Properties

Label 700.2.p.e.451.15
Level $700$
Weight $2$
Character 700.451
Analytic conductor $5.590$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,2,Mod(451,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 451.15
Character \(\chi\) \(=\) 700.451
Dual form 700.2.p.e.551.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.34238 + 0.444985i) q^{2} +(1.29809 - 2.24836i) q^{3} +(1.60398 + 1.19468i) q^{4} +(2.74302 - 2.44053i) q^{6} +(-0.603960 - 2.57589i) q^{7} +(1.62154 + 2.31746i) q^{8} +(-1.87009 - 3.23909i) q^{9} +(3.12008 + 1.80138i) q^{11} +(4.76818 - 2.05552i) q^{12} -0.818282i q^{13} +(0.335489 - 3.72659i) q^{14} +(1.14549 + 3.83247i) q^{16} +(-6.40537 - 3.69814i) q^{17} +(-1.06903 - 5.18026i) q^{18} +(1.65329 + 2.86358i) q^{19} +(-6.57554 - 1.98583i) q^{21} +(3.38675 + 3.80652i) q^{22} +(-2.19550 + 1.26758i) q^{23} +(7.31540 - 0.637523i) q^{24} +(0.364123 - 1.09845i) q^{26} -1.92166 q^{27} +(2.10863 - 4.85321i) q^{28} +2.04334 q^{29} +(-0.955727 + 1.65537i) q^{31} +(-0.167714 + 5.65437i) q^{32} +(8.10030 - 4.67671i) q^{33} +(-6.95283 - 7.81461i) q^{34} +(0.870092 - 7.42959i) q^{36} +(3.58360 + 6.20697i) q^{37} +(0.945096 + 4.57971i) q^{38} +(-1.83980 - 1.06221i) q^{39} -2.65824i q^{41} +(-7.94322 - 5.59176i) q^{42} -2.39696i q^{43} +(2.85246 + 6.61686i) q^{44} +(-3.51126 + 0.724604i) q^{46} +(-0.667376 - 1.15593i) q^{47} +(10.1037 + 2.39944i) q^{48} +(-6.27046 + 3.11147i) q^{49} +(-16.6295 + 9.60106i) q^{51} +(0.977584 - 1.31251i) q^{52} +(-0.905503 + 1.56838i) q^{53} +(-2.57960 - 0.855108i) q^{54} +(4.99019 - 5.57656i) q^{56} +8.58450 q^{57} +(2.74295 + 0.909256i) q^{58} +(-0.955727 + 1.65537i) q^{59} +(-8.46625 + 4.88799i) q^{61} +(-2.01956 + 1.79685i) q^{62} +(-7.21411 + 6.77344i) q^{63} +(-2.74124 + 7.51569i) q^{64} +(12.9548 - 2.67342i) q^{66} +(8.02134 + 4.63112i) q^{67} +(-5.85597 - 13.5841i) q^{68} +6.58172i q^{69} +1.38422i q^{71} +(4.47405 - 9.58617i) q^{72} +(-6.40537 - 3.69814i) q^{73} +(2.04855 + 9.92677i) q^{74} +(-0.769222 + 6.56827i) q^{76} +(2.75576 - 9.12495i) q^{77} +(-1.99704 - 2.24457i) q^{78} +(-6.70979 + 3.87390i) q^{79} +(3.11579 - 5.39670i) q^{81} +(1.18287 - 3.56837i) q^{82} +10.4973 q^{83} +(-8.17459 - 11.0409i) q^{84} +(1.06661 - 3.21763i) q^{86} +(2.65245 - 4.59418i) q^{87} +(0.884696 + 10.1516i) q^{88} +(9.19133 - 5.30662i) q^{89} +(-2.10781 + 0.494210i) q^{91} +(-5.03589 - 0.589761i) q^{92} +(2.48125 + 4.29764i) q^{93} +(-0.381503 - 1.84867i) q^{94} +(12.4954 + 7.71698i) q^{96} +7.32005i q^{97} +(-9.80192 + 1.38652i) q^{98} -13.4750i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 6 q^{4} - 4 q^{9} - 22 q^{14} + 18 q^{16} - 52 q^{21} + 48 q^{24} - 18 q^{26} - 28 q^{36} + 26 q^{44} - 22 q^{46} - 48 q^{54} - 16 q^{56} + 36 q^{61} - 36 q^{64} - 24 q^{66} - 14 q^{74} + 72 q^{81}+ \cdots + 60 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34238 + 0.444985i 0.949207 + 0.314652i
\(3\) 1.29809 2.24836i 0.749454 1.29809i −0.198630 0.980075i \(-0.563649\pi\)
0.948084 0.318019i \(-0.103017\pi\)
\(4\) 1.60398 + 1.19468i 0.801989 + 0.597339i
\(5\) 0 0
\(6\) 2.74302 2.44053i 1.11983 0.996342i
\(7\) −0.603960 2.57589i −0.228275 0.973597i
\(8\) 1.62154 + 2.31746i 0.573300 + 0.819346i
\(9\) −1.87009 3.23909i −0.623364 1.07970i
\(10\) 0 0
\(11\) 3.12008 + 1.80138i 0.940738 + 0.543136i 0.890192 0.455586i \(-0.150570\pi\)
0.0505467 + 0.998722i \(0.483904\pi\)
\(12\) 4.76818 2.05552i 1.37646 0.593377i
\(13\) 0.818282i 0.226951i −0.993541 0.113475i \(-0.963802\pi\)
0.993541 0.113475i \(-0.0361983\pi\)
\(14\) 0.335489 3.72659i 0.0896632 0.995972i
\(15\) 0 0
\(16\) 1.14549 + 3.83247i 0.286371 + 0.958119i
\(17\) −6.40537 3.69814i −1.55353 0.896931i −0.997850 0.0655347i \(-0.979125\pi\)
−0.555680 0.831396i \(-0.687542\pi\)
\(18\) −1.06903 5.18026i −0.251973 1.22100i
\(19\) 1.65329 + 2.86358i 0.379291 + 0.656951i 0.990959 0.134163i \(-0.0428346\pi\)
−0.611668 + 0.791114i \(0.709501\pi\)
\(20\) 0 0
\(21\) −6.57554 1.98583i −1.43490 0.433344i
\(22\) 3.38675 + 3.80652i 0.722057 + 0.811553i
\(23\) −2.19550 + 1.26758i −0.457794 + 0.264308i −0.711116 0.703074i \(-0.751810\pi\)
0.253322 + 0.967382i \(0.418477\pi\)
\(24\) 7.31540 0.637523i 1.49325 0.130134i
\(25\) 0 0
\(26\) 0.364123 1.09845i 0.0714104 0.215423i
\(27\) −1.92166 −0.369823
\(28\) 2.10863 4.85321i 0.398493 0.917171i
\(29\) 2.04334 0.379439 0.189720 0.981838i \(-0.439242\pi\)
0.189720 + 0.981838i \(0.439242\pi\)
\(30\) 0 0
\(31\) −0.955727 + 1.65537i −0.171654 + 0.297313i −0.938998 0.343922i \(-0.888244\pi\)
0.767345 + 0.641235i \(0.221578\pi\)
\(32\) −0.167714 + 5.65437i −0.0296479 + 0.999560i
\(33\) 8.10030 4.67671i 1.41008 0.814111i
\(34\) −6.95283 7.81461i −1.19240 1.34019i
\(35\) 0 0
\(36\) 0.870092 7.42959i 0.145015 1.23827i
\(37\) 3.58360 + 6.20697i 0.589140 + 1.02042i 0.994345 + 0.106195i \(0.0338666\pi\)
−0.405206 + 0.914226i \(0.632800\pi\)
\(38\) 0.945096 + 4.57971i 0.153315 + 0.742927i
\(39\) −1.83980 1.06221i −0.294603 0.170089i
\(40\) 0 0
\(41\) 2.65824i 0.415147i −0.978219 0.207573i \(-0.933443\pi\)
0.978219 0.207573i \(-0.0665566\pi\)
\(42\) −7.94322 5.59176i −1.22567 0.862827i
\(43\) 2.39696i 0.365533i −0.983156 0.182766i \(-0.941495\pi\)
0.983156 0.182766i \(-0.0585052\pi\)
\(44\) 2.85246 + 6.61686i 0.430025 + 0.997529i
\(45\) 0 0
\(46\) −3.51126 + 0.724604i −0.517707 + 0.106837i
\(47\) −0.667376 1.15593i −0.0973468 0.168610i 0.813239 0.581930i \(-0.197702\pi\)
−0.910586 + 0.413320i \(0.864369\pi\)
\(48\) 10.1037 + 2.39944i 1.45835 + 0.346330i
\(49\) −6.27046 + 3.11147i −0.895781 + 0.444496i
\(50\) 0 0
\(51\) −16.6295 + 9.60106i −2.32860 + 1.34442i
\(52\) 0.977584 1.31251i 0.135567 0.182012i
\(53\) −0.905503 + 1.56838i −0.124380 + 0.215433i −0.921491 0.388401i \(-0.873028\pi\)
0.797110 + 0.603834i \(0.206361\pi\)
\(54\) −2.57960 0.855108i −0.351039 0.116365i
\(55\) 0 0
\(56\) 4.99019 5.57656i 0.666842 0.745199i
\(57\) 8.58450 1.13705
\(58\) 2.74295 + 0.909256i 0.360166 + 0.119391i
\(59\) −0.955727 + 1.65537i −0.124425 + 0.215510i −0.921508 0.388359i \(-0.873042\pi\)
0.797083 + 0.603870i \(0.206375\pi\)
\(60\) 0 0
\(61\) −8.46625 + 4.88799i −1.08399 + 0.625843i −0.931970 0.362534i \(-0.881912\pi\)
−0.152021 + 0.988377i \(0.548578\pi\)
\(62\) −2.01956 + 1.79685i −0.256485 + 0.228200i
\(63\) −7.21411 + 6.77344i −0.908892 + 0.853374i
\(64\) −2.74124 + 7.51569i −0.342655 + 0.939461i
\(65\) 0 0
\(66\) 12.9548 2.67342i 1.59462 0.329075i
\(67\) 8.02134 + 4.63112i 0.979963 + 0.565782i 0.902259 0.431195i \(-0.141908\pi\)
0.0777041 + 0.996976i \(0.475241\pi\)
\(68\) −5.85597 13.5841i −0.710141 1.64731i
\(69\) 6.58172i 0.792346i
\(70\) 0 0
\(71\) 1.38422i 0.164277i 0.996621 + 0.0821385i \(0.0261750\pi\)
−0.996621 + 0.0821385i \(0.973825\pi\)
\(72\) 4.47405 9.58617i 0.527272 1.12974i
\(73\) −6.40537 3.69814i −0.749692 0.432835i 0.0758908 0.997116i \(-0.475820\pi\)
−0.825583 + 0.564281i \(0.809153\pi\)
\(74\) 2.04855 + 9.92677i 0.238139 + 1.15396i
