Properties

Label 700.2.p.c.551.9
Level $700$
Weight $2$
Character 700.551
Analytic conductor $5.590$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,2,Mod(451,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 551.9
Character \(\chi\) \(=\) 700.551
Dual form 700.2.p.c.451.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0915727 - 1.41125i) q^{2} +(-1.49907 - 2.59647i) q^{3} +(-1.98323 + 0.258463i) q^{4} +(-3.52698 + 2.35332i) q^{6} +(-2.06101 + 1.65899i) q^{7} +(0.546365 + 2.77516i) q^{8} +(-2.99443 + 5.18651i) q^{9} +(1.93693 - 1.11828i) q^{11} +(3.64409 + 4.76194i) q^{12} +3.17109i q^{13} +(2.52997 + 2.75667i) q^{14} +(3.86639 - 1.02518i) q^{16} +(2.98390 - 1.72275i) q^{17} +(7.59365 + 3.75094i) q^{18} +(-1.02618 + 1.77739i) q^{19} +(7.39711 + 2.86441i) q^{21} +(-1.75554 - 2.63107i) q^{22} +(-2.30481 - 1.33068i) q^{23} +(6.38656 - 5.57878i) q^{24} +(4.47519 - 0.290385i) q^{26} +8.96105 q^{27} +(3.65867 - 3.82285i) q^{28} -7.38092 q^{29} +(2.44599 + 4.23658i) q^{31} +(-1.80084 - 5.36255i) q^{32} +(-5.80718 - 3.35278i) q^{33} +(-2.70447 - 4.05325i) q^{34} +(4.59812 - 11.0600i) q^{36} +(-5.59689 + 9.69410i) q^{37} +(2.60230 + 1.28543i) q^{38} +(8.23364 - 4.75369i) q^{39} -1.46011i q^{41} +(3.36501 - 10.7014i) q^{42} +9.95752i q^{43} +(-3.55233 + 2.71844i) q^{44} +(-1.66686 + 3.37451i) q^{46} +(3.06343 - 5.30601i) q^{47} +(-8.45786 - 8.50215i) q^{48} +(1.49553 - 6.83838i) q^{49} +(-8.94615 - 5.16506i) q^{51} +(-0.819610 - 6.28900i) q^{52} +(2.32888 + 4.03374i) q^{53} +(-0.820587 - 12.6462i) q^{54} +(-5.73001 - 4.81321i) q^{56} +6.15325 q^{57} +(0.675891 + 10.4163i) q^{58} +(3.55938 + 6.16503i) q^{59} +(-2.19681 - 1.26833i) q^{61} +(5.75488 - 3.83985i) q^{62} +(-2.43279 - 15.6572i) q^{63} +(-7.40297 + 3.03249i) q^{64} +(-4.19981 + 8.50238i) q^{66} +(-0.0456998 + 0.0263848i) q^{67} +(-5.47248 + 4.18784i) q^{68} +7.97917i q^{69} -0.212347i q^{71} +(-16.0294 - 5.47629i) q^{72} +(12.8816 - 7.43720i) q^{73} +(14.1933 + 7.01088i) q^{74} +(1.57575 - 3.79020i) q^{76} +(-2.13680 + 5.51813i) q^{77} +(-7.46261 - 11.1844i) q^{78} +(-0.399413 - 0.230601i) q^{79} +(-4.44995 - 7.70755i) q^{81} +(-2.06058 + 0.133707i) q^{82} +10.9174 q^{83} +(-15.4105 - 3.76890i) q^{84} +(14.0525 - 0.911837i) q^{86} +(11.0645 + 19.1643i) q^{87} +(4.16168 + 4.76428i) q^{88} +(6.07992 + 3.51024i) q^{89} +(-5.26080 - 6.53565i) q^{91} +(4.91490 + 2.04334i) q^{92} +(7.33344 - 12.7019i) q^{93} +(-7.76862 - 3.83736i) q^{94} +(-11.2241 + 12.7147i) q^{96} -0.185459i q^{97} +(-9.78758 - 1.48435i) q^{98} +13.3945i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 2 q^{2} - 2 q^{4} + 4 q^{8} - 16 q^{9} + 30 q^{12} + 2 q^{14} - 14 q^{16} - 12 q^{21} + 8 q^{22} + 36 q^{24} + 30 q^{26} - 2 q^{28} - 40 q^{29} - 2 q^{32} + 60 q^{36} - 8 q^{37} + 60 q^{38} + 62 q^{42}+ \cdots - 78 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0915727 1.41125i −0.0647517 0.997901i
\(3\) −1.49907 2.59647i −0.865490 1.49907i −0.866560 0.499072i \(-0.833674\pi\)
0.00107081 0.999999i \(-0.499659\pi\)
\(4\) −1.98323 + 0.258463i −0.991614 + 0.129232i
\(5\) 0 0
\(6\) −3.52698 + 2.35332i −1.43988 + 0.960741i
\(7\) −2.06101 + 1.65899i −0.778989 + 0.627038i
\(8\) 0.546365 + 2.77516i 0.193169 + 0.981165i
\(9\) −2.99443 + 5.18651i −0.998144 + 1.72884i
\(10\) 0 0
\(11\) 1.93693 1.11828i 0.584005 0.337175i −0.178718 0.983900i \(-0.557195\pi\)
0.762723 + 0.646725i \(0.223862\pi\)
\(12\) 3.64409 + 4.76194i 1.05196 + 1.37465i
\(13\) 3.17109i 0.879502i 0.898120 + 0.439751i \(0.144933\pi\)
−0.898120 + 0.439751i \(0.855067\pi\)
\(14\) 2.52997 + 2.75667i 0.676163 + 0.736752i
\(15\) 0 0
\(16\) 3.86639 1.02518i 0.966598 0.256296i
\(17\) 2.98390 1.72275i 0.723701 0.417829i −0.0924124 0.995721i \(-0.529458\pi\)
0.816113 + 0.577892i \(0.196124\pi\)
\(18\) 7.59365 + 3.75094i 1.78984 + 0.884104i
\(19\) −1.02618 + 1.77739i −0.235421 + 0.407761i −0.959395 0.282066i \(-0.908980\pi\)
0.723974 + 0.689827i \(0.242314\pi\)
\(20\) 0 0
\(21\) 7.39711 + 2.86441i 1.61418 + 0.625065i
\(22\) −1.75554 2.63107i −0.374283 0.560947i
\(23\) −2.30481 1.33068i −0.480587 0.277467i 0.240074 0.970755i \(-0.422828\pi\)
−0.720661 + 0.693288i \(0.756162\pi\)
\(24\) 6.38656 5.57878i 1.30365 1.13876i
\(25\) 0 0
\(26\) 4.47519 0.290385i 0.877657 0.0569493i
\(27\) 8.96105 1.72455
\(28\) 3.65867 3.82285i 0.691423 0.722450i
\(29\) −7.38092 −1.37060 −0.685301 0.728260i \(-0.740329\pi\)
−0.685301 + 0.728260i \(0.740329\pi\)
\(30\) 0 0
\(31\) 2.44599 + 4.23658i 0.439313 + 0.760913i 0.997637 0.0687104i \(-0.0218884\pi\)
−0.558323 + 0.829623i \(0.688555\pi\)
\(32\) −1.80084 5.36255i −0.318347 0.947974i
\(33\) −5.80718 3.35278i −1.01090 0.583643i
\(34\) −2.70447 4.05325i −0.463813 0.695127i
\(35\) 0 0
\(36\) 4.59812 11.0600i 0.766354 1.84333i
\(37\) −5.59689 + 9.69410i −0.920123 + 1.59370i −0.120902 + 0.992664i \(0.538579\pi\)
−0.799222 + 0.601036i \(0.794755\pi\)
\(38\) 2.60230 + 1.28543i 0.422149 + 0.208524i
\(39\) 8.23364 4.75369i 1.31844 0.761200i
\(40\) 0 0
\(41\) 1.46011i 0.228031i −0.993479 0.114016i \(-0.963629\pi\)
0.993479 0.114016i \(-0.0363714\pi\)
\(42\) 3.36501 10.7014i 0.519233 1.65127i
\(43\) 9.95752i 1.51851i 0.650794 + 0.759254i \(0.274436\pi\)
−0.650794 + 0.759254i \(0.725564\pi\)
\(44\) −3.55233 + 2.71844i −0.535534 + 0.409820i
\(45\) 0 0
\(46\) −1.66686 + 3.37451i −0.245766 + 0.497545i
\(47\) 3.06343 5.30601i 0.446847 0.773962i −0.551332 0.834286i \(-0.685880\pi\)
0.998179 + 0.0603243i \(0.0192135\pi\)
\(48\) −8.45786 8.50215i −1.22079 1.22718i
\(49\) 1.49553 6.83838i 0.213647 0.976911i
\(50\) 0 0
\(51\) −8.94615 5.16506i −1.25271 0.723253i
\(52\) −0.819610 6.28900i −0.113659 0.872127i
\(53\) 2.32888 + 4.03374i 0.319897 + 0.554077i 0.980466 0.196688i \(-0.0630185\pi\)
−0.660570 + 0.750765i \(0.729685\pi\)
\(54\) −0.820587 12.6462i −0.111668 1.72094i
\(55\) 0 0
\(56\) −5.73001 4.81321i −0.765705 0.643193i
\(57\) 6.15325 0.815018
\(58\) 0.675891 + 10.4163i 0.0887488 + 1.36773i
\(59\) 3.55938 + 6.16503i 0.463392 + 0.802619i 0.999127 0.0417674i \(-0.0132988\pi\)
