + 1.19510i −0.189191 + 0.116078i
\(107\) 4.70160 2.71447i 0.454521 0.262418i −0.255217 0.966884i \(-0.582147\pi\)
0.709738 + 0.704466i \(0.248813\pi\)
\(108\) −4.36853 6.71089i −0.420362 0.645756i
\(109\) 4.45851 7.72237i 0.427048 0.739669i −0.569561 0.821949i \(-0.692887\pi\)
0.996609 + 0.0822798i \(0.0262201\pi\)
\(110\) 0 0
\(111\) 3.28327 0.311634
\(112\) 8.29263 + 6.57512i 0.783580 + 0.621291i
\(113\) −1.05161 −0.0989268 −0.0494634 0.998776i \(-0.515751\pi\)
−0.0494634 + 0.998776i \(0.515751\pi\)
\(114\) −2.93873 1.59352i −0.275237 0.149247i
\(115\) 0 0
\(116\) 5.65114 + 8.68122i 0.524695 + 0.806031i
\(117\) 8.42743 4.86558i 0.779116 0.449823i
\(118\) −9.20319 + 5.64664i −0.847222 + 0.519815i
\(119\) 2.63314 2.67617i 0.241379 0.245324i
\(120\) 0 0
\(121\) −1.88052 3.25715i −0.170956 0.296105i
\(122\) −20.2161 + 0.540428i −1.83028 + 0.0489280i
\(123\) 0.206605 + 0.119284i 0.0186290 + 0.0107554i
\(124\) 15.2480 0.815817i 1.36931 0.0732626i
\(125\) 0 0
\(126\) −8.97880 2.07364i −0.799895 0.184734i
\(127\) 1.71773i 0.152424i −0.997092 0.0762121i \(-0.975717\pi\)
0.997092 0.0762121i \(-0.0242826\pi\)
\(128\) 10.6791 + 3.73579i 0.943911 + 0.330200i
\(129\) 5.89120 + 3.40128i 0.518691 + 0.299466i
\(130\) 0 0
\(131\) 7.07173 + 12.2486i 0.617860 + 1.07016i 0.989876 + 0.141938i \(0.0453335\pi\)
−0.372016 + 0.928226i \(0.621333\pi\)
\(132\) 3.51591 + 1.78661i 0.306021 + 0.155505i
\(133\) −8.22439 + 2.27531i −0.713145 + 0.197295i
\(134\) 2.23841 + 3.64827i 0.193369 + 0.315163i
\(135\) 0 0
\(136\) 1.72196 3.62543i 0.147657 0.310878i
\(137\) −7.43551 + 12.8787i −0.635259 + 1.10030i 0.351202 + 0.936300i \(0.385773\pi\)
−0.986460 + 0.164000i \(0.947560\pi\)
\(138\) −2.42707 + 4.47593i −0.206606 + 0.381016i
\(139\) 7.06762 0.599468 0.299734 0.954023i \(-0.403102\pi\)
0.299734 + 0.954023i \(0.403102\pi\)
\(140\) 0 0
\(141\) −4.81207 −0.405249
\(142\) −10.3875 + 19.1564i −0.871703 + 1.60757i
\(143\) −5.31538 + 9.20652i −0.444495 + 0.769888i
\(144\) −9.79516 + 1.05116i −0.816263 + 0.0875963i
\(145\) 0 0
\(146\) −1.04948 1.71050i −0.0868557 0.141562i
\(147\) 4.40084 2.63684i 0.362975 0.217483i
\(148\) 4.05885 7.98751i 0.333636 0.656569i
\(149\) 4.39289 + 7.60870i 0.359879 + 0.623329i 0.987940 0.154835i \(-0.0494846\pi\)
−0.628061 + 0.778164i \(0.716151\pi\)
\(150\) 0 0
\(151\) 0.260095 + 0.150166i 0.0211663 + 0.0122204i 0.510546 0.859851i \(-0.329443\pi\)
−0.489380 + 0.872071i \(0.662777\pi\)
\(152\) −7.50962 + 5.17936i −0.609110 + 0.420101i
\(153\) 3.49483i 0.282540i
\(154\) 9.62739 2.94259i 0.775797 0.237121i
\(155\) 0 0
\(156\) 0.309431 + 5.78341i 0.0247743 + 0.463043i
\(157\) 16.6579 + 9.61742i 1.32944 + 0.767553i 0.985213 0.171333i \(-0.0548073\pi\)
0.344228 + 0.938886i \(0.388141\pi\)
\(158\) 17.2653 0.461544i 1.37355 0.0367185i
\(159\) 0.592155 + 1.02564i 0.0469609 + 0.0813387i
\(160\) 0 0
\(161\) 3.46550 + 12.5264i 0.273119 + 0.987221i
\(162\) 5.36912 3.29424i 0.421838 0.258820i
\(163\) 9.28306 5.35958i 0.727105 0.419795i −0.0902569 0.995919i \(-0.528769\pi\)
0.817362 + 0.576124i \(0.195435\pi\)
\(164\) 0.545602 0.355166i 0.0426043 0.0277338i
\(165\) 0 0
\(166\) 6.54139 + 3.54706i 0.507710 + 0.275305i
\(167\) 13.2256 1.02343 0.511715 0.859155i \(-0.329010\pi\)
0.511715 + 0.859155i \(0.329010\pi\)
\(168\) 3.52114 4.20500i 0.271661 0.324423i
\(169\) −2.61180 −0.200908
\(170\) 0 0
\(171\) 3.97171 6.87920i 0.303724 0.526065i
\(172\) 15.5574 10.1273i 1.18624 0.772199i
\(173\) −9.74632 + 5.62704i −0.740999 + 0.427816i −0.822432 0.568863i \(-0.807384\pi\)
0.0814335 + 0.996679i \(0.474050\pi\)
\(174\) 4.57563 2.80739i 0.346878 0.212828i
\(175\) 0 0
\(176\) 8.69290 6.34483i 0.655252 0.478259i
\(177\) 2.79783 + 4.84598i 0.210298 + 0.364246i
\(178\) 6.70806 0.179323i 0.502790 0.0134409i
\(179\) 0.697992 + 0.402986i 0.0521703 + 0.0301206i 0.525858 0.850572i \(-0.323744\pi\)
−0.473688 + 0.880693i \(0.657078\pi\)
\(180\) 0 0
\(181\) 0.0667108i 0.00495857i 0.999997 + 0.00247929i \(0.000789182\pi\)
−0.999997 + 0.00247929i \(0.999211\pi\)
\(182\) 10.8115 + 10.0835i 0.801404 + 0.747435i
\(183\) 10.4806i 0.774747i
\(184\) 7.88860 + 11.4378i 0.581555 + 0.843205i
\(185\) 0 0
\(186\) −0.211471 7.91062i −0.0155058 0.580035i
\(187\) −1.90896 3.30641i −0.139597 0.241789i
\(188\) −5.94878 + 11.7067i −0.433860 + 0.853802i
\(189\) −2.65864 + 10.2539i −0.193388 + 0.745859i
\(190\) 0 0
\(191\) −15.1210 + 8.73010i −1.09412 + 0.631688i −0.934669 0.355519i \(-0.884304\pi\)
−0.159446 + 0.987207i \(0.550971\pi\)
\(192\) 2.08325 5.48067i 0.150345 0.395533i
\(193\) −8.59835 + 14.8928i −0.618923 + 1.07201i 0.370760 + 0.928729i \(0.379097\pi\)
−0.989683 + 0.143277i \(0.954236\pi\)
\(194\) −5.62985 + 10.3824i −0.404200 + 0.745414i
\(195\) 0 0
\(196\) −0.974468 13.9660i −0.0696049 0.997575i
\(197\) −11.9392 −0.850635 −0.425318 0.905044i \(-0.639838\pi\)
−0.425318 + 0.905044i \(0.639838\pi\)
\(198\) −4.46701 + 8.23793i −0.317457 + 0.585445i
\(199\) −7.76016 + 13.4410i −0.550103 + 0.952807i 0.448163 + 0.893952i \(0.352078\pi\)
−0.998267 + 0.0588552i \(0.981255\pi\)
\(200\) 0 0
\(201\) 1.92101 1.10910i 0.135498 0.0782297i
\(202\) 0.206605 + 0.336736i 0.0145367 + 0.0236927i
\(203\) 3.43922 13.2644i 0.241386 0.930980i
\(204\) −1.85433 0.942281i −0.129829 0.0659728i
\(205\) 0 0
\(206\) −0.506436 18.9445i −0.0352850 1.31993i
\(207\) −10.4776 6.04924i −0.728243 0.420452i
\(208\) 14.4523 + 6.39679i 1.00209 + 0.443538i
\(209\) 8.67775i 0.600253i
\(210\) 0 0
\(211\) 14.1636i 0.975063i 0.873105 + 0.487531i \(0.162103\pi\)
−0.873105 + 0.487531i \(0.837897\pi\)
\(212\) 3.22720 0.172666i 0.221645 0.0118588i
\(213\) 9.78027 + 5.64664i 0.670133 + 0.386901i
\(214\) −7.67494 + 0.205171i −0.524648 + 0.0140252i
\(215\) 0 0
\(216\) 0.906994 + 11.2879i 0.0617132 + 0.768047i
\(217\) −14.3989 14.1674i −0.977459 0.961742i
\(218\) −10.7487 + 6.59488i −0.727993 + 0.446662i
\(219\) −0.900672 + 0.520003i −0.0608618 + 0.0351385i