\(75\) 0 0
\(76\) −0.769222 + 6.56827i −0.0882358 + 0.753433i
\(77\) 2.75576 9.12495i 0.314048 1.03988i
\(78\) −1.99704 2.24457i −0.226121 0.254147i
\(79\) −6.70979 + 3.87390i −0.754910 + 0.435848i −0.827465 0.561517i \(-0.810218\pi\)
0.0725552 + 0.997364i \(0.476885\pi\)
\(80\) 0 0
\(81\) 3.11579 5.39670i 0.346199 0.599634i
\(82\) 1.18287 3.56837i 0.130627 0.394060i
\(83\) 10.4973 1.15223 0.576113 0.817370i \(-0.304569\pi\)
0.576113 + 0.817370i \(0.304569\pi\)
\(84\) −8.17459 11.0409i −0.891921 1.20466i
\(85\) 0 0
\(86\) 1.06661 3.21763i 0.115015 0.346966i
\(87\) 2.65245 4.59418i 0.284372 0.492547i
\(88\) 0.884696 + 10.1516i 0.0943090 + 1.08217i
\(89\) 9.19133 5.30662i 0.974279 0.562500i 0.0737410 0.997277i \(-0.476506\pi\)
0.900538 + 0.434777i \(0.143173\pi\)
\(90\) 0 0
\(91\) −2.10781 + 0.494210i −0.220958 + 0.0518073i
\(92\) −5.03589 0.589761i −0.525027 0.0614868i
\(93\) 2.48125 + 4.29764i 0.257293 + 0.445645i
\(94\) −0.381503 1.84867i −0.0393490 0.190676i
\(95\) 0 0
\(96\) 12.4954 + 7.71698i 1.27530 + 0.787611i
\(97\) 7.32005i 0.743239i 0.928385 + 0.371619i \(0.121197\pi\)
−0.928385 + 0.371619i \(0.878803\pi\)
\(98\) −9.80192 + 1.38652i −0.990143 + 0.140060i
\(99\) 13.4750i 1.35428i
\(100\) 0 0
\(101\) −5.50608 3.17894i −0.547875 0.316316i 0.200389 0.979716i \(-0.435779\pi\)
−0.748265 + 0.663400i \(0.769113\pi\)
\(102\) −26.5955 + 5.48841i −2.63335 + 0.543433i
\(103\) 0.511038 + 0.885144i 0.0503541 + 0.0872158i 0.890104 0.455758i \(-0.150632\pi\)
−0.839750 + 0.542974i \(0.817298\pi\)
\(104\) 1.89634 1.32687i 0.185951 0.130111i
\(105\) 0 0
\(106\) −1.91343 + 1.70243i −0.185849 + 0.165354i
\(107\) −6.28003 + 3.62578i −0.607114 + 0.350517i −0.771835 0.635823i \(-0.780661\pi\)
0.164721 + 0.986340i \(0.447328\pi\)
\(108\) −3.08229 2.29576i −0.296594 0.220910i
\(109\) −3.98588 + 6.90375i −0.381778 + 0.661259i −0.991316 0.131498i \(-0.958021\pi\)
0.609538 + 0.792756i \(0.291355\pi\)
\(110\) 0 0
\(111\) 18.6074 1.76613
\(112\) 9.18022 5.26531i 0.867450 0.497525i
\(113\) −7.61610 −0.716462 −0.358231 0.933633i \(-0.616620\pi\)
−0.358231 + 0.933633i \(0.616620\pi\)
\(114\) 11.5237 + 3.81997i 1.07929 + 0.357773i
\(115\) 0 0
\(116\) 3.27747 + 2.44114i 0.304306 + 0.226654i
\(117\) −2.65049 + 1.53026i −0.245038 + 0.141473i
\(118\) −2.01956 + 1.79685i −0.185916 + 0.165414i
\(119\) −5.65744 + 18.7331i −0.518616 + 1.71726i
\(120\) 0 0
\(121\) 0.989917 + 1.71459i 0.0899925 + 0.155872i
\(122\) −13.5400 + 2.79420i −1.22586 + 0.252975i
\(123\) −5.97668 3.45064i −0.538899 0.311134i
\(124\) −3.51060 + 1.51339i −0.315261 + 0.135906i
\(125\) 0 0
\(126\) −12.6982 + 5.88238i −1.13124 + 0.524044i
\(127\) 8.78136i 0.779220i 0.920980 + 0.389610i \(0.127390\pi\)
−0.920980 + 0.389610i \(0.872610\pi\)
\(128\) −7.02416 + 8.86911i −0.620854 + 0.783926i
\(129\) −5.38923 3.11147i −0.474495 0.273950i
\(130\) 0 0
\(131\) 6.69467 + 11.5955i 0.584916 + 1.01310i 0.994886 + 0.101005i \(0.0322059\pi\)
−0.409970 + 0.912099i \(0.634461\pi\)
\(132\) 18.5799 + 2.17592i 1.61717 + 0.189389i
\(133\) 6.37777 5.98819i 0.553023 0.519242i
\(134\) 8.70692 + 9.78611i 0.752164 + 0.845391i
\(135\) 0 0
\(136\) −1.81624 20.8409i −0.155741 1.78709i
\(137\) 2.61208 4.52425i 0.223165 0.386533i −0.732602 0.680657i \(-0.761694\pi\)
0.955767 + 0.294124i \(0.0950278\pi\)
\(138\) −2.92877 + 8.83519i −0.249313 + 0.752101i
\(139\) 21.9442 1.86128 0.930641 0.365933i \(-0.119250\pi\)
0.930641 + 0.365933i \(0.119250\pi\)
\(140\) 0 0
\(141\) −3.46527 −0.291828
\(142\) −0.615958 + 1.85816i −0.0516901 + 0.155933i
\(143\) 1.47403 2.55310i 0.123265 0.213501i
\(144\) 10.2716 10.8774i 0.855965 0.906451i
\(145\) 0 0
\(146\) −6.95283 7.81461i −0.575421 0.646742i
\(147\) −1.14392 + 18.1373i −0.0943492 + 1.49594i
\(148\) −1.66733 + 14.2371i −0.137054 + 1.17028i
\(149\) −11.9749 20.7411i −0.981019 1.69917i −0.658444 0.752630i \(-0.728785\pi\)
−0.322575 0.946544i \(-0.604548\pi\)
\(150\) 0 0
\(151\) −6.06876 3.50380i −0.493869 0.285135i 0.232309 0.972642i \(-0.425372\pi\)
−0.726178 + 0.687507i \(0.758705\pi\)
\(152\) −3.95537 + 8.47484i −0.320823 + 0.687400i
\(153\) 27.6635i 2.23646i
\(154\) 7.75974 11.0229i 0.625297 0.888250i
\(155\) 0 0
\(156\) −1.68200 3.90172i −0.134667 0.312388i
\(157\) −5.56468 3.21277i −0.444110 0.256407i 0.261229 0.965277i \(-0.415872\pi\)
−0.705340 + 0.708870i \(0.749205\pi\)
\(158\) −10.7309 + 2.21450i −0.853706 + 0.176176i
\(159\) 2.35085 + 4.07180i 0.186435 + 0.322915i
\(160\) 0 0
\(161\) 4.59114 + 4.88982i 0.361832 + 0.385372i
\(162\) 6.58403 5.85796i 0.517290 0.460245i
\(163\) 16.0033 9.23950i 1.25347 0.723693i 0.281676 0.959510i \(-0.409110\pi\)
0.971798 + 0.235816i \(0.0757764\pi\)
\(164\) 3.17574 4.26375i 0.247983 0.332943i
\(165\) 0 0
\(166\) 14.0913 + 4.67113i 1.09370 + 0.362550i
\(167\) −1.82894 −0.141527 −0.0707637 0.997493i \(-0.522544\pi\)
−0.0707637 + 0.997493i \(0.522544\pi\)
\(168\) −6.06040 18.4587i −0.467570 1.42412i
\(169\) 12.3304 0.948493
\(170\) 0 0
\(171\) 6.18361 10.7103i 0.472873 0.819039i
\(172\) 2.86359 3.84466i 0.218347 0.293153i
\(173\) −13.2065 + 7.62476i −1.00407 + 0.579700i −0.909450 0.415814i \(-0.863497\pi\)
−0.0946193 + 0.995514i \(0.530163\pi\)
\(174\) 5.60494 4.98684i 0.424909 0.378051i
\(175\) 0 0
\(176\) −3.32973 + 14.0211i −0.250988 + 1.05688i
\(177\) 2.48125 + 4.29764i 0.186502 + 0.323031i
\(178\) 14.6996 3.03350i 1.10178 0.227371i
\(179\) −10.8572 6.26844i −0.811509 0.468525i 0.0359707 0.999353i \(-0.488548\pi\)
−0.847480 + 0.530828i \(0.821881\pi\)
\(180\) 0 0
\(181\) 8.01839i 0.596002i 0.954566 + 0.298001i \(0.0963199\pi\)
−0.954566 + 0.298001i \(0.903680\pi\)
\(182\) −3.04940 0.274525i −0.226037 0.0203491i
\(183\) 25.3803i 1.87616i
\(184\) −6.49765 3.03258i −0.479013 0.223564i
\(185\) 0 0
\(186\) 1.41839 + 6.87319i 0.104002 + 0.503967i
\(187\) −13.3235 23.0770i −0.974310 1.68755i
\(188\) 0.310508 2.65139i 0.0226461 0.193372i
\(189\) 1.16060 + 4.94998i 0.0844215 + 0.360058i
\(190\) 0 0
\(191\) −5.85379 + 3.37969i −0.423565 + 0.244546i −0.696602 0.717458i \(-0.745305\pi\)
0.273036 + 0.962004i \(0.411972\pi\)
\(192\) 13.3396 + 15.9194i 0.962704 + 1.14888i
\(193\) 1.18001 2.04384i 0.0849392 0.147119i −0.820426 0.571753i \(-0.806264\pi\)
0.905365 + 0.424634i \(0.139597\pi\)
\(194\) −3.25731 + 9.82631i −0.233861 + 0.705488i
\(195\) 0 0
\(196\) −13.7749 2.50046i −0.983921 0.178604i
\(197\) −20.3205 −1.44777 −0.723887 0.689918i \(-0.757647\pi\)
−0.723887 + 0.689918i \(0.757647\pi\)
\(198\) 5.99615 18.0885i 0.426128 1.28550i
\(199\) 5.72909 9.92308i 0.406125 0.703429i −0.588327 0.808623i \(-0.700213\pi\)
0.994452 + 0.105195i \(0.0335465\pi\)
\(200\) 0 0
\(201\) 20.8249 12.0233i 1.46888 0.848056i
\(202\) −5.97668 6.71746i −0.420518 0.472639i
\(203\) −1.23410 5.26343i −0.0866166 0.369421i
\(204\) −38.1436 4.46706i −2.67058 0.312757i
\(205\) 0 0
\(206\) 0.292133 + 1.41560i 0.0203538 + 0.0986298i
\(207\) 8.21159 + 4.74097i 0.570745 + 0.329520i