−0.535735 + 0.844386i \(0.679965\pi\)
\(60\) 0 0
\(61\) −2.19681 1.26833i −0.281272 0.162393i 0.352727 0.935726i \(-0.385254\pi\)
−0.633999 + 0.773334i \(0.718588\pi\)
\(62\) 5.75488 3.83985i 0.730870 0.487662i
\(63\) −2.43279 15.6572i −0.306503 1.97262i
\(64\) −7.40297 + 3.03249i −0.925371 + 0.379062i
\(65\) 0 0
\(66\) −4.19981 + 8.50238i −0.516961 + 1.04657i
\(67\) −0.0456998 + 0.0263848i −0.00558311 + 0.00322341i −0.502789 0.864409i \(-0.667693\pi\)
0.497206 + 0.867633i \(0.334359\pi\)
\(68\) −5.47248 + 4.18784i −0.663636 + 0.507850i
\(69\) 7.97917i 0.960579i
\(70\) 0 0
\(71\) 0.212347i 0.0252009i −0.999921 0.0126005i \(-0.995989\pi\)
0.999921 0.0126005i \(-0.00401095\pi\)
\(72\) −16.0294 5.47629i −1.88909 0.645387i
\(73\) 12.8816 7.43720i 1.50768 0.870459i 0.507719 0.861523i \(-0.330489\pi\)
0.999960 0.00893589i \(-0.00284442\pi\)
\(74\) 14.1933 + 7.01088i 1.64994 + 0.814998i
\(75\) 0 0
\(76\) 1.57575 3.79020i 0.180751 0.434766i
\(77\) −2.13680 + 5.51813i −0.243511 + 0.628849i
\(78\) −7.46261 11.1844i −0.844974 1.26638i
\(79\) −0.399413 0.230601i −0.0449375 0.0259447i 0.477363 0.878706i \(-0.341593\pi\)
−0.522300 + 0.852762i \(0.674926\pi\)
\(80\) 0 0
\(81\) −4.44995 7.70755i −0.494439 0.856394i
\(82\) −2.06058 + 0.133707i −0.227553 + 0.0147654i
\(83\) 10.9174 1.19834 0.599168 0.800624i \(-0.295498\pi\)
0.599168 + 0.800624i \(0.295498\pi\)
\(84\) −15.4105 3.76890i −1.68142 0.411221i
\(85\) 0 0
\(86\) 14.0525 0.911837i 1.51532 0.0983259i
\(87\) 11.0645 + 19.1643i 1.18624 + 2.05463i
\(88\) 4.16168 + 4.76428i 0.443637 + 0.507874i
\(89\) 6.07992 + 3.51024i 0.644470 + 0.372085i 0.786334 0.617801i \(-0.211976\pi\)
−0.141864 + 0.989886i \(0.545310\pi\)
\(90\) 0 0
\(91\) −5.26080 6.53565i −0.551481 0.685122i
\(92\) 4.91490 + 2.04334i 0.512414 + 0.213033i
\(93\) 7.33344 12.7019i 0.760442 1.31712i
\(94\) −7.76862 3.83736i −0.801272 0.395794i
\(95\) 0 0
\(96\) −11.2241 + 12.7147i −1.14556 + 1.29769i
\(97\) 0.185459i 0.0188305i −0.999956 0.00941523i \(-0.997003\pi\)
0.999956 0.00941523i \(-0.00299701\pi\)
\(98\) −9.78758 1.48435i −0.988695 0.149942i
\(99\) 13.3945i 1.34620i
\(100\) 0 0
\(101\) −5.41172 + 3.12446i −0.538486 + 0.310895i −0.744465 0.667661i \(-0.767295\pi\)
0.205979 + 0.978556i \(0.433962\pi\)
\(102\) −6.46995 + 13.0982i −0.640620 + 1.29691i
\(103\) −5.70918 + 9.88858i −0.562542 + 0.974351i 0.434732 + 0.900560i \(0.356843\pi\)
−0.997274 + 0.0737911i \(0.976490\pi\)
\(104\) −8.80027 + 1.73257i −0.862937 + 0.169893i
\(105\) 0 0
\(106\) 5.47934 3.65601i 0.532201 0.355103i
\(107\) 2.25502 + 1.30194i 0.218001 + 0.125863i 0.605024 0.796207i \(-0.293163\pi\)
−0.387023 + 0.922070i \(0.626497\pi\)
\(108\) −17.7718 + 2.31610i −1.71009 + 0.222867i
\(109\) −0.500946 0.867663i −0.0479819 0.0831071i 0.841037 0.540978i \(-0.181946\pi\)
−0.889019 + 0.457871i \(0.848612\pi\)
\(110\) 0 0
\(111\) 33.5606 3.18543
\(112\) −6.26791 + 8.52721i −0.592262 + 0.805745i
\(113\) −14.8588 −1.39780 −0.698899 0.715220i \(-0.746326\pi\)
−0.698899 + 0.715220i \(0.746326\pi\)
\(114\) −0.563470 8.68375i −0.0527738 0.813307i
\(115\) 0 0
\(116\) 14.6381 1.90770i 1.35911 0.177125i
\(117\) −16.4469 9.49562i −1.52052 0.877870i
\(118\) 8.37443 5.58771i 0.770929 0.514391i
\(119\) −3.29182 + 8.50085i −0.301760 + 0.779272i
\(120\) 0 0
\(121\) −2.99888 + 5.19421i −0.272626 + 0.472201i
\(122\) −1.58875 + 3.21638i −0.143839 + 0.291197i
\(123\) −3.79114 + 2.18882i −0.341836 + 0.197359i
\(124\) −5.94597 7.76992i −0.533963 0.697759i
\(125\) 0 0
\(126\) −21.8733 + 4.86704i −1.94863 + 0.433590i
\(127\) 3.02360i 0.268301i −0.990961 0.134151i \(-0.957169\pi\)
0.990961 0.134151i \(-0.0428306\pi\)
\(128\) 4.95750 + 10.1697i 0.438186 + 0.898885i
\(129\) 25.8544 14.9270i 2.27635 1.31425i
\(130\) 0 0
\(131\) −7.85267 + 13.6012i −0.686091 + 1.18834i 0.287002 + 0.957930i \(0.407341\pi\)
−0.973093 + 0.230414i \(0.925992\pi\)
\(132\) 12.3835 + 5.14838i 1.07785 + 0.448109i
\(133\) −0.833705 5.36563i −0.0722914 0.465259i
\(134\) 0.0414202 + 0.0620775i 0.00357816 + 0.00536268i
\(135\) 0 0
\(136\) 6.41120 + 7.33952i 0.549756 + 0.629359i
\(137\) 4.80718 + 8.32628i 0.410705 + 0.711362i 0.994967 0.100203i \(-0.0319493\pi\)
−0.584262 + 0.811565i \(0.698616\pi\)
\(138\) 11.2606 0.730674i 0.958563 0.0621991i
\(139\) 7.49745 0.635925 0.317963 0.948103i \(-0.397001\pi\)
0.317963 + 0.948103i \(0.397001\pi\)
\(140\) 0 0
\(141\) −18.3692 −1.54697
\(142\) −0.299673 + 0.0194451i −0.0251480 + 0.00163180i
\(143\) 3.54618 + 6.14217i 0.296547 + 0.513634i
\(144\) −6.26053 + 23.1229i −0.521711 + 1.92691i
\(145\) 0 0
\(146\) −11.6753 17.4981i −0.966257 1.44815i
\(147\) −19.9975 + 6.36813i −1.64937 + 0.525234i
\(148\) 8.59435 20.6722i 0.706451 1.69925i
\(149\) −3.25066 + 5.63031i −0.266305 + 0.461253i −0.967905 0.251318i \(-0.919136\pi\)
0.701600 + 0.712571i \(0.252469\pi\)
\(150\) 0 0
\(151\) −20.5029 + 11.8373i −1.66850 + 0.963309i −0.700052 + 0.714092i \(0.746840\pi\)
−0.968448 + 0.249217i \(0.919827\pi\)
\(152\) −5.49320 1.87670i −0.445557 0.152220i
\(153\) 20.6347i 1.66821i
\(154\) 7.98311 + 2.51025i 0.643297 + 0.202281i
\(155\) 0 0
\(156\) −15.1005 + 11.5558i −1.20901 + 0.925201i
\(157\) −6.78313 + 3.91624i −0.541353 + 0.312550i −0.745627 0.666363i \(-0.767850\pi\)
0.204274 + 0.978914i \(0.434517\pi\)
\(158\) −0.288860 + 0.584787i −0.0229805 + 0.0465232i
\(159\) 6.98233 12.0937i 0.553734 0.959096i
\(160\) 0 0
\(161\) 6.95783 1.08110i 0.548354 0.0852026i
\(162\) −10.4697 + 6.98578i −0.822581 + 0.548855i
\(163\) −9.39774 5.42579i −0.736088 0.424980i 0.0845574 0.996419i \(-0.473052\pi\)
−0.820645 + 0.571438i \(0.806386\pi\)
\(164\) 0.377386 + 2.89574i 0.0294689 + 0.226119i
\(165\) 0 0
\(166\) −0.999731 15.4071i −0.0775942 1.19582i
\(167\) −11.7476 −0.909058 −0.454529 0.890732i \(-0.650192\pi\)
−0.454529 + 0.890732i \(0.650192\pi\)
\(168\) −3.90766 + 22.0931i −0.301483 + 1.70452i
\(169\) 2.94418 0.226476
\(170\) 0 0
\(171\) −6.14563 10.6445i −0.469968 0.814009i
\(172\) −2.57365 19.7480i −0.196239 1.50577i