\(220\) 0 0
\(221\) 2.80340 4.85563i 0.188577 0.326625i
\(222\) −4.08178 2.21334i −0.273951 0.148550i
\(223\) −3.03443 −0.203201 −0.101600 0.994825i \(-0.532396\pi\)
−0.101600 + 0.994825i \(0.532396\pi\)
\(224\) −5.87697 13.7645i −0.392672 0.919679i
\(225\) 0 0
\(226\) 1.30736 + 0.708914i 0.0869643 + 0.0471563i
\(227\) −7.38839 + 12.7971i −0.490385 + 0.849371i −0.999939 0.0110676i \(-0.996477\pi\)
0.509554 + 0.860439i \(0.329810\pi\)
\(228\) 2.57920 + 3.96214i 0.170812 + 0.262399i
\(229\) 5.56933 3.21545i 0.368031 0.212483i −0.304567 0.952491i \(-0.598512\pi\)
0.672598 + 0.740008i \(0.265178\pi\)
\(230\) 0 0
\(231\) −1.39110 5.02829i −0.0915277 0.330837i
\(232\) −1.17329 14.6021i −0.0770303 0.958675i
\(233\) −8.73532 15.1300i −0.572270 0.991201i −0.996332 0.0855677i \(-0.972730\pi\)
0.424062 0.905633i \(-0.360604\pi\)
\(234\) −13.7570 + 0.367760i −0.899324 + 0.0240412i
\(235\) 0 0
\(236\) 15.2480 0.815817i 0.992559 0.0531052i
\(237\) 8.95079i 0.581416i
\(238\) −5.07760 + 1.55196i −0.329132 + 0.100598i
\(239\) 3.22490i 0.208601i −0.994546 0.104301i \(-0.966740\pi\)
0.994546 0.104301i \(-0.0332604\pi\)
\(240\) 0 0
\(241\) −17.7424 10.2436i −1.14289 0.659848i −0.195745 0.980655i \(-0.562713\pi\)
−0.947145 + 0.320807i \(0.896046\pi\)
\(242\) 0.142137 + 5.31701i 0.00913692 + 0.341790i
\(243\) −7.63787 13.2292i −0.489970 0.848653i
\(244\) 25.4971 + 12.9563i 1.63228 + 0.829444i
\(245\) 0 0
\(246\) −0.176440 0.287572i −0.0112494 0.0183349i
\(247\) −11.0364 + 6.37185i −0.702227 + 0.405431i
\(248\) −19.5063 9.26482i −1.23865 0.588317i
\(249\) 1.92817 3.33969i 0.122193 0.211644i
\(250\) 0 0
\(251\) 15.1647 0.957189 0.478594 0.878036i \(-0.341146\pi\)
0.478594 + 0.878036i \(0.341146\pi\)
\(252\) 9.76458 + 8.63079i 0.615111 + 0.543689i
\(253\) 13.2170 0.830943
\(254\) −1.15797 + 2.13549i −0.0726574 + 0.133993i
\(255\) 0 0
\(256\) −10.7579 11.8434i −0.672372 0.740214i
\(257\) −4.09764 + 2.36577i −0.255604 + 0.147573i −0.622327 0.782757i \(-0.713813\pi\)
0.366724 + 0.930330i \(0.380479\pi\)
\(258\) −5.03106 8.19989i −0.313220 0.510503i
\(259\) −11.4234 + 3.16032i −0.709813 + 0.196373i
\(260\) 0 0
\(261\) 6.37787 + 11.0468i 0.394780 + 0.683780i
\(262\) −0.534510 19.9947i −0.0330221 1.23528i
\(263\) 4.07068 + 2.35021i 0.251009 + 0.144920i 0.620226 0.784423i \(-0.287041\pi\)
−0.369217 + 0.929343i \(0.620374\pi\)
\(264\) −3.16660 4.59129i −0.194891 0.282574i
\(265\) 0 0
\(266\) 11.7584 + 2.71559i 0.720956 + 0.166503i
\(267\) 3.47764i 0.212828i
\(268\) −0.323401 6.04451i −0.0197549 0.369227i
\(269\) −21.2532 12.2706i −1.29583 0.748149i −0.316151 0.948709i \(-0.602391\pi\)
−0.979682 + 0.200559i \(0.935724\pi\)
\(270\) 0 0
\(271\) 13.1957 + 22.8556i 0.801582 + 1.38838i 0.918574 + 0.395248i \(0.129341\pi\)
−0.116993 + 0.993133i \(0.537325\pi\)
\(272\) −4.58474 + 3.34634i −0.277991 + 0.202902i
\(273\) 5.37353 5.46135i 0.325221 0.330536i
\(274\) 17.9257 10.9984i 1.08293 0.664435i
\(275\) 0 0
\(276\) 6.03468 3.92834i 0.363245 0.236458i
\(277\) −12.0350 + 20.8453i −0.723115 + 1.25247i 0.236630 + 0.971600i \(0.423957\pi\)
−0.959745 + 0.280872i \(0.909376\pi\)
\(278\) −8.78649 4.76446i −0.526979 0.285753i
\(279\) 18.8036 1.12574
\(280\) 0 0
\(281\) −7.78577 −0.464460 −0.232230 0.972661i \(-0.574602\pi\)
−0.232230 + 0.972661i \(0.574602\pi\)
\(282\) 5.98238 + 3.24394i 0.356245 + 0.193174i
\(283\) 3.97529 6.88540i 0.236306 0.409294i −0.723345 0.690487i \(-0.757396\pi\)
0.959651 + 0.281192i \(0.0907298\pi\)
\(284\) 25.8277 16.8128i 1.53259 0.997657i
\(285\) 0 0
\(286\) 12.8145 7.86234i 0.757734 0.464910i
\(287\) −0.833649 0.216150i −0.0492088 0.0127589i
\(288\) 12.8860 + 5.29637i 0.759314 + 0.312091i
\(289\) −7.49319 12.9786i −0.440776 0.763447i
\(290\) 0 0
\(291\) 5.30071 + 3.06037i 0.310733 + 0.179402i
\(292\) 0.151627 + 2.83398i 0.00887333 + 0.165846i
\(293\) 2.11501i 0.123560i −0.998090 0.0617801i \(-0.980322\pi\)
0.998090 0.0617801i \(-0.0196777\pi\)
\(294\) −7.24871 + 0.311415i −0.422753 + 0.0181621i
\(295\) 0 0
\(296\) −10.4306 + 7.19392i −0.606264 + 0.418138i
\(297\) 9.32902 + 5.38611i 0.541325 + 0.312534i
\(298\) −0.332032 12.4205i −0.0192341 0.719501i
\(299\) 9.70487 + 16.8093i 0.561247 + 0.972108i
\(300\) 0 0
\(301\) −23.7709 6.16335i −1.37013 0.355250i
\(302\) −0.222121 0.362024i −0.0127816 0.0208321i
\(303\) 0.177310 0.102370i 0.0101862 0.00588100i
\(304\) 12.8275 1.37657i 0.735709 0.0789517i
\(305\) 0 0
\(306\) 2.35595 4.34478i 0.134681 0.248375i
\(307\) 18.6560 1.06475 0.532376 0.846508i \(-0.321299\pi\)
0.532376 + 0.846508i \(0.321299\pi\)
\(308\) −13.9525 2.83183i −0.795016 0.161359i
\(309\) −9.82137 −0.558718
\(310\) 0 0
\(311\) −4.09153 + 7.08673i −0.232009 + 0.401852i −0.958399 0.285431i \(-0.907863\pi\)
0.726390 + 0.687283i \(0.241197\pi\)
\(312\) 3.51405 7.39855i 0.198944 0.418860i
\(313\) 20.2427 11.6871i 1.14419 0.660597i 0.196723 0.980459i \(-0.436970\pi\)
0.947464 + 0.319863i \(0.103637\pi\)
\(314\) −14.2258 23.1859i −0.802806 1.30846i
\(315\) 0 0
\(316\) −21.7754 11.0652i −1.22496 0.622464i
\(317\) −13.1039 22.6966i −0.735988 1.27477i −0.954288 0.298887i \(-0.903385\pi\)
0.218300 0.975882i \(-0.429949\pi\)
\(318\) −0.0447574 1.67427i −0.00250987 0.0938883i
\(319\) −12.0680 6.96749i −0.675680 0.390104i
\(320\) 0 0
\(321\) 3.97890i 0.222081i
\(322\) 4.13607 17.9091i 0.230494 0.998034i
\(323\) 4.57675i 0.254657i
\(324\) −8.89563 + 0.475946i −0.494202 + 0.0264414i
\(325\) 0 0
\(326\) −15.1538 + 0.405098i −0.839289 + 0.0224363i
\(327\) 3.26767 + 5.65977i 0.180702 + 0.312986i
\(328\) −0.917720 + 0.0737395i −0.0506726 + 0.00407158i
\(329\) 16.7424 4.63187i 0.923039 0.255363i
\(330\) 0 0
\(331\) −16.9060 + 9.76067i −0.929237 + 0.536495i −0.886570 0.462594i \(-0.846919\pi\)
−0.0426665 + 0.999089i \(0.513585\pi\)
\(332\) −5.74111 8.81943i −0.315085 0.484029i
\(333\) 5.51654 9.55493i 0.302305 0.523607i
\(334\) −16.4422 8.91574i −0.899675 0.487848i