\(208\) 3.13605 0.937331i 0.217446 0.0649922i
\(209\) 11.9128i 0.824026i
\(210\) 0 0
\(211\) 22.0647i 1.51900i −0.650510 0.759498i \(-0.725445\pi\)
0.650510 0.759498i \(-0.274555\pi\)
\(212\) −3.32611 + 1.43386i −0.228438 + 0.0984776i
\(213\) 3.11224 + 1.79685i 0.213247 + 0.123118i
\(214\) −10.0436 + 2.07266i −0.686568 + 0.141684i
\(215\) 0 0
\(216\) −3.11603 4.45336i −0.212019 0.303013i
\(217\) 4.84127 + 1.46208i 0.328647 + 0.0992522i
\(218\) −8.42263 + 7.49381i −0.570453 + 0.507545i
\(219\) −16.6295 + 9.60106i −1.12372 + 0.648780i
\(220\) 0 0
\(221\) −3.02612 + 5.24140i −0.203559 + 0.352575i
\(222\) 24.9782 + 8.28000i 1.67643 + 0.555717i
\(223\) −23.5776 −1.57887 −0.789436 0.613833i \(-0.789627\pi\)
−0.789436 + 0.613833i \(0.789627\pi\)
\(224\) 14.6663 2.98300i 0.979936 0.199310i
\(225\) 0 0
\(226\) −10.2237 3.38905i −0.680071 0.225436i
\(227\) 10.4634 18.1231i 0.694478 1.20287i −0.275879 0.961192i \(-0.588969\pi\)
0.970356 0.241678i \(-0.0776978\pi\)
\(228\) 13.7693 + 10.2557i 0.911897 + 0.679202i
\(229\) −4.48735 + 2.59077i −0.296533 + 0.171203i −0.640884 0.767638i \(-0.721432\pi\)
0.344352 + 0.938841i \(0.388099\pi\)
\(230\) 0 0
\(231\) −16.9390 18.0410i −1.11450 1.18701i
\(232\) 3.31335 + 4.73536i 0.217532 + 0.310892i
\(233\) −10.3847 17.9868i −0.680324 1.17836i −0.974882 0.222722i \(-0.928506\pi\)
0.294558 0.955634i \(-0.404828\pi\)
\(234\) −4.23892 + 0.874768i −0.277107 + 0.0571854i
\(235\) 0 0
\(236\) −3.51060 + 1.51339i −0.228520 + 0.0985130i
\(237\) 20.1147i 1.30659i
\(238\) −15.9304 + 22.6295i −1.03261 + 1.46685i
\(239\) 21.1286i 1.36670i −0.730092 0.683349i \(-0.760523\pi\)
0.730092 0.683349i \(-0.239477\pi\)
\(240\) 0 0
\(241\) 1.57448 + 0.909029i 0.101421 + 0.0585557i 0.549853 0.835262i \(-0.314684\pi\)
−0.448431 + 0.893817i \(0.648017\pi\)
\(242\) 0.565882 + 2.74213i 0.0363763 + 0.176271i
\(243\) −10.9716 19.0035i −0.703832 1.21907i
\(244\) −19.4192 2.27422i −1.24319 0.145592i
\(245\) 0 0
\(246\) −6.48750 7.29160i −0.413628 0.464896i
\(247\) 2.34322 1.35286i 0.149095 0.0860803i
\(248\) −5.38599 + 0.469379i −0.342011 + 0.0298056i
\(249\) 13.6264 23.6017i 0.863540 1.49570i
\(250\) 0 0
\(251\) −14.0187 −0.884856 −0.442428 0.896804i \(-0.645883\pi\)
−0.442428 + 0.896804i \(0.645883\pi\)
\(252\) −19.6633 + 2.24591i −1.23867 + 0.141479i
\(253\) −9.13352 −0.574220
\(254\) −3.90757 + 11.7879i −0.245183 + 0.739641i
\(255\) 0 0
\(256\) −13.3757 + 8.78009i −0.835983 + 0.548756i
\(257\) −15.4780 + 8.93624i −0.965492 + 0.557427i −0.897859 0.440283i \(-0.854878\pi\)
−0.0676333 + 0.997710i \(0.521545\pi\)
\(258\) −5.84985 6.57491i −0.364196 0.409336i
\(259\) 13.8242 12.9797i 0.858991 0.806521i
\(260\) 0 0
\(261\) −3.82124 6.61858i −0.236529 0.409680i
\(262\) 3.82698 + 18.5446i 0.236432 + 1.14569i
\(263\) 18.9629 + 10.9482i 1.16930 + 0.675097i 0.953516 0.301343i \(-0.0974349\pi\)
0.215787 + 0.976440i \(0.430768\pi\)
\(264\) 23.9730 + 11.1887i 1.47544 + 0.688615i
\(265\) 0 0
\(266\) 11.2261 5.20043i 0.688313 0.318859i
\(267\) 27.5539i 1.68627i
\(268\) 7.33335 + 17.0111i 0.447955 + 1.03912i
\(269\) −2.49661 1.44142i −0.152221 0.0878847i 0.421955 0.906617i \(-0.361344\pi\)
−0.574176 + 0.818732i \(0.694677\pi\)
\(270\) 0 0
\(271\) 8.47793 + 14.6842i 0.514997 + 0.892002i 0.999849 + 0.0174049i \(0.00554042\pi\)
−0.484851 + 0.874597i \(0.661126\pi\)
\(272\) 6.83578 28.7846i 0.414480 1.74532i
\(273\) −1.62497 + 5.38065i −0.0983476 + 0.325652i
\(274\) 5.51963 4.91094i 0.333453 0.296681i
\(275\) 0 0
\(276\) −7.86305 + 10.5569i −0.473300 + 0.635453i
\(277\) 13.4258 23.2541i 0.806677 1.39720i −0.108477 0.994099i \(-0.534597\pi\)
0.915153 0.403106i \(-0.132069\pi\)
\(278\) 29.4575 + 9.76483i 1.76674 + 0.585656i
\(279\) 7.14919 0.428011
\(280\) 0 0
\(281\) 24.9497 1.48838 0.744188 0.667971i \(-0.232837\pi\)
0.744188 + 0.667971i \(0.232837\pi\)
\(282\) −4.65171 1.54199i −0.277005 0.0918242i
\(283\) 4.91910 8.52014i 0.292410 0.506470i −0.681969 0.731381i \(-0.738876\pi\)
0.974379 + 0.224912i \(0.0722093\pi\)
\(284\) −1.65370 + 2.22026i −0.0981292 + 0.131748i
\(285\) 0 0
\(286\) 3.11481 2.77132i 0.184183 0.163871i
\(287\) −6.84733 + 1.60547i −0.404185 + 0.0947678i
\(288\) 18.6287 10.0309i 1.09770 0.591079i
\(289\) 18.8525 + 32.6535i 1.10897 + 1.92079i
\(290\) 0 0
\(291\) 16.4581 + 9.50211i 0.964793 + 0.557024i
\(292\) −5.85597 13.5841i −0.342695 0.794949i
\(293\) 23.4039i 1.36727i −0.729823 0.683636i \(-0.760398\pi\)
0.729823 0.683636i \(-0.239602\pi\)
\(294\) −9.60639 + 23.8381i −0.560256 + 1.39027i
\(295\) 0 0
\(296\) −8.57348 + 18.3697i −0.498323 + 1.06772i
\(297\) −5.99571 3.46163i −0.347907 0.200864i
\(298\) −6.84537 33.1710i −0.396542 1.92155i
\(299\) 1.03723 + 1.79654i 0.0599848 + 0.103897i
\(300\) 0 0
\(301\) −6.17431 + 1.44767i −0.355881 + 0.0834421i
\(302\) −6.58746 7.40395i −0.379066 0.426049i
\(303\) −14.2948 + 8.25311i −0.821215 + 0.474129i
\(304\) −9.08079 + 9.61639i −0.520819 + 0.551538i
\(305\) 0 0
\(306\) −12.3098 + 37.1349i −0.703705 + 2.12286i
\(307\) 2.18529 0.124721 0.0623606 0.998054i \(-0.480137\pi\)
0.0623606 + 0.998054i \(0.480137\pi\)
\(308\) 15.3215 11.3440i 0.873026 0.646382i
\(309\) 2.65350 0.150952
\(310\) 0 0
\(311\) 14.4501 25.0282i 0.819388 1.41922i −0.0867457 0.996230i \(-0.527647\pi\)
0.906134 0.422991i \(-0.139020\pi\)
\(312\) −0.521673 5.98606i −0.0295339 0.338894i
\(313\) 5.50189 3.17652i 0.310985 0.179548i −0.336382 0.941726i \(-0.609203\pi\)
0.647367 + 0.762178i \(0.275870\pi\)
\(314\) −6.04030 6.78897i −0.340874 0.383124i
\(315\) 0 0
\(316\) −15.3904 1.80240i −0.865778 0.101393i
\(317\) −9.40153 16.2839i −0.528043 0.914597i −0.999466 0.0326894i \(-0.989593\pi\)
0.471423 0.881907i \(-0.343741\pi\)
\(318\) 1.34386 + 6.51200i 0.0753597 + 0.365175i
\(319\) 6.37538 + 3.68083i 0.356953 + 0.206087i
\(320\) 0 0
\(321\) 18.8264i 1.05079i
\(322\) 3.98716 + 8.60700i 0.222196 + 0.479649i
\(323\) 24.4564i 1.36079i
\(324\) 11.4450 4.93382i 0.635832 0.274101i
\(325\) 0 0
\(326\) 25.5939 5.28172i 1.41752 0.292527i
\(327\) 10.3481 + 17.9234i 0.572250 + 0.991167i
\(328\) 6.16035 4.31042i 0.340149 0.238003i
\(329\) −2.57448 + 2.41723i −0.141936 + 0.133266i
\(330\) 0 0
\(331\) 11.3353 6.54441i 0.623042 0.359713i −0.155010 0.987913i \(-0.549541\pi\)
0.778052 + 0.628199i \(0.216208\pi\)
\(332\) 16.8374 + 12.5409i 0.924071 + 0.688269i
\(333\) 13.4033 23.2152i 0.734497 1.27219i
\(334\) −2.45513 0.813849i −0.134339 0.0445318i
\(335\) 0 0
\(336\) 0.0784518 27.4753i 0.00427990 1.49890i
\(337\) −11.7319 −0.639079 −0.319539 0.947573i \(-0.603528\pi\)
−0.319539 + 0.947573i \(0.603528\pi\)
\(338\) 16.5521 + 5.48685i 0.900317 + 0.298445i
\(339\) −9.88640 + 17.1238i −0.536956 + 0.930035i
\(340\) 0 0
\(341\) −5.96388 + 3.44325i −0.322962 + 0.186462i
\(342\) 13.0667 11.6257i 0.706566 0.628648i
\(343\) 11.8019 + 14.2729i 0.637245 + 0.770661i
\(344\) 5.55485 3.88675i 0.299498 0.209560i
\(345\) 0 0
\(346\) −21.1210 + 4.35866i −1.13547 + 0.234323i