\(173\) 14.2785 + 8.24371i 1.08558 + 0.626758i 0.932395 0.361440i \(-0.117715\pi\)
0.153181 + 0.988198i \(0.451048\pi\)
\(174\) 26.0324 17.3697i 1.97351 1.31679i
\(175\) 0 0
\(176\) 6.34247 6.30943i 0.478082 0.475591i
\(177\) 10.6715 18.4836i 0.802122 1.38932i
\(178\) 4.39706 8.90170i 0.329574 0.667211i
\(179\) 7.88914 4.55480i 0.589662 0.340441i −0.175302 0.984515i \(-0.556090\pi\)
0.764964 + 0.644073i \(0.222757\pi\)
\(180\) 0 0
\(181\) 16.5755i 1.23205i 0.787728 + 0.616023i \(0.211257\pi\)
−0.787728 + 0.616023i \(0.788743\pi\)
\(182\) −8.74166 + 8.02276i −0.647975 + 0.594687i
\(183\) 7.60525i 0.562196i
\(184\) 2.43359 7.12325i 0.179406 0.525133i
\(185\) 0 0
\(186\) −18.5970 9.18614i −1.36360 0.673560i
\(187\) 3.85305 6.67369i 0.281763 0.488028i
\(188\) −4.70407 + 11.3148i −0.343080 + 0.825218i
\(189\) −18.4688 + 14.8663i −1.34341 + 1.08136i
\(190\) 0 0
\(191\) 2.59197 + 1.49648i 0.187549 + 0.108281i 0.590834 0.806793i \(-0.298799\pi\)
−0.403286 + 0.915074i \(0.632132\pi\)
\(192\) 18.9714 + 14.6757i 1.36914 + 1.05912i
\(193\) −7.35442 12.7382i −0.529383 0.916918i −0.999413 0.0342676i \(-0.989090\pi\)
0.470030 0.882651i \(-0.344243\pi\)
\(194\) −0.261728 + 0.0169829i −0.0187909 + 0.00121930i
\(195\) 0 0
\(196\) −1.19851 + 13.9486i −0.0856075 + 0.996329i
\(197\) −4.81748 −0.343231 −0.171616 0.985164i \(-0.554899\pi\)
−0.171616 + 0.985164i \(0.554899\pi\)
\(198\) 18.9029 1.22657i 1.34337 0.0871686i
\(199\) 0.637180 + 1.10363i 0.0451685 + 0.0782342i 0.887726 0.460373i \(-0.152284\pi\)
−0.842557 + 0.538607i \(0.818951\pi\)
\(200\) 0 0
\(201\) 0.137014 + 0.0791053i 0.00966425 + 0.00557966i
\(202\) 4.90494 + 7.35115i 0.345110 + 0.517225i
\(203\) 15.2122 12.2448i 1.06768 0.859420i
\(204\) 19.0772 + 7.93125i 1.33567 + 0.555298i
\(205\) 0 0
\(206\) 14.4780 + 7.15153i 1.00873 + 0.498270i
\(207\) 13.8032 7.96929i 0.959390 0.553904i
\(208\) 3.25095 + 12.2607i 0.225413 + 0.850126i
\(209\) 4.59023i 0.317513i
\(210\) 0 0
\(211\) 3.70986i 0.255397i 0.991813 + 0.127698i \(0.0407590\pi\)
−0.991813 + 0.127698i \(0.959241\pi\)
\(212\) −5.66128 7.39791i −0.388818 0.508090i
\(213\) −0.551351 + 0.318323i −0.0377780 + 0.0218111i
\(214\) 1.63085 3.30161i 0.111483 0.225693i
\(215\) 0 0
\(216\) 4.89600 + 24.8683i 0.333131 + 1.69207i
\(217\) −12.0697 4.67378i −0.819342 0.317277i
\(218\) −1.17861 + 0.786412i −0.0798258 + 0.0532625i
\(219\) −38.6209 22.2978i −2.60976 1.50675i
\(220\) 0 0
\(221\) 5.46301 + 9.46220i 0.367482 + 0.636497i
\(222\) −3.07323 47.3622i −0.206262 3.17874i
\(223\) −12.9581 −0.867737 −0.433869 0.900976i \(-0.642852\pi\)
−0.433869 + 0.900976i \(0.642852\pi\)
\(224\) 12.6080 + 8.06471i 0.842404 + 0.538846i
\(225\) 0 0
\(226\) 1.36066 + 20.9694i 0.0905098 + 1.39487i
\(227\) −4.44626 7.70115i −0.295109 0.511143i 0.679901 0.733304i \(-0.262023\pi\)
−0.975010 + 0.222160i \(0.928689\pi\)
\(228\) −12.2033 + 1.59039i −0.808183 + 0.105326i
\(229\) −11.2113 6.47287i −0.740866 0.427739i 0.0815180 0.996672i \(-0.474023\pi\)
−0.822384 + 0.568933i \(0.807357\pi\)
\(230\) 0 0
\(231\) 17.5309 2.72392i 1.15345 0.179221i
\(232\) −4.03267 20.4832i −0.264758 1.34479i
\(233\) −7.60809 + 13.1776i −0.498423 + 0.863294i −0.999998 0.00182020i \(-0.999421\pi\)
0.501576 + 0.865114i \(0.332754\pi\)
\(234\) −11.8946 + 24.0801i −0.777572 + 1.57417i
\(235\) 0 0
\(236\) −8.65250 11.3067i −0.563230 0.736003i
\(237\) 1.38275i 0.0898194i
\(238\) 12.2982 + 3.86712i 0.797176 + 0.250668i
\(239\) 0.0438513i 0.00283650i −0.999999 0.00141825i \(-0.999549\pi\)
0.999999 0.00141825i \(-0.000451444\pi\)
\(240\) 0 0
\(241\) 1.99236 1.15029i 0.128339 0.0740968i −0.434456 0.900693i \(-0.643059\pi\)
0.562795 + 0.826596i \(0.309726\pi\)
\(242\) 7.60493 + 3.75651i 0.488863 + 0.241478i
\(243\) 0.0999675 0.173149i 0.00641292 0.0111075i
\(244\) 4.68458 + 1.94759i 0.299900 + 0.124682i
\(245\) 0 0
\(246\) 3.43612 + 5.14979i 0.219079 + 0.328339i
\(247\) −5.63627 3.25410i −0.358627 0.207053i
\(248\) −10.4208 + 9.10273i −0.661720 + 0.578024i
\(249\) −16.3659 28.3466i −1.03715 1.79639i
\(250\) 0 0
\(251\) −6.32409 −0.399173 −0.199587 0.979880i \(-0.563960\pi\)
−0.199587 + 0.979880i \(0.563960\pi\)
\(252\) 8.87159 + 30.4230i 0.558857 + 1.91647i
\(253\) −5.95233 −0.374220
\(254\) −4.26704 + 0.276879i −0.267738 + 0.0173729i
\(255\) 0 0
\(256\) 13.8980 7.92752i 0.868625 0.495470i
\(257\) 12.3334 + 7.12068i 0.769335 + 0.444176i 0.832637 0.553819i \(-0.186830\pi\)
−0.0633025 + 0.997994i \(0.520163\pi\)
\(258\) −23.4333 35.1200i −1.45889 2.18648i
\(259\) −4.54713 29.2648i −0.282545 1.81843i
\(260\) 0 0
\(261\) 22.1017 38.2812i 1.36806 2.36955i
\(262\) 19.9138 + 9.83654i 1.23028 + 0.607704i
\(263\) 10.1744 5.87421i 0.627382 0.362219i −0.152355 0.988326i \(-0.548686\pi\)
0.779738 + 0.626107i \(0.215353\pi\)
\(264\) 6.13164 17.9477i 0.377376 1.10460i
\(265\) 0 0
\(266\) −7.49588 + 1.66791i −0.459602 + 0.102266i
\(267\) 21.0484i 1.28814i
\(268\) 0.0838136 0.0641387i 0.00511973 0.00391790i
\(269\) −7.35196 + 4.24466i −0.448257 + 0.258801i −0.707094 0.707120i \(-0.749994\pi\)
0.258837 + 0.965921i \(0.416661\pi\)
\(270\) 0 0
\(271\) 3.98686 6.90544i 0.242184 0.419476i −0.719152 0.694853i \(-0.755469\pi\)
0.961336 + 0.275377i \(0.0888028\pi\)
\(272\) 9.77078 9.71988i 0.592440 0.589354i
\(273\) −9.08330 + 23.4569i −0.549746 + 1.41968i
\(274\) 11.3102 7.54657i 0.683275 0.455905i
\(275\) 0 0
\(276\) −2.06232 15.8245i −0.124137 0.952524i
\(277\) −6.79754 11.7737i −0.408425 0.707412i 0.586289 0.810102i \(-0.300588\pi\)
−0.994713 + 0.102690i \(0.967255\pi\)
\(278\) −0.686562 10.5807i −0.0411772 0.634591i
\(279\) −29.2974 −1.75399
\(280\) 0 0
\(281\) 9.48286 0.565700 0.282850 0.959164i \(-0.408720\pi\)
0.282850 + 0.959164i \(0.408720\pi\)
\(282\) 1.68212 + 25.9235i 0.100169 + 1.54372i
\(283\) −10.7746 18.6621i −0.640483 1.10935i −0.985325 0.170689i \(-0.945401\pi\)
0.344842 0.938661i \(-0.387933\pi\)
\(284\) 0.0548838 + 0.421132i 0.00325675 + 0.0249896i
\(285\) 0 0
\(286\) 8.34337 5.56699i 0.493354 0.329183i
\(287\) 2.42231 + 3.00931i 0.142984 + 0.177634i