\(335\) 0 0
\(336\) −7.21218 + 2.85398i −0.393457 + 0.155697i
\(337\) 31.7520 1.72964 0.864820 0.502082i \(-0.167433\pi\)
0.864820 + 0.502082i \(0.167433\pi\)
\(338\) 3.24700 + 1.76068i 0.176614 + 0.0957684i
\(339\) 0.385364 0.667470i 0.0209301 0.0362520i
\(340\) 0 0
\(341\) −17.7898 + 10.2710i −0.963373 + 0.556204i
\(342\) −9.57508 + 5.87481i −0.517761 + 0.317674i
\(343\) −12.7736 + 13.4103i −0.689707 + 0.724088i
\(344\) −26.1681 + 2.10263i −1.41089 + 0.113366i
\(345\) 0 0
\(346\) 15.9100 0.425314i 0.855326 0.0228650i
\(347\) −15.9212 9.19210i −0.854694 0.493458i 0.00753782 0.999972i \(-0.497601\pi\)
−0.862232 + 0.506514i \(0.830934\pi\)
\(348\) −7.58097 + 0.405607i −0.406383 + 0.0217428i
\(349\) 2.37390i 0.127072i −0.997980 0.0635360i \(-0.979762\pi\)
0.997980 0.0635360i \(-0.0202378\pi\)
\(350\) 0 0
\(351\) 15.8195i 0.844384i
\(352\) −15.0843 + 2.02781i −0.803994 + 0.108082i
\(353\) 1.86560 + 1.07710i 0.0992958 + 0.0573284i 0.548826 0.835937i \(-0.315075\pi\)
−0.449530 + 0.893265i \(0.648408\pi\)
\(354\) −0.211471 7.91062i −0.0112396 0.420445i
\(355\) 0 0
\(356\) −8.46037 4.29914i −0.448399 0.227854i
\(357\) 0.733682 + 2.65198i 0.0388306 + 0.140358i
\(358\) −0.596083 0.971527i −0.0315039 0.0513468i
\(359\) 4.40004 2.54037i 0.232225 0.134075i −0.379373 0.925244i \(-0.623860\pi\)
0.611598 + 0.791168i \(0.290527\pi\)
\(360\) 0 0
\(361\) 4.29874 7.44564i 0.226250 0.391876i
\(362\) 0.0449714 0.0829350i 0.00236364 0.00435897i
\(363\) 2.75648 0.144678
\(364\) −6.64342 19.8241i −0.348210 1.03907i
\(365\) 0 0
\(366\) 7.06523 13.0295i 0.369306 0.681063i
\(367\) −6.77267 + 11.7306i −0.353530 + 0.612333i −0.986865 0.161545i \(-0.948352\pi\)
0.633335 + 0.773878i \(0.281686\pi\)
\(368\) −2.09663 19.5374i −0.109295 1.01846i
\(369\) 0.694275 0.400840i 0.0361425 0.0208669i
\(370\) 0 0
\(371\) −3.04749 2.99849i −0.158218 0.155674i
\(372\) −5.06985 + 9.97707i −0.262860 + 0.517287i
\(373\) −3.56700 6.17822i −0.184692 0.319896i 0.758781 0.651346i \(-0.225795\pi\)
−0.943473 + 0.331450i \(0.892462\pi\)
\(374\) 0.144287 + 5.39742i 0.00746089 + 0.279094i
\(375\) 0 0
\(376\) 15.2874 10.5436i 0.788386 0.543747i
\(377\) 20.4642i 1.05396i
\(378\) 10.2176 10.9554i 0.525538 0.563484i
\(379\) 16.2436i 0.834379i 0.908820 + 0.417189i \(0.136985\pi\)
−0.908820 + 0.417189i \(0.863015\pi\)
\(380\) 0 0
\(381\) 1.09027 + 0.629468i 0.0558562 + 0.0322486i
\(382\) 24.6836 0.659856i 1.26292 0.0337612i
\(383\) 4.94358 + 8.56254i 0.252605 + 0.437525i 0.964242 0.265022i \(-0.0853793\pi\)
−0.711637 + 0.702547i \(0.752046\pi\)
\(384\) −6.28456 + 5.40921i −0.320707 + 0.276038i
\(385\) 0 0
\(386\) 20.7291 12.7184i 1.05508 0.647349i
\(387\) 19.7967 11.4296i 1.00632 0.581002i
\(388\) 13.9981 9.11222i 0.710645 0.462603i
\(389\) −15.9811 + 27.6802i −0.810276 + 1.40344i 0.102395 + 0.994744i \(0.467350\pi\)
−0.912671 + 0.408696i \(0.865984\pi\)
\(390\) 0 0
\(391\) −6.97078 −0.352527
\(392\) −8.20340 + 18.0195i −0.414334 + 0.910125i
\(393\) −10.3658 −0.522886
\(394\) 14.8429 + 8.04854i 0.747774 + 0.405480i
\(395\) 0 0
\(396\) 11.1068 7.23011i 0.558138 0.363326i
\(397\) 15.1344 8.73784i 0.759573 0.438539i −0.0695697 0.997577i \(-0.522163\pi\)
0.829142 + 0.559038i \(0.188829\pi\)
\(398\) 18.7084 11.4786i 0.937766 0.575369i
\(399\) 1.56967 6.05393i 0.0785819 0.303076i
\(400\) 0 0
\(401\) 8.67926 + 15.0329i 0.433422 + 0.750708i 0.997165 0.0752415i \(-0.0239728\pi\)
−0.563744 + 0.825950i \(0.690639\pi\)
\(402\) −3.13588 + 0.0838301i −0.156404 + 0.00418106i
\(403\) −26.1252 15.0834i −1.30139 0.751358i
\(404\) −0.0298500 0.557909i −0.00148509 0.0277570i
\(405\) 0 0
\(406\) −13.2175 + 14.1719i −0.655975 + 0.703340i
\(407\) 12.0531i 0.597448i
\(408\) 1.67010 + 2.42150i 0.0826823 + 0.119882i
\(409\) −6.32187 3.64993i −0.312596 0.180478i 0.335491 0.942043i \(-0.391098\pi\)
−0.648088 + 0.761566i \(0.724431\pi\)
\(410\) 0 0
\(411\) −5.44952 9.43885i −0.268805 0.465584i
\(412\) −12.1414 + 23.8933i −0.598164 + 1.17714i
\(413\) −14.3989 14.1674i −0.708522 0.697130i
\(414\) 8.94784 + 14.5837i 0.439762 + 0.716748i
\(415\) 0 0
\(416\) −13.6549 17.6952i −0.669489 0.867578i
\(417\) −2.58995 + 4.48592i −0.126830 + 0.219677i
\(418\) 5.84989 10.7882i 0.286128 0.527669i
\(419\) −17.9278 −0.875831 −0.437915 0.899016i \(-0.644283\pi\)
−0.437915 + 0.899016i \(0.644283\pi\)
\(420\) 0 0
\(421\) 12.6334 0.615716 0.307858 0.951432i \(-0.400388\pi\)
0.307858 + 0.951432i \(0.400388\pi\)
\(422\) 9.54805 17.6082i 0.464792 0.857156i
\(423\) −8.08522 + 14.0040i −0.393117 + 0.680898i
\(424\) −4.12847 1.96088i −0.200496 0.0952288i
\(425\) 0 0
\(426\) −8.35232 13.6130i −0.404671 0.659554i
\(427\) −10.0881 36.4647i −0.488198 1.76465i
\(428\) 9.67983 + 4.91881i 0.467892 + 0.237759i
\(429\) −3.89567 6.74750i −0.188085 0.325773i
\(430\) 0 0
\(431\) 28.2962 + 16.3368i 1.36298 + 0.786918i 0.990020 0.140929i \(-0.0450090\pi\)
0.372962 + 0.927847i \(0.378342\pi\)
\(432\) 6.48191 14.6446i 0.311861 0.704590i
\(433\) 23.5884i 1.13359i −0.823860 0.566794i \(-0.808184\pi\)
0.823860 0.566794i \(-0.191816\pi\)
\(434\) 8.35015 + 27.3195i 0.400820 + 1.31138i
\(435\) 0 0
\(436\) 17.8086 0.952818i 0.852877 0.0456317i
\(437\) 13.7212 + 7.92195i 0.656375 + 0.378958i
\(438\) 1.47027 0.0393039i 0.0702520 0.00187801i
\(439\) 9.19501 + 15.9262i 0.438854 + 0.760117i 0.997601 0.0692207i \(-0.0220513\pi\)
−0.558748 + 0.829338i \(0.688718\pi\)
\(440\) 0 0
\(441\) −0.279428 17.2377i −0.0133061 0.820842i
\(442\) −6.75849 + 4.14669i −0.321469 + 0.197238i
\(443\) −2.93092 + 1.69217i −0.139252 + 0.0803973i −0.568008 0.823023i \(-0.692286\pi\)
0.428755 + 0.903421i \(0.358952\pi\)
\(444\) 3.58241 + 5.50326i 0.170014 + 0.261173i
\(445\) 0 0
\(446\) 3.77242 + 2.04559i 0.178629 + 0.0968614i
\(447\) −6.43914 −0.304561
\(448\) −1.97272 + 21.0739i −0.0932025 + 0.995647i
\(449\) 11.9013 0.561658 0.280829 0.959758i \(-0.409391\pi\)
0.280829 + 0.959758i \(0.409391\pi\)
\(450\) 0 0