\(347\) −3.82065 2.20585i −0.205103 0.118416i 0.393930 0.919140i \(-0.371115\pi\)
−0.599034 + 0.800724i \(0.704448\pi\)
\(348\) 9.74303 4.20013i 0.522281 0.225151i
\(349\) 18.3479i 0.982142i 0.871120 + 0.491071i \(0.163394\pi\)
−0.871120 + 0.491071i \(0.836606\pi\)
\(350\) 0 0
\(351\) 1.57246i 0.0839316i
\(352\) −10.7089 + 17.3399i −0.570788 + 0.924222i
\(353\) 10.1742 + 5.87406i 0.541516 + 0.312645i 0.745693 0.666289i \(-0.232118\pi\)
−0.204177 + 0.978934i \(0.565452\pi\)
\(354\) 1.41839 + 6.87319i 0.0753867 + 0.365306i
\(355\) 0 0
\(356\) 21.0824 + 2.46899i 1.11736 + 0.130856i
\(357\) 34.7749 + 37.0373i 1.84048 + 1.96022i
\(358\) −11.7852 13.2459i −0.622868 0.700070i
\(359\) −0.171388 + 0.0989510i −0.00904552 + 0.00522243i −0.504516 0.863402i \(-0.668329\pi\)
0.495470 + 0.868625i \(0.334996\pi\)
\(360\) 0 0
\(361\) 4.03326 6.98581i 0.212277 0.367674i
\(362\) −3.56806 + 10.7637i −0.187533 + 0.565730i
\(363\) 5.14002 0.269781
\(364\) −3.97130 1.72545i −0.208153 0.0904383i
\(365\) 0 0
\(366\) −11.2938 + 34.0700i −0.590338 + 1.78087i
\(367\) −3.76412 + 6.51964i −0.196485 + 0.340323i −0.947386 0.320092i \(-0.896286\pi\)
0.750901 + 0.660415i \(0.229619\pi\)
\(368\) −7.37287 6.96223i −0.384337 0.362931i
\(369\) −8.61028 + 4.97115i −0.448233 + 0.258787i
\(370\) 0 0
\(371\) 4.58686 + 1.38524i 0.238138 + 0.0719182i
\(372\) −1.15444 + 9.85761i −0.0598550 + 0.511093i
\(373\) 15.5696 + 26.9674i 0.806164 + 1.39632i 0.915503 + 0.402312i \(0.131793\pi\)
−0.109339 + 0.994005i \(0.534873\pi\)
\(374\) −7.61632 36.9068i −0.393830 1.90841i
\(375\) 0 0
\(376\) 1.59665 3.42100i 0.0823408 0.176425i
\(377\) 1.67203i 0.0861140i
\(378\) −0.644694 + 7.16122i −0.0331595 + 0.368333i
\(379\) 16.3396i 0.839307i 0.907684 + 0.419654i \(0.137848\pi\)
−0.907684 + 0.419654i \(0.862152\pi\)
\(380\) 0 0
\(381\) 19.7437 + 11.3990i 1.01150 + 0.583990i
\(382\) −9.36193 + 1.93198i −0.478998 + 0.0988489i
\(383\) 4.42434 + 7.66318i 0.226073 + 0.391570i 0.956641 0.291270i \(-0.0940778\pi\)
−0.730568 + 0.682840i \(0.760744\pi\)
\(384\) 10.8230 + 27.3058i 0.552307 + 1.39344i
\(385\) 0 0
\(386\) 2.49351 2.21853i 0.126916 0.112920i
\(387\) −7.76397 + 4.48253i −0.394665 + 0.227860i
\(388\) −8.74511 + 11.7412i −0.443966 + 0.596069i
\(389\) 4.67264 8.09325i 0.236912 0.410344i −0.722915 0.690937i \(-0.757198\pi\)
0.959827 + 0.280594i \(0.0905313\pi\)
\(390\) 0 0
\(391\) 18.7507 0.948263
\(392\) −17.3785 9.48619i −0.877747 0.479125i
\(393\) 34.7612 1.75347
\(394\) −27.2779 9.04231i −1.37424 0.455545i
\(395\) 0 0
\(396\) 16.0983 21.6135i 0.808968 1.08612i
\(397\) 17.5826 10.1513i 0.882446 0.509480i 0.0109817 0.999940i \(-0.496504\pi\)
0.871464 + 0.490459i \(0.163171\pi\)
\(398\) 12.1063 10.7712i 0.606831 0.539912i
\(399\) −5.18470 22.1128i −0.259559 1.10702i
\(400\) 0 0
\(401\) 5.54334 + 9.60135i 0.276821 + 0.479469i 0.970593 0.240726i \(-0.0773857\pi\)
−0.693772 + 0.720195i \(0.744052\pi\)
\(402\) 33.3051 6.87304i 1.66111 0.342796i
\(403\) 1.35456 + 0.782054i 0.0674753 + 0.0389569i
\(404\) −5.03382 11.6769i −0.250442 0.580949i
\(405\) 0 0
\(406\) 0.685519 7.61469i 0.0340217 0.377911i
\(407\) 25.8216i 1.27993i
\(408\) −49.2155 22.9698i −2.43653 1.13717i
\(409\) −5.09812 2.94340i −0.252086 0.145542i 0.368633 0.929575i \(-0.379826\pi\)
−0.620719 + 0.784033i \(0.713159\pi\)
\(410\) 0 0
\(411\) −6.78145 11.7458i −0.334504 0.579378i
\(412\) −0.237769 + 2.03028i −0.0117140 + 0.100025i
\(413\) 4.84127 + 1.46208i 0.238223 + 0.0719441i
\(414\) 8.91343 + 10.0182i 0.438071 + 0.492369i
\(415\) 0 0
\(416\) 4.62687 + 0.137237i 0.226851 + 0.00672860i
\(417\) 28.4856 49.3385i 1.39495 2.41612i
\(418\) −5.30101 + 15.9915i −0.259281 + 0.782171i
\(419\) −16.7262 −0.817126 −0.408563 0.912730i \(-0.633970\pi\)
−0.408563 + 0.912730i \(0.633970\pi\)
\(420\) 0 0
\(421\) −1.18823 −0.0579109 −0.0289555 0.999581i \(-0.509218\pi\)
−0.0289555 + 0.999581i \(0.509218\pi\)
\(422\) 9.81845 29.6192i 0.477955 1.44184i
\(423\) −2.49611 + 4.32339i −0.121365 + 0.210210i
\(424\) −5.10296 + 0.444713i −0.247822 + 0.0215972i
\(425\) 0 0
\(426\) 3.37824 + 3.79696i 0.163676 + 0.183963i
\(427\) 17.7042 + 18.8560i 0.856767 + 0.912506i
\(428\) −14.4047 1.68696i −0.696276 0.0815421i
\(429\) −3.82687 6.62833i −0.184763 0.320019i
\(430\) 0 0
\(431\) −20.8669 12.0475i −1.00512 0.580307i −0.0953622 0.995443i \(-0.530401\pi\)
−0.909760 + 0.415135i \(0.863734\pi\)
\(432\) −2.20123 7.36470i −0.105907 0.354334i
\(433\) 14.9805i 0.719916i −0.932968 0.359958i \(-0.882791\pi\)
0.932968 0.359958i \(-0.117209\pi\)
\(434\) 5.84823 + 4.11696i 0.280724 + 0.197620i
\(435\) 0 0
\(436\) −14.6410 + 6.31161i −0.701178 + 0.302271i
\(437\) −7.25962 4.19134i −0.347275 0.200499i
\(438\) −26.5955 + 5.48841i −1.27078 + 0.262246i
\(439\) −8.66266 15.0042i −0.413446 0.716110i 0.581818 0.813319i \(-0.302342\pi\)
−0.995264 + 0.0972091i \(0.969008\pi\)
\(440\) 0 0
\(441\) 21.8047 + 14.4919i 1.03832 + 0.690090i
\(442\) −6.39456 + 5.68938i −0.304158 + 0.270616i
\(443\) −21.8520 + 12.6162i −1.03822 + 0.599416i −0.919328 0.393492i \(-0.871267\pi\)
−0.118890 + 0.992907i \(0.537934\pi\)
\(444\) 29.8458 + 22.2298i 1.41642 + 1.05498i
\(445\) 0 0
\(446\) −31.6501 10.4917i −1.49868 0.496795i
\(447\) −62.1779 −2.94091
\(448\) 21.0152 + 2.52198i 0.992876 + 0.119152i
\(449\) −7.06145 −0.333251 −0.166625 0.986020i \(-0.553287\pi\)
−0.166625 + 0.986020i \(0.553287\pi\)
\(450\) 0 0
\(451\) 4.78848 8.29390i 0.225481 0.390544i
\(452\) −12.2160 9.09879i −0.574594 0.427971i
\(453\) −15.7556 + 9.09653i −0.740265 + 0.427392i
\(454\) 22.1103 19.6720i 1.03769 0.923255i
\(455\) 0 0
\(456\) 13.9201 + 19.8942i 0.651867 + 0.931633i
\(457\) 9.44078 + 16.3519i 0.441621 + 0.764910i 0.997810 0.0661459i \(-0.0210703\pi\)
−0.556189 + 0.831056i \(0.687737\pi\)
\(458\) −7.17660 + 1.48100i −0.335340 + 0.0692028i
\(459\) 12.3089 + 7.10656i 0.574531 + 0.331706i
\(460\) 0 0
\(461\) 34.6087i 1.61189i −0.591992 0.805944i \(-0.701658\pi\)
0.591992 0.805944i \(-0.298342\pi\)
\(462\) −14.7106 31.7555i −0.684399 1.47740i
\(463\) 15.0235i 0.698202i −0.937085 0.349101i \(-0.886487\pi\)
0.937085 0.349101i \(-0.113513\pi\)
\(464\) 2.34062 + 7.83106i 0.108661 + 0.363548i
\(465\) 0 0
\(466\) −5.93636 28.7662i −0.274997 1.33257i
\(467\) 12.7195 + 22.0309i 0.588590 + 1.01947i 0.994417 + 0.105518i \(0.0336500\pi\)
−0.405828 + 0.913950i \(0.633017\pi\)
\(468\) −6.07950 0.711981i −0.281025 0.0329113i
\(469\) 7.08472 23.4591i 0.327142 1.08324i
\(470\) 0 0
\(471\) −14.4470 + 8.34096i −0.665681 + 0.384331i
\(472\) −5.38599 + 0.469379i −0.247910 + 0.0216049i
\(473\) 4.31782 7.47869i 0.198534 0.343871i
\(474\) −8.95074 + 27.0016i −0.411121 + 1.24023i
\(475\) 0 0
\(476\) −31.4544 + 23.2886i −1.44171 + 1.06743i
\(477\) 6.77350 0.310137
\(478\) 9.40192 28.3627i 0.430034 1.29728i
\(479\) 10.2844 17.8131i 0.469905 0.813900i −0.529502 0.848308i \(-0.677621\pi\)
0.999408 + 0.0344084i \(0.0109547\pi\)
\(480\) 0 0
\(481\) 5.07906 2.93239i 0.231585 0.133706i