\(288\) 33.2054 + 6.71772i 1.95665 + 0.395845i
\(289\) −2.56424 + 4.44140i −0.150838 + 0.261259i
\(290\) 0 0
\(291\) −0.481537 + 0.278016i −0.0282282 + 0.0162976i
\(292\) −23.6249 + 18.0791i −1.38255 + 1.05800i
\(293\) 28.9496i 1.69125i 0.533776 + 0.845626i \(0.320773\pi\)
−0.533776 + 0.845626i \(0.679227\pi\)
\(294\) 10.8182 + 27.6383i 0.630931 + 1.61190i
\(295\) 0 0
\(296\) −29.9606 10.2357i −1.74142 0.594940i
\(297\) 17.3569 10.0210i 1.00715 0.581477i
\(298\) 8.24342 + 4.07190i 0.477529 + 0.235879i
\(299\) 4.21972 7.30877i 0.244033 0.422677i
\(300\) 0 0
\(301\) −16.5194 20.5226i −0.952162 1.18290i
\(302\) 18.5829 + 27.8506i 1.06933 + 1.60262i
\(303\) 16.2251 + 9.36757i 0.932108 + 0.538153i
\(304\) −2.14545 + 7.92411i −0.123050 + 0.454479i
\(305\) 0 0
\(306\) 29.1206 1.88957i 1.66471 0.108020i
\(307\) −8.00589 −0.456920 −0.228460 0.973553i \(-0.573369\pi\)
−0.228460 + 0.973553i \(0.573369\pi\)
\(308\) 2.81154 11.4960i 0.160202 0.655045i
\(309\) 34.2339 1.94750
\(310\) 0 0
\(311\) −6.87633 11.9101i −0.389921 0.675363i 0.602518 0.798105i \(-0.294164\pi\)
−0.992438 + 0.122743i \(0.960831\pi\)
\(312\) 17.6908 + 20.2524i 1.00154 + 1.14656i
\(313\) −9.21091 5.31792i −0.520631 0.300587i 0.216562 0.976269i \(-0.430516\pi\)
−0.737193 + 0.675682i \(0.763849\pi\)
\(314\) 6.14793 + 9.21404i 0.346948 + 0.519979i
\(315\) 0 0
\(316\) 0.851730 + 0.354102i 0.0479136 + 0.0199198i
\(317\) −8.49175 + 14.7081i −0.476944 + 0.826091i −0.999651 0.0264211i \(-0.991589\pi\)
0.522707 + 0.852513i \(0.324922\pi\)
\(318\) −17.7066 8.74632i −0.992939 0.490469i
\(319\) −14.2963 + 8.25397i −0.800439 + 0.462133i
\(320\) 0 0
\(321\) 7.80679i 0.435732i
\(322\) −2.16284 9.72021i −0.120531 0.541686i
\(323\) 7.07140i 0.393463i
\(324\) 10.8174 + 14.1357i 0.600966 + 0.785316i
\(325\) 0 0
\(326\) −6.79654 + 13.7594i −0.376426 + 0.762061i
\(327\) −1.50191 + 2.60138i −0.0830557 + 0.143857i
\(328\) 4.05204 0.797755i 0.223737 0.0440486i
\(329\) 2.48885 + 16.0179i 0.137215 + 0.883097i
\(330\) 0 0
\(331\) −7.21415 4.16509i −0.396525 0.228934i 0.288458 0.957492i \(-0.406857\pi\)
−0.684984 + 0.728558i \(0.740191\pi\)
\(332\) −21.6516 + 2.82173i −1.18829 + 0.154863i
\(333\) −33.5190 58.0567i −1.83683 3.18149i
\(334\) 1.07576 + 16.5788i 0.0588630 + 0.907150i
\(335\) 0 0
\(336\) 31.5367 + 3.49154i 1.72047 + 0.190479i
\(337\) 27.0772 1.47499 0.737495 0.675353i \(-0.236009\pi\)
0.737495 + 0.675353i \(0.236009\pi\)
\(338\) −0.269607 4.15496i −0.0146647 0.226000i
\(339\) 22.2744 + 38.5804i 1.20978 + 2.09540i
\(340\) 0 0
\(341\) 9.47541 + 5.47063i 0.513122 + 0.296251i
\(342\) −14.4593 + 9.64775i −0.781870 + 0.521690i
\(343\) 8.26248 + 16.5750i 0.446132 + 0.894967i
\(344\) −27.6337 + 5.44044i −1.48991 + 0.293329i
\(345\) 0 0
\(346\) 10.3264 20.9054i 0.555150 1.12388i
\(347\) −24.0514 + 13.8861i −1.29115 + 0.745443i −0.978857 0.204544i \(-0.934429\pi\)
−0.312288 + 0.949987i \(0.601095\pi\)
\(348\) −26.8968 35.1475i −1.44182 1.88410i
\(349\) 9.64063i 0.516051i −0.966138 0.258026i \(-0.916928\pi\)
0.966138 0.258026i \(-0.0830719\pi\)
\(350\) 0 0
\(351\) 28.4163i 1.51675i
\(352\) −9.48495 8.37301i −0.505550 0.446283i
\(353\) 14.1283 8.15697i 0.751973 0.434152i −0.0744333 0.997226i \(-0.523715\pi\)
0.826406 + 0.563074i \(0.190381\pi\)
\(354\) −27.0622 13.3676i −1.43834 0.710478i
\(355\) 0 0
\(356\) −12.9651 5.39018i −0.687151 0.285679i
\(357\) 27.0069 4.19629i 1.42936 0.222091i
\(358\) −7.15037 10.7164i −0.377909 0.566380i
\(359\) −1.38744 0.801040i −0.0732264 0.0422773i 0.462940 0.886390i \(-0.346795\pi\)
−0.536166 + 0.844112i \(0.680128\pi\)
\(360\) 0 0
\(361\) 7.39392 + 12.8067i 0.389154 + 0.674034i
\(362\) 23.3921 1.51786i 1.22946 0.0797771i
\(363\) 17.9822 0.943818
\(364\) 12.1226 + 11.6020i 0.635396 + 0.608108i
\(365\) 0 0
\(366\) 10.7329 0.696433i 0.561016 0.0364031i
\(367\) −0.630259 1.09164i −0.0328993 0.0569832i 0.849107 0.528221i \(-0.177141\pi\)
−0.882006 + 0.471238i \(0.843807\pi\)
\(368\) −10.2755 2.78209i −0.535648 0.145027i
\(369\) 7.57289 + 4.37221i 0.394229 + 0.227608i
\(370\) 0 0
\(371\) −11.4918 4.45000i −0.596623 0.231033i
\(372\) −11.2609 + 27.0862i −0.583851 + 1.40435i
\(373\) 4.61372 7.99120i 0.238889 0.413768i −0.721507 0.692408i \(-0.756550\pi\)
0.960396 + 0.278639i \(0.0898833\pi\)
\(374\) −9.77105 4.82648i −0.505249 0.249571i
\(375\) 0 0
\(376\) 16.3988 + 5.60247i 0.845702 + 0.288925i
\(377\) 23.4056i 1.20545i
\(378\) 22.6712 + 24.7027i 1.16608 + 1.27057i
\(379\) 2.53516i 0.130223i 0.997878 + 0.0651113i \(0.0207403\pi\)
−0.997878 + 0.0651113i \(0.979260\pi\)
\(380\) 0 0
\(381\) −7.85068 + 4.53259i −0.402203 + 0.232212i
\(382\) 1.87454 3.79495i 0.0959099 0.194166i
\(383\) −0.662435 + 1.14737i −0.0338489 + 0.0586279i −0.882454 0.470400i \(-0.844110\pi\)
0.848605 + 0.529027i \(0.177443\pi\)
\(384\) 18.9737 28.1171i 0.968248 1.43485i
\(385\) 0 0
\(386\) −17.3033 + 11.5454i −0.880715 + 0.587644i
\(387\) −51.6448 29.8171i −2.62525 1.51569i
\(388\) 0.0479342 + 0.367807i 0.00243349 + 0.0186726i
\(389\) −16.1134 27.9093i −0.816983 1.41506i −0.907895 0.419197i \(-0.862312\pi\)
0.0909120 0.995859i \(-0.471022\pi\)
\(390\) 0 0
\(391\) −9.16976 −0.463735
\(392\) 19.7947 + 0.414074i 0.999781 + 0.0209139i
\(393\) 47.0869 2.37522
\(394\) 0.441150 + 6.79865i 0.0222248 + 0.342511i
\(395\) 0 0
\(396\) −3.46199 26.5644i −0.173971 1.33491i
\(397\) 30.4617 + 17.5871i 1.52883 + 0.882670i 0.999411 + 0.0343095i \(0.0109232\pi\)
0.529419 + 0.848361i \(0.322410\pi\)
\(398\) 1.49914 1.00028i 0.0751452 0.0501395i
\(399\) −12.6819 + 10.2082i −0.634890 + 0.511047i
\(400\) 0 0
\(401\) −15.9623 + 27.6476i −0.797120 + 1.38065i 0.124364 + 0.992237i \(0.460311\pi\)
−0.921484 + 0.388416i \(0.873022\pi\)
\(402\) 0.0990903 0.200605i 0.00494217 0.0100053i
\(403\) −13.4346 + 7.75647i −0.669225 + 0.386377i
\(404\) 9.92512 7.59524i 0.493793 0.377877i
\(405\) 0 0
\(406\) −18.6735 20.3468i −0.926751 1.00979i
\(407\) 25.0357i 1.24097i
\(408\) 9.44599 27.6490i 0.467646 1.36883i
\(409\) 14.2151 8.20712i 0.702894 0.405816i −0.105530 0.994416i \(-0.533654\pi\)