\(451\) −0.437896 + 0.758458i −0.0206197 + 0.0357144i
\(452\) −1.14742 1.76265i −0.0539700 0.0829081i
\(453\) −0.190625 + 0.110058i −0.00895636 + 0.00517096i
\(454\) 17.8121 10.9287i 0.835963 0.512907i
\(455\) 0 0
\(456\) −0.535494 6.66445i −0.0250768 0.312092i
\(457\) 10.5352 + 18.2475i 0.492816 + 0.853582i 0.999966 0.00827601i \(-0.00263437\pi\)
−0.507150 + 0.861858i \(0.669301\pi\)
\(458\) −9.09142 + 0.243037i −0.424814 + 0.0113564i
\(459\) −4.92023 2.84070i −0.229657 0.132592i
\(460\) 0 0
\(461\) 29.6708i 1.38191i −0.722899 0.690954i \(-0.757191\pi\)
0.722899 0.690954i \(-0.242809\pi\)
\(462\) −1.66028 + 7.18897i −0.0772432 + 0.334461i
\(463\) 15.0481i 0.699342i 0.936873 + 0.349671i \(0.113707\pi\)
−0.936873 + 0.349671i \(0.886293\pi\)
\(464\) −8.38501 + 18.9443i −0.389264 + 0.879468i
\(465\) 0 0
\(466\) 0.660251 + 24.6984i 0.0305855 + 1.14413i
\(467\) 2.57299 + 4.45656i 0.119064 + 0.206225i 0.919397 0.393331i \(-0.128677\pi\)
−0.800333 + 0.599556i \(0.795344\pi\)
\(468\) 17.3507 + 8.81676i 0.802036 + 0.407555i
\(469\) −5.61614 + 5.70791i −0.259329 + 0.263567i
\(470\) 0 0
\(471\) −12.2086 + 7.04865i −0.562544 + 0.324785i
\(472\) −19.5063 9.26482i −0.897850 0.426448i
\(473\) −12.4863 + 21.6269i −0.574120 + 0.994405i
\(474\) −6.03395 + 11.1277i −0.277149 + 0.511110i
\(475\) 0 0
\(476\) 7.35870 + 1.49354i 0.337286 + 0.0684564i
\(477\) 3.97974 0.182220
\(478\) −2.17399 + 4.00921i −0.0994358 + 0.183377i
\(479\) 19.9783 34.6035i 0.912834 1.58107i 0.102792 0.994703i \(-0.467222\pi\)
0.810042 0.586372i \(-0.199444\pi\)
\(480\) 0 0
\(481\) −15.3291 + 8.85025i −0.698946 + 0.403537i
\(482\) 15.1520 + 24.6955i 0.690153 + 1.12485i
\(483\) −9.22065 2.39074i −0.419554 0.108783i
\(484\) 3.40763 6.70594i 0.154892 0.304816i
\(485\) 0 0
\(486\) 0.577301 + 21.5955i 0.0261869 + 0.979590i
\(487\) 10.5871 + 6.11246i 0.479747 + 0.276982i 0.720311 0.693651i \(-0.243999\pi\)
−0.240564 + 0.970633i \(0.577332\pi\)
\(488\) −22.9638 33.2956i −1.03952 1.50722i
\(489\) 7.85613i 0.355266i
\(490\) 0 0
\(491\) 22.9515i 1.03579i −0.855445 0.517894i \(-0.826716\pi\)
0.855445 0.517894i \(-0.173284\pi\)
\(492\) 0.0254918 + 0.476453i 0.00114926 + 0.0214802i
\(493\) 6.36483 + 3.67473i 0.286657 + 0.165502i
\(494\) 18.0159 0.481610i 0.810573 0.0216687i
\(495\) 0 0
\(496\) 18.0047 + 24.6678i 0.808433 + 1.10762i
\(497\) −39.4632 10.2321i −1.77017 0.458972i
\(498\) −4.64848 + 2.85209i −0.208303 + 0.127805i
\(499\) −3.64376 + 2.10372i −0.163117 + 0.0941756i −0.579336 0.815089i \(-0.696688\pi\)
0.416219 + 0.909264i \(0.363355\pi\)
\(500\) 0 0
\(501\) −4.84657 + 8.39451i −0.216529 + 0.375039i
\(502\) −18.8528 10.2229i −0.841443 0.456272i
\(503\) 43.1904 1.92576 0.962882 0.269924i \(-0.0869987\pi\)
0.962882 + 0.269924i \(0.0869987\pi\)
\(504\) −6.32113 17.3124i −0.281565 0.771155i
\(505\) 0 0
\(506\) −16.4314 8.90988i −0.730463 0.396093i
\(507\) 0.957101 1.65775i 0.0425064 0.0736232i
\(508\) 2.87918 1.87424i 0.127743 0.0831558i
\(509\) 32.3532 18.6791i 1.43403 0.827937i 0.436604 0.899654i \(-0.356181\pi\)
0.997425 + 0.0717169i \(0.0228478\pi\)
\(510\) 0 0
\(511\) 2.63314 2.67617i 0.116483 0.118387i
\(512\) 5.39037 + 21.9760i 0.238223 + 0.971211i
\(513\) 6.45664 + 11.1832i 0.285067 + 0.493751i
\(514\) 6.68903 0.178815i 0.295040 0.00788717i
\(515\) 0 0
\(516\) 0.726880 + 13.5857i 0.0319991 + 0.598077i
\(517\) 17.6653i 0.776921i
\(518\) 16.3320 + 3.77185i 0.717587 + 0.165725i
\(519\) 8.24817i 0.362055i
\(520\) 0 0
\(521\) 13.9610 + 8.06040i 0.611643 + 0.353132i 0.773608 0.633664i \(-0.218450\pi\)
−0.161965 + 0.986796i \(0.551783\pi\)
\(522\) −0.482065 18.0329i −0.0210994 0.789279i
\(523\) −7.98356 13.8279i −0.349097 0.604653i 0.636993 0.770870i \(-0.280178\pi\)
−0.986089 + 0.166217i \(0.946845\pi\)
\(524\) −12.8145 + 25.2178i −0.559802 + 1.10165i
\(525\) 0 0
\(526\) −3.47635 5.66594i −0.151576 0.247047i
\(527\) 9.38257 5.41703i 0.408711 0.235969i
\(528\) 0.841618 + 7.84259i 0.0366267 + 0.341305i
\(529\) 0.565805 0.980002i 0.0246002 0.0426088i
\(530\) 0 0
\(531\) 18.8036 0.816007
\(532\) −12.7875 11.3027i −0.554407 0.490034i
\(533\) −1.28614 −0.0557090
\(534\) −2.34437 + 4.32342i −0.101451 + 0.187092i
\(535\) 0 0
\(536\) −3.67271 + 7.73257i −0.158637 + 0.333996i
\(537\) −0.511562 + 0.295350i −0.0220755 + 0.0127453i
\(538\) 18.1502 + 29.5822i 0.782511 + 1.27538i
\(539\) 9.67999 + 16.1557i 0.416947 + 0.695876i
\(540\) 0 0
\(541\) 7.31686 + 12.6732i 0.314576 + 0.544862i 0.979347 0.202185i \(-0.0648042\pi\)
−0.664771 + 0.747047i \(0.731471\pi\)
\(542\) −0.997384 37.3098i −0.0428413 1.60259i
\(543\) −0.0423423 0.0244463i −0.00181708 0.00104909i
\(544\) 7.95562 1.06949i 0.341094 0.0458540i
\(545\) 0 0
\(546\) −10.3620 + 3.16713i −0.443454 + 0.135541i
\(547\) 16.5936i 0.709493i 0.934963 + 0.354747i \(0.115433\pi\)
−0.934963 + 0.354747i \(0.884567\pi\)
\(548\) −29.6996 + 1.58902i −1.26870 + 0.0678798i
\(549\) 30.5005 + 17.6094i 1.30173 + 0.751553i
\(550\) 0 0
\(551\) −8.35232 14.4666i −0.355821 0.616300i
\(552\) −10.1505 + 0.815602i −0.432035 + 0.0347143i
\(553\) 8.61560 + 31.1421i 0.366373 + 1.32430i
\(554\) 29.0143 17.8018i 1.23270 0.756327i
\(555\) 0 0
\(556\) 7.71155 + 11.8464i 0.327043 + 0.502399i
\(557\) −12.3878 + 21.4562i −0.524886 + 0.909129i 0.474694 + 0.880151i \(0.342559\pi\)
−0.999580 + 0.0289782i \(0.990775\pi\)
\(558\) −23.3767 12.6760i −0.989615 0.536617i
\(559\) −36.6734 −1.55112
\(560\) 0 0
\(561\) 2.79817 0.118139
\(562\) 9.67930 + 5.24859i 0.408296 + 0.221398i
\(563\) 11.9762 20.7434i 0.504737 0.874230i −0.495248 0.868751i \(-0.664923\pi\)
0.999985 0.00547814i \(-0.00174376\pi\)
\(564\) −5.25049 8.06575i −0.221086 0.339629i
\(565\) 0 0
\(566\) −9.58371 + 5.88011i −0.402833 + 0.247159i
\(567\) 8.40027 + 8.26520i 0.352778 + 0.347106i
\(568\) −43.4430 + 3.49068i −1.82283 + 0.146466i
\(569\) 4.58078 + 7.93415i 0.192036 + 0.332617i 0.945925 0.324385i \(-0.105157\pi\)
−0.753889 + 0.657002i \(0.771824\pi\)