\(482\) 1.70906 + 1.92089i 0.0778453 + 0.0874939i
\(483\) 16.9538 3.97510i 0.771426 0.180873i
\(484\) −0.460576 + 3.93279i −0.0209353 + 0.178763i
\(485\) 0 0
\(486\) −6.27189 30.3921i −0.284499 1.37861i
\(487\) 25.1658 + 14.5295i 1.14037 + 0.658394i 0.946522 0.322638i \(-0.104570\pi\)
0.193849 + 0.981031i \(0.437903\pi\)
\(488\) −25.0560 11.6941i −1.13423 0.529369i
\(489\) 47.9749i 2.16950i
\(490\) 0 0
\(491\) 9.51815i 0.429548i −0.976664 0.214774i \(-0.931098\pi\)
0.976664 0.214774i \(-0.0689015\pi\)
\(492\) −5.46405 12.6750i −0.246339 0.571431i
\(493\) −13.0884 7.55657i −0.589470 0.340331i
\(494\) 3.74750 0.773356i 0.168608 0.0347949i
\(495\) 0 0
\(496\) −7.43893 1.76660i −0.334018 0.0793226i
\(497\) 3.56561 0.836015i 0.159940 0.0375004i
\(498\) 28.7943 25.6189i 1.29030 1.14801i
\(499\) 17.4855 10.0953i 0.782760 0.451927i −0.0546477 0.998506i \(-0.517404\pi\)
0.837407 + 0.546579i \(0.184070\pi\)
\(500\) 0 0
\(501\) −2.37413 + 4.11211i −0.106068 + 0.183716i
\(502\) −18.8185 6.23813i −0.839911 0.278421i
\(503\) −13.3134 −0.593616 −0.296808 0.954937i \(-0.595922\pi\)
−0.296808 + 0.954937i \(0.595922\pi\)
\(504\) −27.3951 5.73502i −1.22028 0.255458i
\(505\) 0 0
\(506\) −12.2607 4.06428i −0.545053 0.180679i
\(507\) 16.0060 27.7233i 0.710853 1.23123i
\(508\) −10.4909 + 14.0851i −0.465459 + 0.624926i
\(509\) −12.4294 + 7.17613i −0.550925 + 0.318077i −0.749495 0.662010i \(-0.769704\pi\)
0.198570 + 0.980087i \(0.436370\pi\)
\(510\) 0 0
\(511\) −5.65744 + 18.7331i −0.250270 + 0.828703i
\(512\) −21.8623 + 5.83424i −0.966188 + 0.257839i
\(513\) −3.17706 5.50282i −0.140270 0.242956i
\(514\) −24.7539 + 5.10836i −1.09185 + 0.225320i
\(515\) 0 0
\(516\) −4.92699 11.4291i −0.216899 0.503140i
\(517\) 4.80879i 0.211490i
\(518\) 24.3331 11.2722i 1.06913 0.495273i
\(519\) 39.5906i 1.73783i
\(520\) 0 0
\(521\) −31.9571 18.4505i −1.40007 0.808330i −0.405669 0.914020i \(-0.632961\pi\)
−0.994399 + 0.105690i \(0.966295\pi\)
\(522\) −2.18439 10.5851i −0.0956083 0.463295i
\(523\) 9.07509 + 15.7185i 0.396826 + 0.687323i 0.993332 0.115285i \(-0.0367783\pi\)
−0.596506 + 0.802608i \(0.703445\pi\)
\(524\) −3.11481 + 26.5969i −0.136071 + 1.16189i
\(525\) 0 0
\(526\) 20.5837 + 23.1349i 0.897490 + 1.00873i
\(527\) 12.2436 7.06883i 0.533338 0.307923i
\(528\) 27.2022 + 25.6871i 1.18382 + 1.11789i
\(529\) −8.28651 + 14.3526i −0.360283 + 0.624028i
\(530\) 0 0
\(531\) 7.14919 0.310248
\(532\) 17.3838 1.98554i 0.753682 0.0860841i
\(533\) −2.17519 −0.0942178
\(534\) 12.2611 36.9879i 0.530589 1.60062i
\(535\) 0 0
\(536\) 2.27445 + 26.0987i 0.0982412 + 1.12729i
\(537\) −28.1874 + 16.2740i −1.21638 + 0.702276i
\(538\) −2.70999 3.04588i −0.116836 0.131317i
\(539\) −25.1693 1.58743i −1.08412 0.0683756i
\(540\) 0 0
\(541\) 9.37629 + 16.2402i 0.403118 + 0.698221i 0.994100 0.108463i \(-0.0345930\pi\)
−0.590982 + 0.806685i \(0.701260\pi\)
\(542\) 4.84637 + 23.4843i 0.208169 + 1.00874i
\(543\) 18.0283 + 10.4086i 0.773667 + 0.446677i
\(544\) 21.9849 35.5981i 0.942596 1.52626i
\(545\) 0 0
\(546\) −4.57564 + 6.49980i −0.195819 + 0.278166i
\(547\) 34.1580i 1.46049i −0.683185 0.730246i \(-0.739406\pi\)
0.683185 0.730246i \(-0.260594\pi\)
\(548\) 9.59475 4.13621i 0.409867 0.176690i
\(549\) 31.6653 + 18.2820i 1.35144 + 0.780256i
\(550\) 0 0
\(551\) 3.37824 + 5.85128i 0.143918 + 0.249273i
\(552\) −15.2529 + 10.6725i −0.649206 + 0.454252i
\(553\) 14.0312 + 14.9440i 0.596667 + 0.635485i
\(554\) 28.3702 25.2416i 1.20534 1.07241i
\(555\) 0 0
\(556\) 35.1980 + 26.2163i 1.49273 + 1.11182i
\(557\) −20.2183 + 35.0192i −0.856679 + 1.48381i 0.0184005 + 0.999831i \(0.494143\pi\)
−0.875079 + 0.483980i \(0.839191\pi\)
\(558\) 9.59694 + 3.18128i 0.406271 + 0.134674i
\(559\) −1.96139 −0.0829579
\(560\) 0 0
\(561\) −69.1805 −2.92080
\(562\) 33.4920 + 11.1022i 1.41278 + 0.468320i
\(563\) 0.159465 0.276201i 0.00672065 0.0116405i −0.862646 0.505809i \(-0.831194\pi\)
0.869366 + 0.494168i \(0.164527\pi\)
\(564\) −5.55821 4.13988i −0.234043 0.174320i
\(565\) 0 0
\(566\) 10.3946 9.24835i 0.436920 0.388737i
\(567\) −15.7831 4.76655i −0.662830 0.200176i
\(568\) −3.20788 + 2.24457i −0.134600 + 0.0941800i
\(569\) 15.3058 + 26.5104i 0.641651 + 1.11137i 0.985064 + 0.172188i \(0.0550836\pi\)
−0.343413 + 0.939184i \(0.611583\pi\)
\(570\) 0 0
\(571\) −7.35081 4.24399i −0.307622 0.177606i 0.338240 0.941060i \(-0.390168\pi\)
−0.645862 + 0.763454i \(0.723502\pi\)
\(572\) 5.41446 2.33412i 0.226390 0.0975945i
\(573\) 17.5486i 0.733103i
\(574\) −9.90614 0.891809i −0.413474 0.0372234i
\(575\) 0 0
\(576\) 29.4704 5.17589i 1.22793 0.215662i
\(577\) −2.91419 1.68251i −0.121319 0.0700438i 0.438112 0.898920i \(-0.355647\pi\)
−0.559432 + 0.828876i \(0.688981\pi\)
\(578\) 10.7769 + 52.2225i 0.448262 + 2.17217i
\(579\) −3.06354 5.30620i −0.127316 0.220518i
\(580\) 0 0
\(581\) −6.33993 27.0399i −0.263025 1.12180i
\(582\) 17.8648 + 20.0791i 0.740520 + 0.832305i
\(583\) −5.65048 + 3.26230i −0.234019 + 0.135111i
\(584\) −1.81624 20.8409i −0.0751565 0.862401i
\(585\) 0 0
\(586\) 10.4144 31.4170i 0.430215 1.29782i
\(587\) 2.02359 0.0835225 0.0417613 0.999128i \(-0.486703\pi\)
0.0417613 + 0.999128i \(0.486703\pi\)
\(588\) −23.5030 + 27.7251i −0.969249 + 1.14337i
\(589\) −6.32038 −0.260427
\(590\) 0 0
\(591\) −26.3779 + 45.6878i −1.08504 + 1.87935i
\(592\) −19.6831 + 20.8440i −0.808971 + 0.856685i
\(593\) −23.2318 + 13.4129i −0.954016 + 0.550802i −0.894326 0.447415i \(-0.852345\pi\)
−0.0596901 + 0.998217i \(0.519011\pi\)
\(594\) −6.50817 7.31483i −0.267033 0.300131i
\(595\) 0 0
\(596\) 5.57151 47.5743i 0.228218 1.94872i
\(597\) −14.8738 25.7622i −0.608744 1.05438i
\(598\) 0.592930 + 2.87320i 0.0242467 + 0.117494i
\(599\) 32.0964 + 18.5309i 1.31143 + 0.757152i 0.982332 0.187146i \(-0.0599237\pi\)
0.329093 + 0.944297i \(0.393257\pi\)
\(600\) 0 0
\(601\) 1.27911i 0.0521761i −0.999660 0.0260880i \(-0.991695\pi\)
0.999660 0.0260880i \(-0.00830503\pi\)
\(602\) −8.93247 0.804153i −0.364060 0.0327748i
\(603\) 34.6425i 1.41075i
\(604\) −5.54824 12.8702i −0.225755 0.523683i
\(605\) 0 0
\(606\) −22.8616 + 4.71785i −0.928689 + 0.191650i
\(607\) −11.3045 19.5800i −0.458836 0.794727i 0.540064 0.841624i \(-0.318400\pi\)
−0.998900 + 0.0468970i \(0.985067\pi\)
\(608\) −16.4690 + 8.86805i −0.667907 + 0.359647i
\(609\) −13.4361 4.05773i −0.544458 0.164428i
\(610\) 0 0
\(611\) −0.945877 + 0.546102i −0.0382661 + 0.0220929i
\(612\) −33.0489 + 44.3716i −1.33592 + 1.79361i
\(613\) 1.50973 2.61492i 0.0609773 0.105616i −0.833925 0.551877i \(-0.813912\pi\)
0.894903 + 0.446262i \(0.147245\pi\)
\(614\) 2.93350 + 0.972422i 0.118386 + 0.0392437i
\(615\) 0 0
\(616\) 25.6153 8.41007i 1.03207 0.338852i
\(617\) 14.3344 0.577081 0.288540 0.957468i \(-0.406830\pi\)
0.288540 + 0.957468i \(0.406830\pi\)
\(618\) 3.56201 + 1.18077i 0.143285 + 0.0474974i
\(619\) 10.8987 18.8771i 0.438055 0.758733i −0.559485 0.828841i \(-0.689001\pi\)
0.997539 + 0.0701078i \(0.0223343\pi\)