0.808424 + 0.588600i \(0.200321\pi\)
\(410\) 0 0
\(411\) 14.4126 24.9634i 0.710922 1.23135i
\(412\) 8.76677 21.0869i 0.431908 1.03888i
\(413\) −17.5636 6.80123i −0.864250 0.334666i
\(414\) −12.5106 18.7500i −0.614864 0.921510i
\(415\) 0 0
\(416\) 17.0051 5.71063i 0.833746 0.279987i
\(417\) −11.2392 19.4669i −0.550387 0.953298i
\(418\) 6.47794 0.420340i 0.316846 0.0205595i
\(419\) 11.8654 0.579665 0.289832 0.957077i \(-0.406400\pi\)
0.289832 + 0.957077i \(0.406400\pi\)
\(420\) 0 0
\(421\) 10.3433 0.504101 0.252051 0.967714i \(-0.418895\pi\)
0.252051 + 0.967714i \(0.418895\pi\)
\(422\) 5.23552 0.339721i 0.254861 0.0165374i
\(423\) 18.3465 + 31.7770i 0.892035 + 1.54505i
\(424\) −9.92185 + 8.66691i −0.481847 + 0.420902i
\(425\) 0 0
\(426\) 0.499720 + 0.748942i 0.0242115 + 0.0362864i
\(427\) 6.63178 1.03044i 0.320934 0.0498663i
\(428\) −4.80873 1.99920i −0.232439 0.0966349i
\(429\) 10.6320 18.4151i 0.513316 0.889089i
\(430\) 0 0
\(431\) 25.6838 14.8286i 1.23715 0.714267i 0.268636 0.963242i \(-0.413427\pi\)
0.968510 + 0.248975i \(0.0800937\pi\)
\(432\) 34.6469 9.18671i 1.66695 0.441996i
\(433\) 29.4107i 1.41339i −0.707520 0.706693i \(-0.750186\pi\)
0.707520 0.706693i \(-0.249814\pi\)
\(434\) −5.49059 + 17.4612i −0.263557 + 0.838166i
\(435\) 0 0
\(436\) 1.21775 + 1.59130i 0.0583196 + 0.0762094i
\(437\) 4.73029 2.73103i 0.226280 0.130643i
\(438\) −27.9311 + 56.5455i −1.33460 + 2.70185i
\(439\) −4.41191 + 7.64165i −0.210569 + 0.364716i −0.951893 0.306432i \(-0.900865\pi\)
0.741324 + 0.671147i \(0.234198\pi\)
\(440\) 0 0
\(441\) 30.9890 + 28.2336i 1.47567 + 1.34446i
\(442\) 12.8532 8.57612i 0.611366 0.407925i
\(443\) −16.9454 9.78342i −0.805099 0.464824i 0.0401518 0.999194i \(-0.487216\pi\)
−0.845251 + 0.534369i \(0.820549\pi\)
\(444\) −66.5583 + 8.67417i −3.15872 + 0.411658i
\(445\) 0 0
\(446\) 1.18661 + 18.2870i 0.0561874 + 0.865916i
\(447\) 19.4919 0.921935
\(448\) 10.2267 18.5314i 0.483168 0.875528i
\(449\) 5.02309 0.237054 0.118527 0.992951i \(-0.462183\pi\)
0.118527 + 0.992951i \(0.462183\pi\)
\(450\) 0 0
\(451\) −1.63282 2.82813i −0.0768866 0.133171i
\(452\) 29.4684 3.84045i 1.38608 0.180640i
\(453\) 61.4705 + 35.4900i 2.88814 + 1.66747i
\(454\) −10.4611 + 6.97998i −0.490962 + 0.327587i
\(455\) 0 0
\(456\) 3.36192 + 17.0762i 0.157436 + 0.799667i
\(457\) −13.9225 + 24.1144i −0.651265 + 1.12802i 0.331551 + 0.943437i \(0.392428\pi\)
−0.982816 + 0.184587i \(0.940905\pi\)
\(458\) −8.10816 + 16.4147i −0.378869 + 0.767008i
\(459\) 26.7388 15.4377i 1.24806 0.720569i
\(460\) 0 0
\(461\) 19.8494i 0.924481i −0.886755 0.462240i \(-0.847046\pi\)
0.886755 0.462240i \(-0.152954\pi\)
\(462\) −5.44948 24.4909i −0.253533 1.13942i
\(463\) 35.7118i 1.65967i −0.558012 0.829833i \(-0.688436\pi\)
0.558012 0.829833i \(-0.311564\pi\)
\(464\) −28.5375 + 7.56680i −1.32482 + 0.351280i
\(465\) 0 0
\(466\) 19.2935 + 9.53018i 0.893756 + 0.441477i
\(467\) 11.3055 19.5818i 0.523158 0.906136i −0.476479 0.879186i \(-0.658087\pi\)
0.999637 0.0269503i \(-0.00857959\pi\)
\(468\) 35.0722 + 14.5811i 1.62121 + 0.674010i
\(469\) 0.0504157 0.130195i 0.00232798 0.00601183i
\(470\) 0 0
\(471\) 20.3368 + 11.7415i 0.937070 + 0.541018i
\(472\) −15.1642 + 13.2462i −0.697989 + 0.609705i
\(473\) 11.1353 + 19.2870i 0.512003 + 0.886816i
\(474\) 1.95140 0.126622i 0.0896309 0.00581596i
\(475\) 0 0
\(476\) 4.33127 17.7100i 0.198523 0.811734i
\(477\) −27.8947 −1.27721
\(478\) −0.0618849 + 0.00401558i −0.00283055 + 0.000183668i
\(479\) 4.28200 + 7.41664i 0.195649 + 0.338875i 0.947113 0.320900i \(-0.103985\pi\)
−0.751464 + 0.659774i \(0.770652\pi\)
\(480\) 0 0
\(481\) −30.7409 17.7483i −1.40166 0.809251i
\(482\) −1.80579 2.70638i −0.0822515 0.123272i
\(483\) −13.2373 16.4451i −0.602319 0.748280i
\(484\) 4.60495 11.0764i 0.209316 0.503473i
\(485\) 0 0
\(486\) −0.253510 0.125223i −0.0114994 0.00568023i
\(487\) 27.4054 15.8225i 1.24186 0.716987i 0.272386 0.962188i \(-0.412187\pi\)
0.969472 + 0.245201i \(0.0788539\pi\)
\(488\) 2.31955 6.78945i 0.105001 0.307344i
\(489\) 32.5346i 1.47126i
\(490\) 0 0
\(491\) 35.7781i 1.61464i −0.590113 0.807321i \(-0.700917\pi\)
0.590113 0.807321i \(-0.299083\pi\)
\(492\) 6.95297 5.32079i 0.313464 0.239880i
\(493\) −22.0239 + 12.7155i −0.991906 + 0.572677i
\(494\) −4.07621 + 8.25214i −0.183397 + 0.371281i
\(495\) 0 0
\(496\) 13.8004 + 13.8727i 0.619658 + 0.622903i
\(497\) 0.352280 + 0.437649i 0.0158019 + 0.0196312i
\(498\) −38.5053 + 25.6921i −1.72546 + 1.15129i
\(499\) 35.7797 + 20.6574i 1.60172 + 0.924752i 0.991144 + 0.132793i \(0.0423947\pi\)
0.610574 + 0.791959i \(0.290939\pi\)
\(500\) 0 0
\(501\) 17.6105 + 30.5023i 0.786780 + 1.36274i
\(502\) 0.579114 + 8.92485i 0.0258471 + 0.398336i
\(503\) −29.0170 −1.29381 −0.646903 0.762572i \(-0.723936\pi\)
−0.646903 + 0.762572i \(0.723936\pi\)
\(504\) 42.1219 15.3059i 1.87626 0.681779i
\(505\) 0 0
\(506\) 0.545071 + 8.40021i 0.0242314 + 0.373435i
\(507\) −4.41354 7.64448i −0.196012 0.339503i
\(508\) 0.781489 + 5.99649i 0.0346730 + 0.266051i
\(509\) 17.3474 + 10.0155i 0.768910 + 0.443931i 0.832486 0.554046i \(-0.186917\pi\)
−0.0635754 + 0.997977i \(0.520250\pi\)
\(510\) 0 0
\(511\) −14.2109 + 36.6986i −0.628654 + 1.62345i
\(512\) −12.4604 18.8875i −0.550675 0.834720i
\(513\) −9.19562 + 15.9273i −0.405996 + 0.703206i
\(514\) 8.91962 18.0575i 0.393428 0.796481i
\(515\) 0 0
\(516\) −47.4171 + 36.2861i −2.08742 + 1.59741i
\(517\) 13.7031i 0.602663i
\(518\) −40.8835 + 9.09698i −1.79632 + 0.399698i
\(519\) 49.4317i 2.16981i
\(520\) 0 0
\(521\) 18.5712 10.7221i 0.813620 0.469743i −0.0345917 0.999402i \(-0.511013\pi\)
0.848211 + 0.529658i \(0.177680\pi\)
\(522\) −56.0481 27.6854i −2.45316 1.21176i
\(523\) −20.5020 + 35.5105i −0.896491 + 1.55277i −0.0645418 + 0.997915i \(0.520559\pi\)
−0.831949 + 0.554852i \(0.812775\pi\)
\(524\) 12.0582 29.0040i 0.526766 1.26704i
\(525\) 0 0
\(526\) −9.22165 13.8207i −0.402083 0.602611i
\(527\) 14.5972 + 8.42768i 0.635863 + 0.367116i
\(528\) −25.8901 7.00973i −1.12672 0.305059i