\(570\) 0 0
\(571\) −21.4132 12.3629i −0.896114 0.517372i −0.0201768 0.999796i \(-0.506423\pi\)
−0.875938 + 0.482425i \(0.839756\pi\)
\(572\) −21.2312 + 1.13594i −0.887720 + 0.0474959i
\(573\) 12.7967i 0.534589i
\(574\) 0.890684 + 0.830703i 0.0371764 + 0.0346729i
\(575\) 0 0
\(576\) −12.4495 15.2712i −0.518729 0.636301i
\(577\) 8.23042 + 4.75184i 0.342637 + 0.197822i 0.661438 0.750000i \(-0.269947\pi\)
−0.318801 + 0.947822i \(0.603280\pi\)
\(578\) 0.566366 + 21.1864i 0.0235577 + 0.881237i
\(579\) −6.30178 10.9150i −0.261893 0.453612i
\(580\) 0 0
\(581\) −3.49398 + 13.4756i −0.144955 + 0.559062i
\(582\) −4.52679 7.37801i −0.187642 0.305828i
\(583\) −3.76518 + 2.17383i −0.155938 + 0.0900308i
\(584\) 1.72196 3.62543i 0.0712551 0.150022i
\(585\) 0 0
\(586\) −1.42578 + 2.62939i −0.0588985 + 0.108619i
\(587\) −14.2100 −0.586508 −0.293254 0.956035i \(-0.594738\pi\)
−0.293254 + 0.956035i \(0.594738\pi\)
\(588\) 9.22155 + 4.49938i 0.380290 + 0.185552i
\(589\) −24.6248 −1.01465
\(590\) 0 0
\(591\) 4.37516 7.57801i 0.179970 0.311717i
\(592\) 17.8169 1.91200i 0.732271 0.0785828i
\(593\) 15.3781 8.87854i 0.631502 0.364598i −0.149831 0.988712i \(-0.547873\pi\)
0.781334 + 0.624114i \(0.214540\pi\)
\(594\) −7.96695 12.9850i −0.326888 0.532779i
\(595\) 0 0
\(596\) −7.96020 + 15.6651i −0.326063 + 0.641666i
\(597\) −5.68746 9.85098i −0.232772 0.403174i
\(598\) −0.733533 27.4397i −0.0299964 1.12209i
\(599\) 18.1537 + 10.4811i 0.741741 + 0.428244i 0.822702 0.568473i \(-0.192466\pi\)
−0.0809612 + 0.996717i \(0.525799\pi\)
\(600\) 0 0
\(601\) 20.7196i 0.845169i 0.906324 + 0.422585i \(0.138877\pi\)
−0.906324 + 0.422585i \(0.861123\pi\)
\(602\) 25.3972 + 23.6869i 1.03511 + 0.965405i
\(603\) 7.45401i 0.303551i
\(604\) 0.0320917 + 0.599807i 0.00130579 + 0.0244058i
\(605\) 0 0
\(606\) −0.289442 + 0.00773753i −0.0117578 + 0.000314316i
\(607\) 1.60263 + 2.77584i 0.0650487 + 0.112668i 0.896716 0.442607i \(-0.145946\pi\)
−0.831667 + 0.555275i \(0.812613\pi\)
\(608\) −16.8752 6.93600i −0.684380 0.281292i
\(609\) 7.15881 + 7.04371i 0.290090 + 0.285425i
\(610\) 0 0
\(611\) 22.4668 12.9712i 0.908909 0.524759i
\(612\) −5.85786 + 3.81324i −0.236790 + 0.154141i
\(613\) −2.39778 + 4.15308i −0.0968454 + 0.167741i −0.910377 0.413779i \(-0.864209\pi\)
0.813532 + 0.581520i \(0.197542\pi\)
\(614\) −23.1932 12.5765i −0.936000 0.507545i
\(615\) 0 0
\(616\) 15.4368 + 12.9263i 0.621965 + 0.520814i
\(617\) −8.95961 −0.360700 −0.180350 0.983602i \(-0.557723\pi\)
−0.180350 + 0.983602i \(0.557723\pi\)
\(618\) 12.2100 + 6.62084i 0.491157 + 0.266329i
\(619\) −12.8347 + 22.2303i −0.515868 + 0.893510i 0.483962 + 0.875089i \(0.339197\pi\)
−0.999830 + 0.0184212i \(0.994136\pi\)
\(620\) 0 0
\(621\) 17.0330 9.83400i 0.683510 0.394625i
\(622\) 9.86394 6.05205i 0.395508 0.242665i
\(623\) 3.34741 + 12.0996i 0.134111 + 0.484761i
\(624\) −9.35623 + 6.82898i −0.374549 + 0.273378i
\(625\) 0 0
\(626\) −33.0444 + 0.883361i −1.32072 + 0.0353062i
\(627\) −5.50790 3.17999i −0.219964 0.126996i
\(628\) 2.05531 + 38.4147i 0.0820160 + 1.53291i
\(629\) 6.35693i 0.253467i
\(630\) 0 0
\(631\) 1.75095i 0.0697043i 0.999392 + 0.0348521i \(0.0110960\pi\)
−0.999392 + 0.0348521i \(0.988904\pi\)
\(632\) 19.6119 + 28.4356i 0.780120 + 1.13111i
\(633\) −8.98985 5.19029i −0.357314 0.206296i
\(634\) 0.990445 + 37.0502i 0.0393356 + 1.47145i
\(635\) 0 0
\(636\) −1.07302 + 2.11163i −0.0425482 + 0.0837315i
\(637\) −13.4391 + 24.1737i −0.532475 + 0.957798i
\(638\) 10.3061 + 16.7974i 0.408021 + 0.665014i
\(639\) 32.8655 18.9749i 1.30014 0.750636i
\(640\) 0 0
\(641\) 20.3887 35.3143i 0.805306 1.39483i −0.110778 0.993845i \(-0.535334\pi\)
0.916084 0.400986i \(-0.131332\pi\)
\(642\) 2.68228 4.94658i 0.105861 0.195226i
\(643\) 35.0077 1.38057 0.690285 0.723538i \(-0.257485\pi\)
0.690285 + 0.723538i \(0.257485\pi\)
\(644\) −17.2150 + 19.4764i −0.678364 + 0.767478i
\(645\) 0 0
\(646\) −3.08530 + 5.68983i −0.121390 + 0.223863i
\(647\) −12.1215 + 20.9951i −0.476547 + 0.825404i −0.999639 0.0268724i \(-0.991445\pi\)
0.523092 + 0.852276i \(0.324779\pi\)
\(648\) 11.3799 + 5.40508i 0.447046 + 0.212331i
\(649\) −17.7898 + 10.2710i −0.698312 + 0.403171i
\(650\) 0 0
\(651\) 14.2687 3.94751i 0.559236 0.154715i
\(652\) 19.1123 + 9.71192i 0.748495 + 0.380348i
\(653\) 21.5956 + 37.4046i 0.845100 + 1.46376i 0.885534 + 0.464574i \(0.153792\pi\)
−0.0404346 + 0.999182i \(0.512874\pi\)
\(654\) −0.246984 9.23906i −0.00965782 0.361276i
\(655\) 0 0
\(656\) 1.19062 + 0.526985i 0.0464860 + 0.0205753i
\(657\) 3.49483i 0.136346i
\(658\) −23.9367 5.52814i −0.933150 0.215509i
\(659\) 11.6398i 0.453422i −0.973962 0.226711i \(-0.927203\pi\)
0.973962 0.226711i \(-0.0727973\pi\)
\(660\) 0 0
\(661\) 14.8021 + 8.54599i 0.575735 + 0.332400i 0.759436 0.650582i \(-0.225475\pi\)
−0.183702 + 0.982982i \(0.558808\pi\)
\(662\) 27.5975 0.737751i 1.07261 0.0286735i
\(663\) 2.05462 + 3.55871i 0.0797950 + 0.138209i
\(664\) 1.19197 + 14.8346i 0.0462574 + 0.575693i
\(665\) 0 0
\(666\) −13.2994 + 8.15989i −0.515342 + 0.316189i
\(667\) −22.0339 + 12.7213i −0.853157 + 0.492570i
\(668\) 14.4306 + 22.1682i 0.558338 + 0.857712i
\(669\) 1.11198 1.92600i 0.0429915 0.0744634i
\(670\) 0 0
\(671\) −38.4748 −1.48530
\(672\) 10.8902 + 1.31384i 0.420097 + 0.0506823i
\(673\) −3.77972 −0.145697 −0.0728487 0.997343i \(-0.523209\pi\)
−0.0728487 + 0.997343i \(0.523209\pi\)
\(674\) −39.4742 21.4048i −1.52049 0.824482i
\(675\) 0 0
\(676\) −2.84976 4.37777i −0.109606 0.168376i
\(677\) 24.0534 13.8872i 0.924446 0.533729i 0.0393956 0.999224i \(-0.487457\pi\)
0.885051 + 0.465494i \(0.154123\pi\)
\(678\) −0.929044 + 0.570017i −0.0356797 + 0.0218914i
\(679\) −21.3883 5.54559i −0.820808 0.212820i
\(680\) 0 0
\(681\) −5.41499 9.37904i −0.207503 0.359405i
\(682\) 29.0403 0.776321i 1.11201 0.0297269i
\(683\) −9.67614 5.58652i −0.370247 0.213762i 0.303319 0.952889i \(-0.401905\pi\)
−0.673567 + 0.739127i \(0.735239\pi\)