\(620\) 0 0
\(621\) 4.21901 2.43584i 0.169303 0.0977471i
\(622\) 30.5347 27.1674i 1.22433 1.08931i
\(623\) −19.2205 20.4709i −0.770052 0.820150i
\(624\) 1.96342 8.26771i 0.0785997 0.330973i
\(625\) 0 0
\(626\) 8.79915 1.81584i 0.351685 0.0725757i
\(627\) 26.7843 + 15.4639i 1.06966 + 0.617570i
\(628\) −5.08740 11.8012i −0.203009 0.470920i
\(629\) 53.0106i 2.11367i
\(630\) 0 0
\(631\) 15.1512i 0.603160i 0.953441 + 0.301580i \(0.0975140\pi\)
−0.953441 + 0.301580i \(0.902486\pi\)
\(632\) −19.8578 9.26800i −0.789899 0.368661i
\(633\) −49.6094 28.6420i −1.97180 1.13842i
\(634\) −5.37434 26.0428i −0.213442 1.03429i
\(635\) 0 0
\(636\) −1.09378 + 9.33959i −0.0433710 + 0.370339i
\(637\) 2.54606 + 5.13101i 0.100879 + 0.203298i
\(638\) 6.92029 + 7.77803i 0.273977 + 0.307935i
\(639\) 4.48363 2.58863i 0.177370 0.102404i
\(640\) 0 0
\(641\) −14.9960 + 25.9739i −0.592308 + 1.02591i 0.401613 + 0.915809i \(0.368450\pi\)
−0.993921 + 0.110098i \(0.964884\pi\)
\(642\) −8.37746 + 25.2722i −0.330632 + 0.997415i
\(643\) −1.63196 −0.0643583 −0.0321792 0.999482i \(-0.510245\pi\)
−0.0321792 + 0.999482i \(0.510245\pi\)
\(644\) 1.52231 + 13.3281i 0.0599874 + 0.525201i
\(645\) 0 0
\(646\) 10.8827 32.8298i 0.428175 1.29167i
\(647\) 16.3832 28.3765i 0.644090 1.11560i −0.340421 0.940273i \(-0.610570\pi\)
0.984511 0.175323i \(-0.0560971\pi\)
\(648\) 17.5590 1.53023i 0.689783 0.0601132i
\(649\) −5.96388 + 3.44325i −0.234103 + 0.135159i
\(650\) 0 0
\(651\) 9.57170 8.98703i 0.375145 0.352229i
\(652\) 36.7071 + 4.29883i 1.43756 + 0.168355i
\(653\) 11.2646 + 19.5109i 0.440819 + 0.763521i 0.997750 0.0670377i \(-0.0213548\pi\)
−0.556932 + 0.830558i \(0.688021\pi\)
\(654\) 5.91544 + 28.6648i 0.231312 + 1.12088i
\(655\) 0 0
\(656\) 10.1876 3.04497i 0.397760 0.118886i
\(657\) 27.6635i 1.07925i
\(658\) −4.53157 + 2.09923i −0.176659 + 0.0818367i
\(659\) 19.2525i 0.749969i 0.927031 + 0.374985i \(0.122352\pi\)
−0.927031 + 0.374985i \(0.877648\pi\)
\(660\) 0 0
\(661\) 30.1079 + 17.3828i 1.17106 + 0.676113i 0.953930 0.300030i \(-0.0969966\pi\)
0.217132 + 0.976142i \(0.430330\pi\)
\(662\) 18.1284 3.74108i 0.704580 0.145401i
\(663\) 7.85638 + 13.6077i 0.305117 + 0.528477i
\(664\) 17.0217 + 24.3270i 0.660570 + 0.944071i
\(665\) 0 0
\(666\) 28.3228 25.1994i 1.09749 0.976458i
\(667\) −4.48617 + 2.59009i −0.173705 + 0.100289i
\(668\) −2.93357 2.18499i −0.113503 0.0845398i
\(669\) −30.6059 + 53.0110i −1.18329 + 2.04952i
\(670\) 0 0
\(671\) −35.2205 −1.35967
\(672\) 12.3314 36.8475i 0.475695 1.42142i
\(673\) −42.6368 −1.64353 −0.821764 0.569827i \(-0.807010\pi\)
−0.821764 + 0.569827i \(0.807010\pi\)
\(674\) −15.7487 5.22053i −0.606618 0.201087i
\(675\) 0 0
\(676\) 19.7777 + 14.7309i 0.760681 + 0.566572i
\(677\) −1.54611 + 0.892648i −0.0594219 + 0.0343073i −0.529417 0.848362i \(-0.677589\pi\)
0.469995 + 0.882669i \(0.344256\pi\)
\(678\) −20.8911 + 18.5873i −0.802319 + 0.713842i
\(679\) 18.8557 4.42102i 0.723615 0.169663i
\(680\) 0 0
\(681\) −27.1648 47.0509i −1.04096 1.80299i
\(682\) −9.53800 + 1.96832i −0.365229 + 0.0753708i
\(683\) −7.45237 4.30263i −0.285157 0.164636i 0.350599 0.936526i \(-0.385978\pi\)
−0.635756 + 0.771890i \(0.719311\pi\)
\(684\) 22.7138 9.79170i 0.868483 0.374395i
\(685\) 0 0
\(686\) 9.49151 + 24.4113i 0.362387 + 0.932028i
\(687\) 13.4523i 0.513236i
\(688\) 9.18628 2.74568i 0.350224 0.104678i
\(689\) 1.28338 + 0.740957i 0.0488927 + 0.0282282i
\(690\) 0 0
\(691\) 20.1511 + 34.9027i 0.766583 + 1.32776i 0.939405 + 0.342808i \(0.111378\pi\)
−0.172822 + 0.984953i \(0.555289\pi\)
\(692\) −30.2920 3.54755i −1.15153 0.134858i
\(693\) −34.7101 + 8.13834i −1.31853 + 0.309150i
\(694\) −4.14720 4.66123i −0.157426 0.176938i
\(695\) 0 0
\(696\) 14.9479 1.30268i 0.566597 0.0493778i
\(697\) −9.83053 + 17.0270i −0.372358 + 0.644943i
\(698\) −8.16454 + 24.6299i −0.309033 + 0.932256i
\(699\) −53.9212 −2.03949
\(700\) 0 0
\(701\) 37.3051 1.40899 0.704497 0.709707i \(-0.251172\pi\)
0.704497 + 0.709707i \(0.251172\pi\)
\(702\) −0.699719 + 2.11084i −0.0264092 + 0.0796684i
\(703\) −11.8495 + 20.5239i −0.446911 + 0.774072i
\(704\) −22.0915 + 18.5115i −0.832604 + 0.697679i
\(705\) 0 0
\(706\) 11.0438 + 12.4126i 0.415637 + 0.467154i
\(707\) −4.86315 + 16.1030i −0.182898 + 0.605617i
\(708\) −1.15444 + 9.85761i −0.0433866 + 0.370472i
\(709\) −4.02866 6.97784i −0.151299 0.262058i 0.780406 0.625273i \(-0.215012\pi\)
−0.931705 + 0.363215i \(0.881679\pi\)
\(710\) 0 0
\(711\) 25.0958 + 14.4891i 0.941168 + 0.543383i
\(712\) 27.2019 + 12.6957i 1.01944 + 0.475790i
\(713\) 4.84582i 0.181477i
\(714\) 30.2002 + 65.1924i 1.13021 + 2.43977i
\(715\) 0 0
\(716\) −9.92601 23.0254i −0.370953 0.860498i
\(717\) −47.5049 27.4269i −1.77410 1.02428i
\(718\) −0.274100 + 0.0565649i −0.0102293 + 0.00211098i
\(719\) 5.87241 + 10.1713i 0.219004 + 0.379326i 0.954504 0.298199i \(-0.0963859\pi\)
−0.735500 + 0.677525i \(0.763053\pi\)
\(720\) 0 0
\(721\) 1.97139 1.85097i 0.0734184 0.0689338i
\(722\) 8.52275 7.58289i 0.317184 0.282206i
\(723\) 4.08766 2.36001i 0.152022 0.0877697i
\(724\) −9.57940 + 12.8613i −0.356016 + 0.477987i
\(725\) 0 0
\(726\) 6.89987 + 2.28723i 0.256078 + 0.0848871i
\(727\) −33.3549 −1.23706 −0.618532 0.785760i \(-0.712272\pi\)
−0.618532 + 0.785760i \(0.712272\pi\)
\(728\) −4.56320 4.08338i −0.169123 0.151340i
\(729\) −38.2742 −1.41756
\(730\) 0 0
\(731\) −8.86429 + 15.3534i −0.327857 + 0.567866i
\(732\) −30.3213 + 40.7094i −1.12071 + 1.50466i
\(733\) 9.95934 5.75003i 0.367856 0.212382i −0.304665 0.952460i \(-0.598545\pi\)
0.672522 + 0.740077i \(0.265211\pi\)
\(734\) −7.95403 + 7.07688i −0.293588 + 0.261212i
\(735\) 0 0
\(736\) −6.79912 12.6268i −0.250619 0.465429i
\(737\) 16.6848 + 28.8989i 0.614593 + 1.06451i
\(738\) −13.7704 + 2.84173i −0.506894 + 0.104606i
\(739\) −9.70301 5.60203i −0.356931 0.206074i 0.310803 0.950474i \(-0.399402\pi\)
−0.667734 + 0.744400i \(0.732735\pi\)
\(740\) 0 0
\(741\) 7.02455i 0.258053i
\(742\) 5.54091 + 3.90061i 0.203413 + 0.143196i
\(743\) 43.7950i 1.60668i 0.595520 + 0.803341i \(0.296946\pi\)
−0.595520 + 0.803341i \(0.703054\pi\)
\(744\) −5.93619 + 12.7190i −0.217631 + 0.466300i
\(745\) 0 0
\(746\) 8.90030 + 43.1287i 0.325863 + 1.57905i
\(747\) −19.6309 34.0017i −0.718256 1.24406i
\(748\) 6.19898 52.9322i 0.226657 1.93539i
\(749\) 13.1325 + 13.9869i 0.479852 + 0.511069i
\(750\) 0 0
\(751\) 44.5322 25.7107i 1.62500 0.938196i 0.639450 0.768832i \(-0.279162\pi\)
0.985554 0.169364i \(-0.0541714\pi\)
\(752\) 3.66560 3.88180i 0.133671 0.141555i
\(753\) −18.1976 + 31.5192i −0.663159 + 1.14862i
\(754\) 0.744028 2.24450i 0.0270959 0.0817400i
\(755\) 0 0
\(756\) −4.05206 + 9.32621i −0.147372 + 0.339191i
\(757\) −18.1453 −0.659502 −0.329751 0.944068i \(-0.606965\pi\)
−0.329751 + 0.944068i \(0.606965\pi\)
\(758\) −7.27086 + 21.9339i −0.264089 + 0.796676i
\(759\) −11.8562 + 20.5355i −0.430352 + 0.745391i
\(760\) 0 0
\(761\) −28.4860 + 16.4464i −1.03262 + 0.596181i −0.917733 0.397198i \(-0.869983\pi\)