\(529\) −7.95856 13.7846i −0.346024 0.599332i
\(530\) 0 0
\(531\) −42.6333 −1.85013
\(532\) 3.04025 + 10.4258i 0.131811 + 0.452016i
\(533\) 4.63015 0.200554
\(534\) −29.7045 + 1.92746i −1.28544 + 0.0834094i
\(535\) 0 0
\(536\) −0.0981906 0.112408i −0.00424119 0.00485530i
\(537\) −23.6528 13.6559i −1.02069 0.589297i
\(538\) 6.66349 + 9.98673i 0.287284 + 0.430559i
\(539\) −4.75052 14.9178i −0.204620 0.642557i
\(540\) 0 0
\(541\) −1.72641 + 2.99023i −0.0742242 + 0.128560i −0.900749 0.434341i \(-0.856981\pi\)
0.826524 + 0.562901i \(0.190315\pi\)
\(542\) −10.1104 4.99409i −0.434277 0.214514i
\(543\) 43.0377 24.8479i 1.84693 1.06632i
\(544\) −14.6119 12.8989i −0.626479 0.553035i
\(545\) 0 0
\(546\) 33.9352 + 10.6708i 1.45229 + 0.456666i
\(547\) 28.2607i 1.20834i 0.796855 + 0.604170i \(0.206495\pi\)
−0.796855 + 0.604170i \(0.793505\pi\)
\(548\) −11.6858 15.2704i −0.499191 0.652321i
\(549\) 13.1564 7.59584i 0.561500 0.324182i
\(550\) 0 0
\(551\) 7.57413 13.1188i 0.322669 0.558879i
\(552\) −22.1434 + 4.35953i −0.942487 + 0.185554i
\(553\) 1.20576 0.187349i 0.0512741 0.00796691i
\(554\) −15.9931 + 10.6711i −0.679481 + 0.453374i
\(555\) 0 0
\(556\) −14.8692 + 1.93781i −0.630593 + 0.0821816i
\(557\) 1.03826 + 1.79833i 0.0439927 + 0.0761976i 0.887183 0.461417i \(-0.152659\pi\)
−0.843191 + 0.537615i \(0.819326\pi\)
\(558\) 2.68285 + 41.3459i 0.113574 + 1.75031i
\(559\) −31.5762 −1.33553
\(560\) 0 0
\(561\) −23.1040 −0.975453
\(562\) −0.868371 13.3826i −0.0366300 0.564513i
\(563\) 22.9547 + 39.7588i 0.967426 + 1.67563i 0.702949 + 0.711240i \(0.251866\pi\)
0.264477 + 0.964392i \(0.414801\pi\)
\(564\) 36.4303 4.74776i 1.53399 0.199917i
\(565\) 0 0
\(566\) −25.3502 + 16.9145i −1.06555 + 0.710971i
\(567\) 21.9581 + 8.50292i 0.922154 + 0.357089i
\(568\) 0.589295 0.116019i 0.0247263 0.00486803i
\(569\) −3.96413 + 6.86607i −0.166185 + 0.287840i −0.937075 0.349127i \(-0.886478\pi\)
0.770891 + 0.636968i \(0.219811\pi\)
\(570\) 0 0
\(571\) −18.3314 + 10.5837i −0.767147 + 0.442912i −0.831856 0.554992i \(-0.812721\pi\)
0.0647092 + 0.997904i \(0.479388\pi\)
\(572\) −8.62041 11.2648i −0.360438 0.471003i
\(573\) 8.97330i 0.374865i
\(574\) 4.02506 3.69404i 0.168003 0.154186i
\(575\) 0 0
\(576\) 6.43964 47.4762i 0.268318 1.97817i
\(577\) −8.94731 + 5.16573i −0.372481 + 0.215052i −0.674542 0.738237i \(-0.735659\pi\)
0.302061 + 0.953289i \(0.402325\pi\)
\(578\) 6.50272 + 3.21207i 0.270478 + 0.133604i
\(579\) −22.0496 + 38.1911i −0.916351 + 1.58717i
\(580\) 0 0
\(581\) −22.5008 + 18.1117i −0.933490 + 0.751402i
\(582\) 0.436444 + 0.654109i 0.0180912 + 0.0271137i
\(583\) 9.02174 + 5.20871i 0.373642 + 0.215723i
\(584\) 27.6774 + 31.6851i 1.14530 + 1.31114i
\(585\) 0 0
\(586\) 40.8550 2.65099i 1.68770 0.109511i
\(587\) −20.4660 −0.844722 −0.422361 0.906428i \(-0.638799\pi\)
−0.422361 + 0.906428i \(0.638799\pi\)
\(588\) 38.0138 17.7981i 1.56766 0.733980i
\(589\) −10.0401 −0.413694
\(590\) 0 0
\(591\) 7.22175 + 12.5084i 0.297063 + 0.514529i
\(592\) −11.7016 + 43.2191i −0.480931 + 1.77629i
\(593\) −38.8389 22.4236i −1.59492 0.920828i −0.992445 0.122692i \(-0.960847\pi\)
−0.602477 0.798136i \(-0.705819\pi\)
\(594\) −15.7315 23.5772i −0.645471 0.967383i
\(595\) 0 0
\(596\) 4.99158 12.0064i 0.204463 0.491800i
\(597\) 1.91036 3.30884i 0.0781857 0.135422i
\(598\) −10.7009 5.28578i −0.437592 0.216152i
\(599\) 14.1499 8.16942i 0.578147 0.333793i −0.182250 0.983252i \(-0.558338\pi\)
0.760397 + 0.649459i \(0.225005\pi\)
\(600\) 0 0
\(601\) 39.8029i 1.62359i −0.583941 0.811796i \(-0.698490\pi\)
0.583941 0.811796i \(-0.301510\pi\)
\(602\) −27.4496 + 25.1922i −1.11876 + 1.02676i
\(603\) 0.316030i 0.0128697i
\(604\) 37.6024 28.7754i 1.53002 1.17085i
\(605\) 0 0
\(606\) 11.7342 23.7554i 0.476668 0.964998i
\(607\) 4.70373 8.14710i 0.190919 0.330681i −0.754636 0.656143i \(-0.772187\pi\)
0.945555 + 0.325463i \(0.105520\pi\)
\(608\) 11.3793 + 2.30213i 0.461493 + 0.0933636i
\(609\) −54.5975 21.1420i −2.21240 0.856716i
\(610\) 0 0
\(611\) 16.8259 + 9.71441i 0.680701 + 0.393003i
\(612\) −5.33330 40.9233i −0.215586 1.65423i
\(613\) 6.81796 + 11.8091i 0.275375 + 0.476963i 0.970230 0.242187i \(-0.0778646\pi\)
−0.694855 + 0.719150i \(0.744531\pi\)
\(614\) 0.733121 + 11.2983i 0.0295863 + 0.455961i
\(615\) 0 0
\(616\) −16.4811 2.91505i −0.664044 0.117451i
\(617\) −39.1144 −1.57469 −0.787343 0.616515i \(-0.788544\pi\)
−0.787343 + 0.616515i \(0.788544\pi\)
\(618\) −3.13489 48.3124i −0.126104 1.94341i
\(619\) −9.50950 16.4709i −0.382219 0.662023i 0.609160 0.793047i \(-0.291507\pi\)
−0.991379 + 0.131024i \(0.958173\pi\)
\(620\) 0 0
\(621\) −20.6535 11.9243i −0.828798 0.478507i
\(622\) −16.1785 + 10.7948i −0.648697 + 0.432833i
\(623\) −18.3542 + 2.85186i −0.735347 + 0.114257i
\(624\) 26.9611 26.8206i 1.07931 1.07368i
\(625\) 0 0
\(626\) −6.66143 + 13.4858i −0.266244 + 0.539002i
\(627\) 11.9184 6.88108i 0.475974 0.274804i
\(628\) 12.4403 9.52000i 0.496422 0.379889i
\(629\) 38.5683i 1.53782i
\(630\) 0 0
\(631\) 16.4987i 0.656802i 0.944538 + 0.328401i \(0.106510\pi\)
−0.944538 + 0.328401i \(0.893490\pi\)
\(632\) 0.421729 1.23443i 0.0167755 0.0491028i
\(633\) 9.63252 5.56134i 0.382858 0.221043i
\(634\) 21.5344 + 10.6371i 0.855241 + 0.422452i
\(635\) 0 0
\(636\) −10.7218 + 25.7893i −0.425146 + 1.02261i
\(637\) 21.6851 + 4.74245i 0.859196 + 0.187903i
\(638\) 12.9575 + 19.4197i 0.512993 + 0.768835i
\(639\) 1.10134 + 0.635857i 0.0435682 + 0.0251541i
\(640\) 0 0
\(641\) −13.4723 23.3347i −0.532124 0.921665i −0.999297 0.0374991i \(-0.988061\pi\)
0.467173 0.884166i \(-0.345272\pi\)
\(642\) −11.0173 + 0.714889i −0.434818 + 0.0282144i
\(643\) −43.6730 −1.72229 −0.861147 0.508355i \(-0.830254\pi\)
−0.861147 + 0.508355i \(0.830254\pi\)
\(644\) −13.5195 + 3.94241i −0.532745 + 0.155353i
\(645\) 0 0
\(646\) 9.97948 0.647547i 0.392637 0.0254774i
\(647\) 14.0540 + 24.3422i 0.552518 + 0.956989i 0.998092 + 0.0617443i \(0.0196663\pi\)
−0.445574 + 0.895245i \(0.647000\pi\)
\(648\) 18.9583 16.5604i 0.744754 0.650556i
\(649\) 13.7885 + 7.96080i 0.541246 + 0.312489i