\(684\) 15.8641 0.848783i 0.606580 0.0324540i
\(685\) 0 0
\(686\) 24.9204 8.06075i 0.951464 0.307761i
\(687\) 4.71324i 0.179821i
\(688\) 33.9497 + 15.0266i 1.29432 + 0.572884i
\(689\) −5.52935 3.19237i −0.210652 0.121620i
\(690\) 0 0
\(691\) −17.7057 30.6672i −0.673556 1.16663i −0.976889 0.213749i \(-0.931433\pi\)
0.303332 0.952885i \(-0.401901\pi\)
\(692\) −20.0661 10.1966i −0.762797 0.387616i
\(693\) −16.9706 4.40016i −0.644659 0.167148i
\(694\) 13.5966 + 22.1605i 0.516122 + 0.841202i
\(695\) 0 0
\(696\) 9.69812 + 4.60627i 0.367606 + 0.174600i
\(697\) 0.230952 0.400020i 0.00874791 0.0151518i
\(698\) −1.60031 + 2.95124i −0.0605725 + 0.111706i
\(699\) 12.8043 0.484304
\(700\) 0 0
\(701\) 2.24955 0.0849643 0.0424821 0.999097i \(-0.486473\pi\)
0.0424821 + 0.999097i \(0.486473\pi\)
\(702\) 10.6643 19.6669i 0.402500 0.742279i
\(703\) −7.22434 + 12.5129i −0.272471 + 0.471934i
\(704\) 20.1198 + 7.64771i 0.758293 + 0.288234i
\(705\) 0 0
\(706\) −1.59321 2.59671i −0.0599614 0.0977283i
\(707\) −0.518370 + 0.526841i −0.0194953 + 0.0198139i
\(708\) −5.06985 + 9.97707i −0.190537 + 0.374961i
\(709\) −7.94601 13.7629i −0.298418 0.516876i 0.677356 0.735656i \(-0.263126\pi\)
−0.975774 + 0.218780i \(0.929792\pi\)
\(710\) 0 0
\(711\) −26.0485 15.0391i −0.976893 0.564010i
\(712\) 7.61980 + 11.0480i 0.285564 + 0.414043i
\(713\) 37.5056i 1.40460i
\(714\) 0.875651 3.79154i 0.0327704 0.141895i
\(715\) 0 0
\(716\) 0.0861211 + 1.60964i 0.00321850 + 0.0601551i
\(717\) 2.04689 + 1.18177i 0.0764425 + 0.0441341i
\(718\) −7.18267 + 0.192011i −0.268055 + 0.00716579i
\(719\) −18.0142 31.2015i −0.671817 1.16362i −0.977388 0.211452i \(-0.932181\pi\)
0.305572 0.952169i \(-0.401152\pi\)
\(720\) 0 0
\(721\) 34.1711 9.45359i 1.27260 0.352070i
\(722\) −10.3635 + 6.35856i −0.385690 + 0.236641i
\(723\) 13.0035 7.50758i 0.483606 0.279210i
\(724\) −0.111817 + 0.0727888i −0.00415565 + 0.00270517i
\(725\) 0 0
\(726\) −3.42687 1.85822i −0.127183 0.0689648i
\(727\) 51.4779 1.90921 0.954604 0.297878i \(-0.0962787\pi\)
0.954604 + 0.297878i \(0.0962787\pi\)
\(728\) −5.10481 + 29.1239i −0.189197 + 1.07940i
\(729\) −2.16686 −0.0802541
\(730\) 0 0
\(731\) 6.58541 11.4063i 0.243570 0.421876i
\(732\) −17.5670 + 11.4355i −0.649296 + 0.422667i
\(733\) −31.1280 + 17.9717i −1.14974 + 0.663801i −0.948823 0.315807i \(-0.897725\pi\)
−0.200914 + 0.979609i \(0.564391\pi\)
\(734\) 16.3277 10.0179i 0.602667 0.369768i
\(735\) 0 0
\(736\) −10.5641 + 25.7024i −0.389398 + 0.947401i
\(737\) 4.07155 + 7.05214i 0.149978 + 0.259769i
\(738\) −1.13334 + 0.0302971i −0.0417189 + 0.00111525i
\(739\) 15.7903 + 9.11653i 0.580855 + 0.335357i 0.761473 0.648196i \(-0.224476\pi\)
−0.180618 + 0.983553i \(0.557810\pi\)
\(740\) 0 0
\(741\) 9.33993i 0.343111i
\(742\) 1.76729 + 5.78213i 0.0648794 + 0.212269i
\(743\) 29.1171i 1.06820i 0.845420 + 0.534102i \(0.179350\pi\)
−0.845420 + 0.534102i \(0.820650\pi\)
\(744\) 13.0287 8.98582i 0.477654 0.329436i
\(745\) 0 0
\(746\) 0.269608 + 10.0854i 0.00987105 + 0.369252i
\(747\) −6.47941 11.2227i −0.237069 0.410616i
\(748\) 3.45916 6.80736i 0.126479 0.248902i
\(749\) −3.82990 13.8436i −0.139942 0.505835i
\(750\) 0 0
\(751\) 37.2703 21.5180i 1.36001 0.785203i 0.370386 0.928878i \(-0.379225\pi\)
0.989625 + 0.143675i \(0.0458921\pi\)
\(752\) −26.1130 + 2.80229i −0.952245 + 0.102189i
\(753\) −5.55715 + 9.62527i −0.202514 + 0.350764i
\(754\) −13.7954 + 25.4411i −0.502400 + 0.926512i
\(755\) 0 0
\(756\) −20.0879 + 6.73182i −0.730590 + 0.244834i
\(757\) −10.6531 −0.387193 −0.193597 0.981081i \(-0.562015\pi\)
−0.193597 + 0.981081i \(0.562015\pi\)
\(758\) 10.9502 20.1941i 0.397730 0.733484i
\(759\) −4.84339 + 8.38899i −0.175804 + 0.304501i
\(760\) 0 0
\(761\) 12.3298 7.11864i 0.446956 0.258050i −0.259588 0.965720i \(-0.583587\pi\)
0.706544 + 0.707669i \(0.250253\pi\)
\(762\) −0.931088 1.51754i −0.0337297 0.0549745i
\(763\) −16.8169 16.5465i −0.608812 0.599023i
\(764\) −31.1316 15.8195i −1.12630 0.572331i
\(765\) 0 0
\(766\) −0.373656 13.9776i −0.0135007 0.505030i
\(767\) −26.1252 15.0834i −0.943327 0.544630i
\(768\) 11.4595 2.48817i 0.413508 0.0897842i
\(769\) 35.5770i 1.28294i −0.767149 0.641469i \(-0.778325\pi\)
0.767149 0.641469i \(-0.221675\pi\)
\(770\) 0 0
\(771\) 3.46777i 0.124889i
\(772\) −34.3443 + 1.83753i −1.23608 + 0.0661342i
\(773\) 10.2930 + 5.94268i 0.370214 + 0.213743i 0.673552 0.739140i \(-0.264768\pi\)
−0.303338 + 0.952883i \(0.598101\pi\)
\(774\) −32.3164 + 0.863899i −1.16159 + 0.0310522i
\(775\) 0 0
\(776\) −23.5453 + 1.89188i −0.845226 + 0.0679145i
\(777\) 2.18021 8.40868i 0.0782148 0.301660i
\(778\) 38.5277 23.6388i 1.38129 0.847491i
\(779\) −0.909207 + 0.524931i −0.0325757 + 0.0188076i
\(780\) 0 0
\(781\) −20.7291 + 35.9038i −0.741745 + 1.28474i
\(782\) 8.66609 + 4.69918i 0.309899 + 0.168042i
\(783\) −20.7365 −0.741061
\(784\) 22.3459 16.8718i 0.798069 0.602566i
\(785\) 0 0
\(786\) 12.8868 + 6.98786i 0.459658 + 0.249249i
\(787\) 23.1890 40.1645i 0.826597 1.43171i −0.0740951 0.997251i \(-0.523607\pi\)
0.900692 0.434457i \(-0.143060\pi\)
\(788\) −13.0270 20.0119i −0.464068 0.712896i
\(789\) −2.98342 + 1.72248i −0.106213 + 0.0613219i
\(790\) 0 0
\(791\) −0.698305 + 2.69323i −0.0248289 + 0.0957603i
\(792\) −18.6820 + 1.50111i −0.663836 + 0.0533398i
\(793\) −28.2510 48.9322i −1.00322 1.73763i
\(794\) −24.7055 + 0.660441i −0.876766 + 0.0234382i
\(795\) 0 0
\(796\) −30.9963 + 1.65841i −1.09864 + 0.0587806i
\(797\) 9.09251i 0.322073i 0.986948 + 0.161037i \(0.0514837\pi\)
−0.986948 + 0.161037i \(0.948516\pi\)
\(798\) −6.03253 + 6.46811i −0.213549 + 0.228969i
\(799\) 9.31691i 0.329609i
\(800\) 0 0
\(801\) −10.1206 5.84312i −0.357593 0.206457i
\(802\) −0.656013 24.5399i −0.0231646 0.866534i
\(803\) −1.90896 3.30641i −0.0673656 0.116681i
\(804\) 3.95505 + 2.00976i 0.139484 + 0.0708788i
\(805\) 0 0
\(806\) 22.3109 + 36.3634i 0.785867 + 1.28085i
\(807\) 15.5766 8.99316i 0.548323 0.316574i