−0.114883 + 0.993379i \(0.536649\pi\)
\(762\) 21.4312 + 24.0875i 0.776370 + 0.872598i
\(763\) 20.1906 + 6.09762i 0.730950 + 0.220749i
\(764\) −13.4270 1.57246i −0.485771 0.0568895i
\(765\) 0 0
\(766\) 2.52915 + 12.2557i 0.0913821 + 0.442816i
\(767\) 1.35456 + 0.782054i 0.0489102 + 0.0282383i
\(768\) 2.37790 + 41.4709i 0.0858049 + 1.49645i
\(769\) 20.8502i 0.751876i 0.926645 + 0.375938i \(0.122679\pi\)
−0.926645 + 0.375938i \(0.877321\pi\)
\(770\) 0 0
\(771\) 46.4003i 1.67107i
\(772\) 4.33445 1.86854i 0.156000 0.0672503i
\(773\) 7.52368 + 4.34380i 0.270608 + 0.156236i 0.629164 0.777273i \(-0.283397\pi\)
−0.358556 + 0.933508i \(0.616731\pi\)
\(774\) −12.4169 + 2.56242i −0.446315 + 0.0921042i
\(775\) 0 0
\(776\) −16.9639 + 11.8697i −0.608970 + 0.426099i
\(777\) −11.2381 47.9306i −0.403165 1.71950i
\(778\) 9.87384 8.78497i 0.353994 0.314957i
\(779\) 7.61208 4.39484i 0.272731 0.157461i
\(780\) 0 0
\(781\) −2.49351 + 4.31888i −0.0892247 + 0.154542i
\(782\) 25.1706 + 8.34377i 0.900098 + 0.298373i
\(783\) −3.92660 −0.140325
\(784\) −19.1074 20.4672i −0.682406 0.730973i
\(785\) 0 0
\(786\) 46.6628 + 15.4682i 1.66441 + 0.551733i
\(787\) −18.6062 + 32.2270i −0.663241 + 1.14877i 0.316518 + 0.948586i \(0.397486\pi\)
−0.979759 + 0.200180i \(0.935847\pi\)
\(788\) −32.5936 24.2765i −1.16110 0.864813i
\(789\) 49.2312 28.4237i 1.75268 1.01191i
\(790\) 0 0
\(791\) 4.59982 + 19.6183i 0.163551 + 0.697545i
\(792\) 31.2277 21.8501i 1.10963 0.776411i
\(793\) 3.99976 + 6.92778i 0.142036 + 0.246013i
\(794\) 28.1198 5.80296i 0.997933 0.205939i
\(795\) 0 0
\(796\) 21.0442 9.07197i 0.745893 0.321547i
\(797\) 21.3900i 0.757671i 0.925464 + 0.378835i \(0.123675\pi\)
−0.925464 + 0.378835i \(0.876325\pi\)
\(798\) 2.88001 31.9909i 0.101951 1.13247i
\(799\) 9.87221i 0.349254i
\(800\) 0 0
\(801\) −34.3773 19.8477i −1.21466 0.701285i
\(802\) 3.16883 + 15.3554i 0.111895 + 0.542217i
\(803\) −13.3235 23.0770i −0.470176 0.814368i
\(804\) 47.7666 + 5.59403i 1.68460 + 0.197286i
\(805\) 0 0
\(806\) 1.47033 + 1.65257i 0.0517902 + 0.0582094i
\(807\) −6.48166 + 3.74219i −0.228165 + 0.131731i
\(808\) −1.56125 17.9149i −0.0549244 0.630243i
\(809\) 12.1707 21.0803i 0.427900 0.741144i −0.568787 0.822485i \(-0.692587\pi\)
0.996686 + 0.0813411i \(0.0259203\pi\)
\(810\) 0 0
\(811\) −31.3778 −1.10183 −0.550913 0.834563i \(-0.685720\pi\)
−0.550913 + 0.834563i \(0.685720\pi\)
\(812\) 4.30865 9.91678i 0.151204 0.348011i
\(813\) 44.0206 1.54387
\(814\) −11.4902 + 34.6625i −0.402733 + 1.21492i
\(815\) 0 0
\(816\) −55.8447 52.7344i −1.95496 1.84607i
\(817\) 6.86389 3.96287i 0.240137 0.138643i
\(818\) −5.53386 6.21976i −0.193487 0.217469i
\(819\) 5.54259 + 5.90317i 0.193674 + 0.206274i
\(820\) 0 0
\(821\) −0.0785681 0.136084i −0.00274204 0.00474936i 0.864651 0.502373i \(-0.167539\pi\)
−0.867393 + 0.497623i \(0.834206\pi\)
\(822\) −3.87658 18.7850i −0.135211 0.655202i
\(823\) −16.1904 9.34753i −0.564362 0.325835i 0.190532 0.981681i \(-0.438979\pi\)
−0.754894 + 0.655846i \(0.772312\pi\)
\(824\) −1.22262 + 2.61960i −0.0425919 + 0.0912582i
\(825\) 0 0
\(826\) 5.84823 + 4.11696i 0.203486 + 0.143247i
\(827\) 35.2960i 1.22736i −0.789554 0.613681i \(-0.789688\pi\)
0.789554 0.613681i \(-0.210312\pi\)
\(828\) 7.50728 + 17.4146i 0.260896 + 0.605200i
\(829\) 14.2590 + 8.23245i 0.495237 + 0.285925i 0.726744 0.686908i \(-0.241033\pi\)
−0.231508 + 0.972833i \(0.574366\pi\)
\(830\) 0 0
\(831\) −34.8558 60.3720i −1.20913 2.09428i
\(832\) 6.14996 + 2.24311i 0.213211 + 0.0777659i
\(833\) 51.6713 + 3.25893i 1.79030 + 0.112915i
\(834\) 60.1934 53.5555i 2.08433 1.85447i
\(835\) 0 0
\(836\) −14.2320 + 19.1079i −0.492223 + 0.660859i
\(837\) 1.83658 3.18105i 0.0634814 0.109953i
\(838\) −22.4529 7.44288i −0.775622 0.257110i
\(839\) −54.8000 −1.89191 −0.945953 0.324303i \(-0.894870\pi\)
−0.945953 + 0.324303i \(0.894870\pi\)
\(840\) 0 0
\(841\) −24.8248 −0.856026
\(842\) −1.59506 0.528745i −0.0549694 0.0182218i
\(843\) 32.3871 56.0960i 1.11547 1.93205i
\(844\) 26.3602 35.3913i 0.907356 1.21822i
\(845\) 0 0
\(846\) −5.27458 + 4.69291i −0.181344 + 0.161346i
\(847\) 3.81872 3.58546i 0.131213 0.123198i
\(848\) −7.04801 1.67376i −0.242030 0.0574773i
\(849\) −12.7709 22.1199i −0.438297 0.759152i
\(850\) 0 0
\(851\) −15.7356 9.08496i −0.539410 0.311428i
\(852\) 2.84530 + 6.60023i 0.0974783 + 0.226120i
\(853\) 38.9225i 1.33268i 0.745648 + 0.666340i \(0.232140\pi\)
−0.745648 + 0.666340i \(0.767860\pi\)
\(854\) 15.3752 + 33.1901i 0.526128 + 1.13574i
\(855\) 0 0
\(856\) −18.5859 8.67440i −0.635253 0.296485i
\(857\) −25.4206 14.6766i −0.868350 0.501342i −0.00155047 0.999999i \(-0.500494\pi\)
−0.866800 + 0.498657i \(0.833827\pi\)
\(858\) −2.18761 10.6006i −0.0746839 0.361900i
\(859\) 23.6874 + 41.0277i 0.808202 + 1.39985i 0.914108 + 0.405471i \(0.132893\pi\)
−0.105905 + 0.994376i \(0.533774\pi\)
\(860\) 0 0
\(861\) −5.27880 + 17.4793i −0.179901 + 0.595694i
\(862\) −22.6504 25.4578i −0.771474 0.867095i
\(863\) 20.5257 11.8505i 0.698704 0.403397i −0.108161 0.994133i \(-0.534496\pi\)
0.806865 + 0.590737i \(0.201163\pi\)
\(864\) 0.322288 10.8658i 0.0109645 0.369660i
\(865\) 0 0
\(866\) 6.66609 20.1095i 0.226523 0.683350i
\(867\) 97.8892 3.32449
\(868\) 6.01858 + 8.12890i 0.204284 + 0.275913i
\(869\) −27.9134 −0.946897
\(870\) 0 0
\(871\) 3.78957 6.56372i 0.128405 0.222403i
\(872\) −22.4624 + 1.95755i −0.760673 + 0.0662912i
\(873\) 23.7103 13.6892i 0.802474 0.463308i
\(874\) −7.88009 8.85680i −0.266548 0.299586i
\(875\) 0 0
\(876\) −38.1436 4.46706i −1.28875 0.150928i
\(877\) 16.6020 + 28.7555i 0.560610 + 0.971004i 0.997443 + 0.0714621i \(0.0227665\pi\)
−0.436834 + 0.899542i \(0.643900\pi\)
\(878\) −4.95197 23.9961i −0.167121 0.809829i
\(879\) −52.6205 30.3805i −1.77485 1.02471i
\(880\) 0 0
\(881\) 19.2043i 0.647008i 0.946227 + 0.323504i \(0.104861\pi\)
−0.946227 + 0.323504i \(0.895139\pi\)
\(882\) 22.8216 + 29.1564i 0.768442 + 0.981747i
\(883\) 8.57526i 0.288581i −0.989535 0.144290i \(-0.953910\pi\)
0.989535 0.144290i \(-0.0460899\pi\)
\(884\) −11.1156 + 4.79184i −0.373859 + 0.161167i
\(885\) 0 0
\(886\) −34.9477 + 7.21202i −1.17409 + 0.242292i
\(887\) 7.37543 + 12.7746i 0.247643 + 0.428930i 0.962871 0.269961i \(-0.0870108\pi\)
−0.715229 + 0.698891i \(0.753677\pi\)
\(888\) 30.1725 + 43.1219i 1.01252 + 1.44707i
\(889\) 22.6199 5.30359i 0.758646 0.177877i
\(890\) 0 0
\(891\) 19.4430 11.2254i 0.651365 0.376066i
\(892\) −37.8179 28.1676i −1.26624 0.943122i
\(893\) 2.20673 3.82218i 0.0738455 0.127904i
\(894\) −83.4665 27.6682i −2.79154 0.925364i
\(895\) 0 0
\(896\) 27.0882 + 12.7369i 0.904954 + 0.425510i
\(897\) 5.38571 0.179824
\(898\) −9.47917 3.14224i −0.316324 0.104858i
\(899\) −1.95288 + 3.38248i −0.0651321 + 0.112812i
\(900\) 0 0
\(901\) 11.6002 6.69736i 0.386457 0.223121i
\(902\) 10.1186 9.00277i 0.336914 0.299760i
\(903\) −4.75995 + 15.7613i −0.158401 + 0.524503i
\(904\) −12.3498 17.6500i −0.410747 0.587030i