\(650\) 0 0
\(651\) 5.95797 + 38.3448i 0.233511 + 1.50285i
\(652\) 20.0402 + 8.33161i 0.784836 + 0.326291i
\(653\) −20.8367 + 36.0902i −0.815403 + 1.41232i 0.0936346 + 0.995607i \(0.470151\pi\)
−0.909038 + 0.416713i \(0.863182\pi\)
\(654\) 3.80872 + 1.88134i 0.148933 + 0.0735664i
\(655\) 0 0
\(656\) −1.49688 5.64538i −0.0584435 0.220415i
\(657\) 89.0808i 3.47537i
\(658\) 22.3773 4.97918i 0.872359 0.194109i
\(659\) 47.0951i 1.83457i 0.398236 + 0.917283i \(0.369622\pi\)
−0.398236 + 0.917283i \(0.630378\pi\)
\(660\) 0 0
\(661\) −10.0792 + 5.81924i −0.392036 + 0.226342i −0.683042 0.730379i \(-0.739343\pi\)
0.291006 + 0.956721i \(0.406010\pi\)
\(662\) −5.21735 + 10.5623i −0.202778 + 0.410517i
\(663\) 16.3789 28.3690i 0.636103 1.10176i
\(664\) 5.96486 + 30.2973i 0.231481 + 1.17577i
\(665\) 0 0
\(666\) −78.8628 + 52.6200i −3.05587 + 2.03898i
\(667\) 17.0116 + 9.82168i 0.658693 + 0.380297i
\(668\) 23.2982 3.03633i 0.901435 0.117479i
\(669\) 19.4251 + 33.6452i 0.751017 + 1.30080i
\(670\) 0 0
\(671\) −5.67340 −0.219019
\(672\) 2.03952 44.8257i 0.0786763 1.72919i
\(673\) −14.9849 −0.577626 −0.288813 0.957385i \(-0.593261\pi\)
−0.288813 + 0.957385i \(0.593261\pi\)
\(674\) −2.47953 38.2126i −0.0955080 1.47189i
\(675\) 0 0
\(676\) −5.83899 + 0.760963i −0.224576 + 0.0292678i
\(677\) −19.9347 11.5093i −0.766154 0.442339i 0.0653470 0.997863i \(-0.479185\pi\)
−0.831501 + 0.555524i \(0.812518\pi\)
\(678\) 52.4067 34.9676i 2.01267 1.34292i
\(679\) 0.307673 + 0.382232i 0.0118074 + 0.0146687i
\(680\) 0 0
\(681\) −13.3305 + 23.0892i −0.510827 + 0.884779i
\(682\) 6.85272 13.8731i 0.262404 0.531228i
\(683\) 32.2762 18.6347i 1.23502 0.713037i 0.266945 0.963712i \(-0.413986\pi\)
0.968071 + 0.250675i \(0.0806525\pi\)
\(684\) 14.9394 + 19.5222i 0.571223 + 0.746448i
\(685\) 0 0
\(686\) 22.6348 13.1782i 0.864201 0.503146i
\(687\) 38.8132i 1.48082i
\(688\) 10.2083 + 38.4997i 0.389187 + 1.46779i
\(689\) −12.7914 + 7.38510i −0.487312 + 0.281350i
\(690\) 0 0
\(691\) 13.9969 24.2433i 0.532467 0.922260i −0.466815 0.884355i \(-0.654598\pi\)
0.999281 0.0379044i \(-0.0120682\pi\)
\(692\) −30.4483 12.6587i −1.15747 0.481211i
\(693\) −22.2213 27.6062i −0.844118 1.04867i
\(694\) 21.7991 + 32.6708i 0.827483 + 1.24017i
\(695\) 0 0
\(696\) −47.1387 + 41.1765i −1.78679 + 1.56079i
\(697\) −2.51542 4.35683i −0.0952782 0.165027i
\(698\) −13.6053 + 0.882819i −0.514968 + 0.0334152i
\(699\) 45.6203 1.72552
\(700\) 0 0
\(701\) 29.2334 1.10413 0.552065 0.833801i \(-0.313840\pi\)
0.552065 + 0.833801i \(0.313840\pi\)
\(702\) 40.1024 2.60216i 1.51357 0.0982121i
\(703\) −11.4868 19.8957i −0.433233 0.750381i
\(704\) −10.9478 + 14.1523i −0.412611 + 0.533386i
\(705\) 0 0
\(706\) −12.8053 19.1915i −0.481932 0.722283i
\(707\) 5.97017 15.4175i 0.224532 0.579835i
\(708\) −16.3868 + 39.4155i −0.615852 + 1.48133i
\(709\) 2.08074 3.60395i 0.0781440 0.135349i −0.824305 0.566146i \(-0.808434\pi\)
0.902449 + 0.430796i \(0.141767\pi\)
\(710\) 0 0
\(711\) 2.39203 1.38104i 0.0897082 0.0517931i
\(712\) −6.41962 + 18.7906i −0.240585 + 0.704207i
\(713\) 13.0194i 0.487580i
\(714\) −8.39509 37.7291i −0.314178 1.41197i
\(715\) 0 0
\(716\) −14.4687 + 11.0723i −0.540722 + 0.413790i
\(717\) −0.113858 + 0.0657362i −0.00425212 + 0.00245496i
\(718\) −1.00341 + 2.03137i −0.0374470 + 0.0758102i
\(719\) 21.1113 36.5658i 0.787318 1.36368i −0.140286 0.990111i \(-0.544802\pi\)
0.927604 0.373564i \(-0.121865\pi\)
\(720\) 0 0
\(721\) −4.63835 29.8519i −0.172741 1.11174i
\(722\) 17.3962 11.6074i 0.647421 0.431982i
\(723\) −5.97339 3.44874i −0.222153 0.128260i
\(724\) −4.28415 32.8730i −0.159219 1.22172i
\(725\) 0 0
\(726\) −1.64667 25.3772i −0.0611138 0.941837i
\(727\) 27.2605 1.01104 0.505519 0.862816i \(-0.331301\pi\)
0.505519 + 0.862816i \(0.331301\pi\)
\(728\) 15.2631 18.1704i 0.565689 0.673439i
\(729\) −27.2992 −1.01108
\(730\) 0 0
\(731\) 17.1544 + 29.7122i 0.634477 + 1.09895i
\(732\) −1.96568 15.0830i −0.0726535 0.557482i
\(733\) −13.2554 7.65300i −0.489599 0.282670i 0.234809 0.972041i \(-0.424553\pi\)
−0.724408 + 0.689372i \(0.757887\pi\)
\(734\) −1.48286 + 0.989415i −0.0547333 + 0.0365200i
\(735\) 0 0
\(736\) −2.98526 + 14.7560i −0.110038 + 0.543915i
\(737\) −0.0590113 + 0.102211i −0.00217371 + 0.00376498i
\(738\) 5.47680 11.0876i 0.201604 0.408140i
\(739\) −42.5694 + 24.5774i −1.56594 + 0.904096i −0.569305 + 0.822126i \(0.692788\pi\)
−0.996635 + 0.0819692i \(0.973879\pi\)
\(740\) 0 0
\(741\) 19.5125i 0.716810i
\(742\) −5.22771 + 16.6252i −0.191915 + 0.610331i
\(743\) 35.2067i 1.29161i −0.763503 0.645805i \(-0.776522\pi\)
0.763503 0.645805i \(-0.223478\pi\)
\(744\) 39.2564 + 13.4116i 1.43921 + 0.491692i
\(745\) 0 0
\(746\) −11.7000 5.77932i −0.428369 0.211596i
\(747\) −32.6913 + 56.6229i −1.19611 + 2.07173i
\(748\) −5.91659 + 14.2313i −0.216332 + 0.520349i
\(749\) −6.80752 + 1.05774i −0.248741 + 0.0386491i
\(750\) 0 0
\(751\) −0.584292 0.337341i −0.0213211 0.0123098i 0.489302 0.872115i \(-0.337252\pi\)
−0.510623 + 0.859805i \(0.670585\pi\)
\(752\) 6.40478 23.6557i 0.233558 0.862635i
\(753\) 9.48027 + 16.4203i 0.345480 + 0.598389i
\(754\) −33.0310 + 2.14331i −1.20292 + 0.0780548i
\(755\) 0 0
\(756\) 32.7855 34.2567i 1.19240 1.24590i
\(757\) 45.8640 1.66695 0.833477 0.552553i \(-0.186346\pi\)
0.833477 + 0.552553i \(0.186346\pi\)
\(758\) 3.57774 0.232152i 0.129949 0.00843214i
\(759\) 8.92298 + 15.4550i 0.323883 + 0.560983i
\(760\) 0 0
\(761\) 18.9229 + 10.9252i 0.685956 + 0.396037i 0.802095 0.597196i \(-0.203719\pi\)
−0.116139 + 0.993233i \(0.537052\pi\)
\(762\) 7.11551 + 10.6642i 0.257768 + 0.386322i
\(763\) 2.47190 + 0.957201i 0.0894886 + 0.0346530i
\(764\) −5.52726 2.29793i −0.199969 0.0831360i
\(765\) 0 0
\(766\) 1.67988 + 0.829791i 0.0606967 + 0.0299816i
\(767\) −19.5499 + 11.2871i −0.705905 + 0.407554i
\(768\) −41.4177 24.2018i −1.49453 0.873307i
\(769\) 16.0214i 0.577745i 0.957368 + 0.288872i \(0.0932803\pi\)
−0.957368 + 0.288872i \(0.906720\pi\)
\(770\) 0 0
\(771\) 42.6976i 1.53772i
\(772\) 17.8779 + 23.3620i 0.643439 + 0.840816i