\(808\) −0.338991 + 0.713717i −0.0119257 + 0.0251085i
\(809\) 8.66128 15.0018i 0.304515 0.527435i −0.672639 0.739971i \(-0.734839\pi\)
0.977153 + 0.212536i \(0.0681724\pi\)
\(810\) 0 0
\(811\) −16.4459 −0.577493 −0.288746 0.957406i \(-0.593238\pi\)
−0.288746 + 0.957406i \(0.593238\pi\)
\(812\) 25.9857 8.70830i 0.911921 0.305601i
\(813\) −19.3424 −0.678368
\(814\) 8.12527 14.9844i 0.284791 0.525203i
\(815\) 0 0
\(816\) −0.443879 4.13628i −0.0155389 0.144799i
\(817\) −25.9254 + 14.9680i −0.907013 + 0.523664i
\(818\) 5.39886 + 8.79934i 0.188767 + 0.307662i
\(819\) −6.86494 24.8141i −0.239880 0.867075i
\(820\) 0 0
\(821\) −22.4527 38.8892i −0.783603 1.35724i −0.929830 0.367990i \(-0.880046\pi\)
0.146226 0.989251i \(-0.453287\pi\)
\(822\) 0.411897 + 15.4081i 0.0143666 + 0.537418i
\(823\) 20.5328 + 11.8546i 0.715729 + 0.413226i 0.813179 0.582014i \(-0.197735\pi\)
−0.0974497 + 0.995240i \(0.531069\pi\)
\(824\) 31.2013 21.5194i 1.08695 0.749665i
\(825\) 0 0
\(826\) 8.35015 + 27.3195i 0.290539 + 0.950569i
\(827\) 8.20536i 0.285328i −0.989771 0.142664i \(-0.954433\pi\)
0.989771 0.142664i \(-0.0455669\pi\)
\(828\) −1.29277 24.1624i −0.0449268 0.839702i
\(829\) 19.1548 + 11.0590i 0.665272 + 0.384095i 0.794283 0.607548i \(-0.207847\pi\)
−0.129011 + 0.991643i \(0.541180\pi\)
\(830\) 0 0
\(831\) −8.82054 15.2776i −0.305981 0.529975i
\(832\) 5.04710 + 31.2039i 0.174977 + 1.08180i
\(833\) −5.10534 8.52071i −0.176890 0.295225i
\(834\) 6.24391 3.83096i 0.216209 0.132655i
\(835\) 0 0
\(836\) −14.5452 + 9.46838i −0.503057 + 0.327471i
\(837\) −15.2841 + 26.4729i −0.528296 + 0.915036i
\(838\) 22.2879 + 12.0856i 0.769923 + 0.417490i
\(839\) −3.64977 −0.126004 −0.0630020 0.998013i \(-0.520067\pi\)
−0.0630020 + 0.998013i \(0.520067\pi\)
\(840\) 0 0
\(841\) −2.17525 −0.0750086
\(842\) −15.7059 8.51652i −0.541262 0.293499i
\(843\) 2.85312 4.94174i 0.0982665 0.170203i
\(844\) −23.7403 + 15.4541i −0.817176 + 0.531950i
\(845\) 0 0
\(846\) 19.4920 11.9594i 0.670150 0.411172i
\(847\) −9.59051 + 2.65326i −0.329534 + 0.0911671i
\(848\) 3.81065 + 5.22088i 0.130858 + 0.179286i
\(849\) 2.91351 + 5.04634i 0.0999913 + 0.173190i
\(850\) 0 0
\(851\) 19.0582 + 11.0033i 0.653308 + 0.377188i
\(852\) 1.20673 + 22.5543i 0.0413419 + 0.772697i
\(853\) 1.03474i 0.0354290i 0.999843 + 0.0177145i \(0.00563899\pi\)
−0.999843 + 0.0177145i \(0.994361\pi\)
\(854\) −12.0402 + 52.1337i −0.412006 + 1.78398i
\(855\) 0 0
\(856\) −8.71810 12.6405i −0.297979 0.432043i
\(857\) 42.0132 + 24.2563i 1.43514 + 0.828581i 0.997507 0.0705709i \(-0.0224821\pi\)
0.437637 + 0.899152i \(0.355815\pi\)
\(858\) 0.294451 + 11.0147i 0.0100524 + 0.376035i
\(859\) −12.4674 21.5941i −0.425382 0.736783i 0.571074 0.820898i \(-0.306527\pi\)
−0.996456 + 0.0841157i \(0.973193\pi\)
\(860\) 0 0
\(861\) 0.442687 0.449921i 0.0150867 0.0153333i
\(862\) −24.1649 39.3852i −0.823060 1.34147i
\(863\) −5.16765 + 2.98354i −0.175909 + 0.101561i −0.585369 0.810767i \(-0.699050\pi\)
0.409460 + 0.912328i \(0.365717\pi\)
\(864\) −17.9307 + 13.8366i −0.610013 + 0.470732i
\(865\) 0 0
\(866\) −15.9016 + 29.3252i −0.540357 + 0.996511i
\(867\) 10.9836 0.373023
\(868\) 8.03586 39.5928i 0.272755 1.34387i
\(869\) 32.8588 1.11466
\(870\) 0 0
\(871\) −5.97927 + 10.3564i −0.202600 + 0.350913i
\(872\) −22.7820 10.8207i −0.771496 0.366434i
\(873\) 17.8125 10.2840i 0.602861 0.348062i
\(874\) −11.7179 19.0984i −0.396363 0.646014i
\(875\) 0 0
\(876\) −1.85433 0.942281i −0.0626522 0.0318367i
\(877\) −16.9149 29.2974i −0.571175 0.989304i −0.996446 0.0842381i \(-0.973154\pi\)
0.425270 0.905066i \(-0.360179\pi\)
\(878\) −0.694996 25.9981i −0.0234550 0.877394i
\(879\) 1.34243 + 0.775051i 0.0452789 + 0.0261418i
\(880\) 0 0
\(881\) 20.9239i 0.704944i 0.935822 + 0.352472i \(0.114659\pi\)
−0.935822 + 0.352472i \(0.885341\pi\)
\(882\) −11.2730 + 21.6183i −0.379581 + 0.727927i
\(883\) 14.7876i 0.497642i 0.968549 + 0.248821i \(0.0800432\pi\)
−0.968549 + 0.248821i \(0.919957\pi\)
\(884\) 11.1976 0.599107i 0.376615 0.0201501i
\(885\) 0 0
\(886\) 4.78446 0.127901i 0.160737 0.00429691i
\(887\) −3.69958 6.40786i −0.124220 0.215155i 0.797208 0.603705i \(-0.206309\pi\)
−0.921428 + 0.388550i \(0.872976\pi\)
\(888\) −0.743780 9.25667i −0.0249596 0.310633i
\(889\) −4.39923 1.14064i −0.147545 0.0382558i
\(890\) 0 0
\(891\) 10.3785 5.99206i 0.347694 0.200741i
\(892\) −3.31090 5.08617i −0.110857 0.170297i
\(893\) 10.5882 18.3393i 0.354321 0.613702i
\(894\) 8.00516 + 4.34079i 0.267733 + 0.145178i
\(895\) 0 0
\(896\) 16.6589 24.8693i 0.556536 0.830824i
\(897\) −14.2255 −0.474976
\(898\) −14.7958 8.02298i −0.493741 0.267730i
\(899\) 19.7716 34.2453i 0.659418 1.14215i
\(900\) 0 0
\(901\) 1.98580 1.14650i 0.0661566 0.0381956i
\(902\) 1.05569 0.647721i 0.0351506 0.0215668i
\(903\) 12.6229 12.8292i 0.420063 0.426928i
\(904\) 0.238227 + 2.96484i 0.00792331 + 0.0986090i
\(905\) 0 0
\(906\) 0.311179 0.00831860i 0.0103382 0.000276367i
\(907\) −16.0320 9.25608i −0.532334 0.307343i 0.209632 0.977780i \(-0.432773\pi\)
−0.741966 + 0.670437i \(0.766107\pi\)
\(908\) −29.5113 + 1.57895i −0.979368 + 0.0523994i
\(909\) 0.688006i 0.0228197i
\(910\) 0 0
\(911\) 10.8437i 0.359267i −0.983734 0.179634i \(-0.942509\pi\)
0.983734 0.179634i \(-0.0574912\pi\)
\(912\) −3.82695 + 8.64626i −0.126723 + 0.286306i
\(913\) 12.2602 + 7.07841i 0.405752 + 0.234261i
\(914\) −0.796292 29.7874i −0.0263390 0.985279i
\(915\) 0 0
\(916\) 11.4663 + 5.82661i 0.378858 + 0.192517i
\(917\) 36.0653 9.97764i 1.19098 0.329491i
\(918\) 4.20187 + 6.84842i 0.138682 + 0.226032i
\(919\) −13.9555 + 8.05723i −0.460351 + 0.265784i −0.712192 0.701985i \(-0.752297\pi\)
0.251841 + 0.967769i \(0.418964\pi\)
\(920\) 0 0
\(921\) −6.83653 + 11.8412i −0.225271 + 0.390181i
\(922\) −20.0019 + 36.8869i −0.658726 + 1.21480i
\(923\) −60.8834 −2.00400
\(924\) 6.91033 7.81811i 0.227333 0.257197i
\(925\) 0 0
\(926\) 10.1443 18.7078i 0.333362 0.614776i