\(905\) 0 0
\(906\) −25.1979 + 5.19999i −0.837144 + 0.172758i
\(907\) −41.2134 23.7946i −1.36847 0.790085i −0.377736 0.925914i \(-0.623297\pi\)
−0.990732 + 0.135828i \(0.956631\pi\)
\(908\) 38.4342 16.5686i 1.27548 0.549850i
\(909\) 23.7796i 0.788720i
\(910\) 0 0
\(911\) 34.7074i 1.14991i 0.818186 + 0.574954i \(0.194980\pi\)
−0.818186 + 0.574954i \(0.805020\pi\)
\(912\) 9.83342 + 32.8999i 0.325617 + 1.08942i
\(913\) 32.7523 + 18.9095i 1.08394 + 0.625814i
\(914\) 5.39678 + 26.1515i 0.178510 + 0.865015i
\(915\) 0 0
\(916\) −10.2928 1.20540i −0.340082 0.0398276i
\(917\) 25.8255 24.2480i 0.852833 0.800739i
\(918\) 13.3610 + 15.0170i 0.440977 + 0.495635i
\(919\) 44.9270 25.9386i 1.48200 0.855635i 0.482212 0.876055i \(-0.339833\pi\)
0.999792 + 0.0204194i \(0.00650013\pi\)
\(920\) 0 0
\(921\) 2.83671 4.91333i 0.0934729 0.161900i
\(922\) 15.4003 46.4581i 0.507183 1.53001i
\(923\) 1.13269 0.0372828
\(924\) −5.61655 49.1739i −0.184771 1.61770i
\(925\) 0 0
\(926\) 6.68524 20.1673i 0.219690 0.662738i
\(927\) 1.91138 3.31060i 0.0627778 0.108734i
\(928\) −0.342696 + 11.5538i −0.0112496 + 0.379272i
\(929\) −37.9198 + 21.8930i −1.24411 + 0.718286i −0.969928 0.243393i \(-0.921740\pi\)
−0.274180 + 0.961678i \(0.588406\pi\)
\(930\) 0 0
\(931\) −19.2769 12.8118i −0.631774 0.419891i
\(932\) 4.83166 41.2568i 0.158266 1.35141i
\(933\) −37.5151 64.9780i −1.22819 2.12728i
\(934\) 7.27106 + 35.2338i 0.237916 + 1.15289i
\(935\) 0 0
\(936\) −7.84419 3.66104i −0.256396 0.119665i
\(937\) 14.2224i 0.464624i −0.972641 0.232312i \(-0.925371\pi\)
0.972641 0.232312i \(-0.0746290\pi\)
\(938\) 19.9494 28.3385i 0.651370 0.925286i
\(939\) 16.4937i 0.538251i
\(940\) 0 0
\(941\) 4.80070 + 2.77169i 0.156498 + 0.0903544i 0.576204 0.817306i \(-0.304533\pi\)
−0.419706 + 0.907660i \(0.637867\pi\)
\(942\) −23.1049 + 4.76807i −0.752799 + 0.155352i
\(943\) 3.36951 + 5.83617i 0.109726 + 0.190052i
\(944\) −7.43893 1.76660i −0.242116 0.0574979i
\(945\) 0 0
\(946\) 9.12407 8.11789i 0.296649 0.263935i
\(947\) −51.5945 + 29.7881i −1.67660 + 0.967983i −0.712791 + 0.701377i \(0.752569\pi\)
−0.963805 + 0.266607i \(0.914098\pi\)
\(948\) −24.0306 + 32.2636i −0.780479 + 1.04787i
\(949\) −3.02612 + 5.24140i −0.0982321 + 0.170143i
\(950\) 0 0
\(951\) −48.8163 −1.58298
\(952\) −52.5869 + 17.2655i −1.70435 + 0.559578i
\(953\) −12.2577 −0.397065 −0.198532 0.980094i \(-0.563617\pi\)
−0.198532 + 0.980094i \(0.563617\pi\)
\(954\) 9.09262 + 3.01410i 0.294384 + 0.0975852i
\(955\) 0 0
\(956\) 25.2419 33.8899i 0.816383 1.09608i
\(957\) 16.5517 9.55612i 0.535040 0.308906i
\(958\) 21.7321 19.3355i 0.702133 0.624703i
\(959\) −13.2316 3.99597i −0.427270 0.129037i
\(960\) 0 0
\(961\) 13.6732 + 23.6826i 0.441070 + 0.763956i
\(962\) 8.12290 1.67629i 0.261893 0.0540458i
\(963\) 23.4885 + 13.5611i 0.756906 + 0.437000i
\(964\) 1.43944 + 3.33907i 0.0463612 + 0.107544i
\(965\) 0 0
\(966\) 24.5274 + 2.20810i 0.789155 + 0.0710443i
\(967\) 53.4551i 1.71900i 0.511137 + 0.859499i \(0.329225\pi\)
−0.511137 + 0.859499i \(0.670775\pi\)
\(968\) −2.36830 + 5.07436i −0.0761201 + 0.163096i
\(969\) −54.9869 31.7467i −1.76643 1.01985i
\(970\) 0 0
\(971\) −11.1284 19.2749i −0.357126 0.618561i 0.630353 0.776308i \(-0.282910\pi\)
−0.987479 + 0.157748i \(0.949577\pi\)
\(972\) 5.10475 43.5887i 0.163735 1.39811i
\(973\) −13.2534 56.5259i −0.424885 1.81214i
\(974\) 27.3167 + 30.7025i 0.875284 + 0.983772i
\(975\) 0 0
\(976\) −28.4311 26.8476i −0.910056 0.859369i
\(977\) 15.8974 27.5351i 0.508603 0.880926i −0.491347 0.870964i \(-0.663495\pi\)
0.999950 0.00996251i \(-0.00317122\pi\)
\(978\) 21.3481 64.4006i 0.682637 2.05931i
\(979\) 38.2369 1.22206
\(980\) 0 0
\(981\) 29.8158 0.951947
\(982\) 4.23543 12.7770i 0.135158 0.407730i
\(983\) −10.2927 + 17.8275i −0.328287 + 0.568609i −0.982172 0.187985i \(-0.939805\pi\)
0.653885 + 0.756594i \(0.273138\pi\)
\(984\) −1.69469 19.4460i −0.0540246 0.619917i
\(985\) 0 0
\(986\) −14.2070 15.9679i −0.452444 0.508522i
\(987\) 2.09288 + 8.92616i 0.0666172 + 0.284123i
\(988\) 5.37470 + 0.629440i 0.170992 + 0.0200252i
\(989\) 3.03832 + 5.26253i 0.0966131 + 0.167339i
\(990\) 0 0
\(991\) 32.2836 + 18.6390i 1.02552 + 0.592086i 0.915699 0.401865i \(-0.131638\pi\)
0.109824 + 0.993951i \(0.464971\pi\)
\(992\) −9.19977 5.68166i −0.292093 0.180393i
\(993\) 33.9810i 1.07836i
\(994\) 5.15843 + 0.464392i 0.163615 + 0.0147296i
\(995\) 0 0
\(996\) 50.0529 21.5773i 1.58599 0.683704i
\(997\) 10.9485 + 6.32111i 0.346742 + 0.200191i 0.663249 0.748399i \(-0.269177\pi\)
−0.316508 + 0.948590i \(0.602510\pi\)
\(998\) 27.9645 5.77092i 0.885201 0.182675i
\(999\) −6.88644 11.9277i −0.217877 0.377375i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.p.e.451.15 32
4.3 odd 2 inner 700.2.p.e.451.7 32
5.2 odd 4 140.2.s.b.59.7 yes 32
5.3 odd 4 140.2.s.b.59.10 yes 32
5.4 even 2 inner 700.2.p.e.451.2 32
7.5 odd 6 inner 700.2.p.e.551.7 32
20.3 even 4 140.2.s.b.59.15 yes 32
20.7 even 4 140.2.s.b.59.2 yes 32
20.19 odd 2 inner 700.2.p.e.451.10 32
28.19 even 6 inner 700.2.p.e.551.15 32
35.2 odd 12 980.2.s.e.19.15 32
35.3 even 12 980.2.c.d.979.28 32
35.12 even 12 140.2.s.b.19.15 yes 32
35.13 even 4 980.2.s.e.619.10 32
35.17 even 12 980.2.c.d.979.5 32
35.18 odd 12 980.2.c.d.979.27 32
35.19 odd 6 inner 700.2.p.e.551.10 32
35.23 odd 12 980.2.s.e.19.2 32
35.27 even 4 980.2.s.e.619.7 32
35.32 odd 12 980.2.c.d.979.6 32
35.33 even 12 140.2.s.b.19.2 32
140.3 odd 12 980.2.c.d.979.7 32
140.19 even 6 inner 700.2.p.e.551.2 32
140.23 even 12 980.2.s.e.19.7 32
140.27 odd 4 980.2.s.e.619.2 32
140.47 odd 12 140.2.s.b.19.10 yes 32
140.67 even 12 980.2.c.d.979.25 32
140.83 odd 4 980.2.s.e.619.15 32
140.87 odd 12 980.2.c.d.979.26 32
140.103 odd 12 140.2.s.b.19.7 yes 32
140.107 even 12 980.2.s.e.19.10 32
140.123 even 12 980.2.c.d.979.8 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.s.b.19.2 32 35.33 even 12
140.2.s.b.19.7 yes 32 140.103 odd 12
140.2.s.b.19.10 yes 32 140.47 odd 12
140.2.s.b.19.15 yes 32 35.12 even 12
140.2.s.b.59.2 yes 32 20.7 even 4
140.2.s.b.59.7 yes 32 5.2 odd 4
140.2.s.b.59.10 yes 32 5.3 odd 4
140.2.s.b.59.15 yes 32 20.3 even 4
700.2.p.e.451.2 32 5.4 even 2 inner
700.2.p.e.451.7 32 4.3 odd 2 inner
700.2.p.e.451.10 32 20.19 odd 2 inner
700.2.p.e.451.15 32 1.1 even 1 trivial
700.2.p.e.551.2 32 140.19 even 6 inner
700.2.p.e.551.7 32 7.5 odd 6 inner
700.2.p.e.551.10 32 35.19 odd 6 inner
700.2.p.e.551.15 32 28.19 even 6 inner
980.2.c.d.979.5 32 35.17 even 12
980.2.c.d.979.6 32 35.32 odd 12
980.2.c.d.979.7 32 140.3 odd 12
980.2.c.d.979.8 32 140.123 even 12
980.2.c.d.979.25 32 140.67 even 12
980.2.c.d.979.26 32 140.87 odd 12
980.2.c.d.979.27 32 35.18 odd 12
980.2.c.d.979.28 32 35.3 even 12
980.2.s.e.19.2 32 35.23 odd 12
980.2.s.e.19.7 32 140.23 even 12
980.2.s.e.19.10 32 140.107 even 12
980.2.s.e.19.15 32 35.2 odd 12
980.2.s.e.619.2 32 140.27 odd 4
980.2.s.e.619.7 32 35.27 even 4
980.2.s.e.619.10 32 35.13 even 4
980.2.s.e.619.15 32 140.83 odd 4