\(927\) −16.5018 + 28.5820i −0.541991 + 0.938757i
\(928\) 23.1951 17.8991i 0.761417 0.587567i
\(929\) −42.7419 + 24.6770i −1.40232 + 0.809627i −0.994630 0.103495i \(-0.966998\pi\)
−0.407686 + 0.913122i \(0.633664\pi\)
\(930\) 0 0
\(931\) 0.365932 + 22.5741i 0.0119930 + 0.739836i
\(932\) 15.8290 31.1502i 0.518496 1.02036i
\(933\) −2.99870 5.19390i −0.0981731 0.170041i
\(934\) −0.194477 7.27493i −0.00636349 0.238043i
\(935\) 0 0
\(936\) −15.6268 22.6576i −0.510779 0.740586i
\(937\) 31.3085i 1.02280i −0.859342 0.511402i \(-0.829126\pi\)
0.859342 0.511402i \(-0.170874\pi\)
\(938\) 10.8298 3.31012i 0.353607 0.108079i
\(939\) 17.1311i 0.559054i
\(940\) 0 0
\(941\) 37.9492 + 21.9100i 1.23711 + 0.714245i 0.968502 0.249005i \(-0.0801035\pi\)
0.268606 + 0.963250i \(0.413437\pi\)
\(942\) 19.9295 0.532766i 0.649338 0.0173584i
\(943\) 0.799514 + 1.38480i 0.0260358 + 0.0450952i
\(944\) 18.0047 + 24.6678i 0.586002 + 0.802867i
\(945\) 0 0
\(946\) 30.1022 18.4693i 0.978708 0.600488i
\(947\) 12.6739 7.31729i 0.411847 0.237780i −0.279736 0.960077i \(-0.590247\pi\)
0.691583 + 0.722297i \(0.256914\pi\)
\(948\) 15.0029 9.76629i 0.487270 0.317194i
\(949\) 2.80340 4.85563i 0.0910021 0.157620i
\(950\) 0 0
\(951\) 19.2078 0.622857
\(952\) −8.14153 6.81746i −0.263869 0.220955i
\(953\) 28.2044 0.913630 0.456815 0.889562i \(-0.348990\pi\)
0.456815 + 0.889562i \(0.348990\pi\)
\(954\) −4.94763 2.68285i −0.160186 0.0868604i
\(955\) 0 0
\(956\) 5.40542 3.51872i 0.174824 0.113804i
\(957\) 8.84473 5.10651i 0.285909 0.165070i
\(958\) −48.1643 + 29.5513i −1.55612 + 0.954759i
\(959\) 28.0457 + 27.5947i 0.905643 + 0.891081i
\(960\) 0 0
\(961\) −13.6458 23.6352i −0.440187 0.762427i
\(962\) 25.0234 0.668938i 0.806785 0.0215674i
\(963\) 11.5793 + 6.68534i 0.373139 + 0.215432i
\(964\) −2.18913 40.9158i −0.0705072 1.31781i
\(965\) 0 0
\(966\) 9.85149 + 9.18806i 0.316966 + 0.295621i
\(967\) 8.88824i 0.285827i −0.989735 0.142913i \(-0.954353\pi\)
0.989735 0.142913i \(-0.0456470\pi\)
\(968\) −8.75702 + 6.03968i −0.281461 + 0.194123i
\(969\) 2.90493 + 1.67716i 0.0933198 + 0.0538782i
\(970\) 0 0
\(971\) 4.37105 + 7.57089i 0.140274 + 0.242961i 0.927600 0.373576i \(-0.121868\pi\)
−0.787326 + 0.616537i \(0.788535\pi\)
\(972\) 13.8403 27.2367i 0.443929 0.873618i
\(973\) 4.69316 18.1006i 0.150456 0.580280i
\(974\) −9.04134 14.7360i −0.289703 0.472173i
\(975\) 0 0
\(976\) 6.10333 + 56.8737i 0.195363 + 1.82048i
\(977\) 20.9907 36.3569i 0.671551 1.16316i −0.305914 0.952059i \(-0.598962\pi\)
0.977464 0.211100i \(-0.0677047\pi\)
\(978\) 5.29601 9.76676i 0.169348 0.312307i
\(979\) 12.7666 0.408022
\(980\) 0 0
\(981\) 21.9613 0.701170
\(982\) −15.4722 + 28.5334i −0.493738 + 0.910539i
\(983\) −5.50236 + 9.53036i −0.175498 + 0.303971i −0.940333 0.340254i \(-0.889487\pi\)
0.764836 + 0.644226i \(0.222820\pi\)
\(984\) 0.289497 0.609513i 0.00922884 0.0194306i
\(985\) 0 0
\(986\) −5.43554 8.85913i −0.173103 0.282132i
\(987\) −3.19539 + 12.3240i −0.101710 + 0.392278i
\(988\) −22.7221 11.5462i −0.722885 0.367334i
\(989\) 22.7975 + 39.4865i 0.724920 + 1.25560i
\(990\) 0 0
\(991\) −31.6799 18.2904i −1.00634 0.581013i −0.0962255 0.995360i \(-0.530677\pi\)
−0.910119 + 0.414346i \(0.864010\pi\)
\(992\) −5.75429 42.8044i −0.182699 1.35904i
\(993\) 14.3073i 0.454028i
\(994\) 42.1631 + 39.3237i 1.33733 + 1.24727i
\(995\) 0 0
\(996\) 7.70167 0.412065i 0.244037 0.0130568i
\(997\) −12.5263 7.23204i −0.396711 0.229041i 0.288353 0.957524i \(-0.406892\pi\)
−0.685064 + 0.728483i \(0.740226\pi\)
\(998\) 5.94811 0.159008i 0.188284 0.00503331i
\(999\) 8.96801 + 15.5331i 0.283735 + 0.491444i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.p.e.451.3 32
4.3 odd 2 inner 700.2.p.e.451.9 32
5.2 odd 4 140.2.s.b.59.11 yes 32
5.3 odd 4 140.2.s.b.59.6 yes 32
5.4 even 2 inner 700.2.p.e.451.14 32
7.5 odd 6 inner 700.2.p.e.551.9 32
20.3 even 4 140.2.s.b.59.1 yes 32
20.7 even 4 140.2.s.b.59.16 yes 32
20.19 odd 2 inner 700.2.p.e.451.8 32
28.19 even 6 inner 700.2.p.e.551.3 32
35.2 odd 12 980.2.s.e.19.1 32
35.3 even 12 980.2.c.d.979.9 32
35.12 even 12 140.2.s.b.19.1 32
35.13 even 4 980.2.s.e.619.6 32
35.17 even 12 980.2.c.d.979.24 32
35.18 odd 12 980.2.c.d.979.10 32
35.19 odd 6 inner 700.2.p.e.551.8 32
35.23 odd 12 980.2.s.e.19.16 32
35.27 even 4 980.2.s.e.619.11 32
35.32 odd 12 980.2.c.d.979.23 32
35.33 even 12 140.2.s.b.19.16 yes 32
140.3 odd 12 980.2.c.d.979.22 32
140.19 even 6 inner 700.2.p.e.551.14 32
140.23 even 12 980.2.s.e.19.11 32
140.27 odd 4 980.2.s.e.619.16 32
140.47 odd 12 140.2.s.b.19.6 yes 32
140.67 even 12 980.2.c.d.979.12 32
140.83 odd 4 980.2.s.e.619.1 32
140.87 odd 12 980.2.c.d.979.11 32
140.103 odd 12 140.2.s.b.19.11 yes 32
140.107 even 12 980.2.s.e.19.6 32
140.123 even 12 980.2.c.d.979.21 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.s.b.19.1 32 35.12 even 12
140.2.s.b.19.6 yes 32 140.47 odd 12
140.2.s.b.19.11 yes 32 140.103 odd 12
140.2.s.b.19.16 yes 32 35.33 even 12
140.2.s.b.59.1 yes 32 20.3 even 4
140.2.s.b.59.6 yes 32 5.3 odd 4
140.2.s.b.59.11 yes 32 5.2 odd 4
140.2.s.b.59.16 yes 32 20.7 even 4
700.2.p.e.451.3 32 1.1 even 1 trivial
700.2.p.e.451.8 32 20.19 odd 2 inner
700.2.p.e.451.9 32 4.3 odd 2 inner
700.2.p.e.451.14 32 5.4 even 2 inner
700.2.p.e.551.3 32 28.19 even 6 inner
700.2.p.e.551.8 32 35.19 odd 6 inner
700.2.p.e.551.9 32 7.5 odd 6 inner
700.2.p.e.551.14 32 140.19 even 6 inner
980.2.c.d.979.9 32 35.3 even 12
980.2.c.d.979.10 32 35.18 odd 12
980.2.c.d.979.11 32 140.87 odd 12
980.2.c.d.979.12 32 140.67 even 12
980.2.c.d.979.21 32 140.123 even 12
980.2.c.d.979.22 32 140.3 odd 12
980.2.c.d.979.23 32 35.32 odd 12
980.2.c.d.979.24 32 35.17 even 12
980.2.s.e.19.1 32 35.2 odd 12
980.2.s.e.19.6 32 140.107 even 12
980.2.s.e.19.11 32 140.23 even 12
980.2.s.e.19.16 32 35.23 odd 12
980.2.s.e.619.1 32 140.83 odd 4
980.2.s.e.619.6 32 35.13 even 4
980.2.s.e.619.11 32 35.27 even 4
980.2.s.e.619.16 32 140.27 odd 4