\(773\) 36.6688 21.1707i 1.31888 0.761458i 0.335335 0.942099i \(-0.391150\pi\)
0.983549 + 0.180641i \(0.0578171\pi\)
\(774\) −37.3500 + 75.6139i −1.34252 + 2.71789i
\(775\) 0 0
\(776\) 0.514676 0.101328i 0.0184758 0.00363746i
\(777\) −69.1687 + 55.6765i −2.48141 + 1.99738i
\(778\) −37.9113 + 25.2957i −1.35919 + 0.906896i
\(779\) 2.59519 + 1.49833i 0.0929824 + 0.0536834i
\(780\) 0 0
\(781\) −0.237464 0.411299i −0.00849712 0.0147174i
\(782\) 0.839700 + 12.9408i 0.0300276 + 0.462762i
\(783\) −66.1408 −2.36368
\(784\) −1.22829 27.9730i −0.0438675 0.999037i
\(785\) 0 0
\(786\) −4.31187 66.4511i −0.153799 2.37023i
\(787\) −2.19121 3.79528i −0.0781081 0.135287i 0.824326 0.566116i \(-0.191555\pi\)
−0.902434 + 0.430829i \(0.858221\pi\)
\(788\) 9.55417 1.24514i 0.340353 0.0443563i
\(789\) −30.5044 17.6117i −1.08599 0.626994i
\(790\) 0 0
\(791\) 30.6241 24.6506i 1.08887 0.876473i
\(792\) −37.1718 + 7.31828i −1.32084 + 0.260044i
\(793\) 4.02198 6.96627i 0.142825 0.247380i
\(794\) 22.0302 44.5995i 0.781824 1.58278i
\(795\) 0 0
\(796\) −1.54892 2.02406i −0.0549001 0.0717409i
\(797\) 53.6019i 1.89868i −0.314255 0.949339i \(-0.601755\pi\)
0.314255 0.949339i \(-0.398245\pi\)
\(798\) 15.5675 + 16.9625i 0.551085 + 0.600466i
\(799\) 21.1101i 0.746822i
\(800\) 0 0
\(801\) −36.4118 + 21.0224i −1.28655 + 0.742789i
\(802\) 40.4792 + 19.9950i 1.42937 + 0.706048i
\(803\) 16.6338 28.8106i 0.586995 1.01670i
\(804\) −0.292177 0.121471i −0.0103043 0.00428394i
\(805\) 0 0
\(806\) 12.1765 + 18.2492i 0.428900 + 0.642802i
\(807\) 22.0422 + 12.7261i 0.775924 + 0.447980i
\(808\) −11.6276 13.3113i −0.409058 0.468289i
\(809\) 0.754693 + 1.30717i 0.0265336 + 0.0459575i 0.878987 0.476845i \(-0.158220\pi\)
−0.852454 + 0.522803i \(0.824886\pi\)
\(810\) 0 0
\(811\) −43.1894 −1.51658 −0.758292 0.651915i \(-0.773966\pi\)
−0.758292 + 0.651915i \(0.773966\pi\)
\(812\) −27.0043 + 28.2161i −0.947667 + 0.990192i
\(813\) −23.9063 −0.838432
\(814\) 35.3315 2.29258i 1.23837 0.0803550i
\(815\) 0 0
\(816\) −39.8845 10.7987i −1.39624 0.378031i
\(817\) −17.6984 10.2182i −0.619189 0.357489i
\(818\) −12.8840 19.3095i −0.450478 0.675142i
\(819\) 49.6503 7.71460i 1.73492 0.269570i
\(820\) 0 0
\(821\) 4.56478 7.90644i 0.159312 0.275937i −0.775309 0.631582i \(-0.782406\pi\)
0.934621 + 0.355646i \(0.115739\pi\)
\(822\) −36.5493 18.0538i −1.27480 0.629698i
\(823\) −0.329424 + 0.190193i −0.0114830 + 0.00662972i −0.505731 0.862692i \(-0.668777\pi\)
0.494248 + 0.869321i \(0.335444\pi\)
\(824\) −30.5616 10.4411i −1.06467 0.363732i
\(825\) 0 0
\(826\) −7.98985 + 25.4094i −0.278003 + 0.884106i
\(827\) 23.9044i 0.831236i −0.909539 0.415618i \(-0.863565\pi\)
0.909539 0.415618i \(-0.136435\pi\)
\(828\) −25.3152 + 19.3725i −0.879763 + 0.673243i
\(829\) 35.8241 20.6830i 1.24422 0.718352i 0.274271 0.961653i \(-0.411564\pi\)
0.969951 + 0.243301i \(0.0782303\pi\)
\(830\) 0 0
\(831\) −20.3800 + 35.2992i −0.706974 + 1.22452i
\(832\) −9.61631 23.4755i −0.333386 0.813866i
\(833\) −7.31833 22.9814i −0.253565 0.796259i
\(834\) −26.4434 + 17.6439i −0.915659 + 0.610959i
\(835\) 0 0
\(836\) −1.18640 9.10347i −0.0410327 0.314850i
\(837\) 21.9187 + 37.9642i 0.757620 + 1.31224i
\(838\) −1.08655 16.7451i −0.0375343 0.578448i
\(839\) −46.4174 −1.60251 −0.801253 0.598326i \(-0.795833\pi\)
−0.801253 + 0.598326i \(0.795833\pi\)
\(840\) 0 0
\(841\) 25.4780 0.878551
\(842\) −0.947163 14.5969i −0.0326414 0.503043i
\(843\) −14.2155 24.6219i −0.489607 0.848025i
\(844\) −0.958861 7.35749i −0.0330054 0.253255i
\(845\) 0 0
\(846\) 43.1651 28.8013i 1.48405 0.990208i
\(847\) −2.43641 15.6804i −0.0837159 0.538786i
\(848\) 13.1397 + 13.2085i 0.451219 + 0.453582i
\(849\) −32.3038 + 55.9518i −1.10866 + 1.92026i
\(850\) 0 0
\(851\) 25.7996 14.8954i 0.884398 0.510608i
\(852\) 1.01118 0.773811i 0.0346425 0.0265103i
\(853\) 10.5928i 0.362692i −0.983419 0.181346i \(-0.941955\pi\)
0.983419 0.181346i \(-0.0580454\pi\)
\(854\) −2.06149 9.26471i −0.0705427 0.317032i
\(855\) 0 0
\(856\) −2.38101 + 6.96937i −0.0813814 + 0.238208i
\(857\) 0.245410 0.141688i 0.00838305 0.00483996i −0.495803 0.868435i \(-0.665126\pi\)
0.504186 + 0.863595i \(0.331793\pi\)
\(858\) −26.9618 13.3180i −0.920461 0.454669i
\(859\) −4.93861 + 8.55393i −0.168503 + 0.291856i −0.937894 0.346922i \(-0.887227\pi\)
0.769391 + 0.638779i \(0.220560\pi\)
\(860\) 0 0
\(861\) 4.18236 10.8006i 0.142535 0.368084i
\(862\) −23.2787 34.8883i −0.792875 1.18830i
\(863\) 28.2007 + 16.2817i 0.959963 + 0.554235i 0.896162 0.443728i \(-0.146344\pi\)
0.0638012 + 0.997963i \(0.479678\pi\)
\(864\) −16.1374 48.0541i −0.549006 1.63483i
\(865\) 0 0
\(866\) −41.5057 + 2.69321i −1.41042 + 0.0915192i
\(867\) 15.3759 0.522195
\(868\) 25.1449 + 6.14961i 0.853473 + 0.208731i
\(869\) −1.03151 −0.0349916
\(870\) 0 0
\(871\) −0.0836685 0.144918i −0.00283500 0.00491036i
\(872\) 2.13420 1.86426i 0.0722732 0.0631319i
\(873\) 0.961883 + 0.555343i 0.0325548 + 0.0187955i
\(874\) −4.28733 6.42551i −0.145021 0.217346i
\(875\) 0 0
\(876\) 82.3573 + 34.2396i 2.78260 + 1.15685i
\(877\) 19.0353 32.9700i 0.642775 1.11332i −0.342036 0.939687i \(-0.611116\pi\)
0.984811 0.173632i \(-0.0555503\pi\)
\(878\) 11.1883 + 5.52652i 0.377585 + 0.186511i
\(879\) 75.1666 43.3975i 2.53531 1.46376i
\(880\) 0 0
\(881\) 27.7529i 0.935019i −0.883988 0.467509i \(-0.845151\pi\)
0.883988 0.467509i \(-0.154849\pi\)
\(882\) 37.0068 46.3186i 1.24608 1.55963i
\(883\) 44.1707i 1.48646i 0.669034 + 0.743232i \(0.266708\pi\)
−0.669034 + 0.743232i \(0.733292\pi\)
\(884\) −13.2800 17.3537i −0.446656 0.583669i
\(885\) 0 0
\(886\) −12.2551 + 24.8100i −0.411717 + 0.833508i
\(887\) 10.0638 17.4310i 0.337909 0.585275i −0.646130 0.763227i \(-0.723614\pi\)
0.984039 + 0.177952i \(0.0569471\pi\)
\(888\) 18.3363 + 93.1358i 0.615326 + 3.12543i
\(889\) 5.01611 + 6.23167i 0.168235 + 0.209003i
\(890\) 0 0
\(891\) −17.2385 9.95263i −0.577510 0.333426i
\(892\) 25.6988 3.34919i 0.860461 0.112139i
\(893\) 6.28724 + 10.8898i 0.210394 + 0.364414i
\(894\) −1.78493 27.5079i −0.0596968 0.920000i
\(895\) 0 0
\(896\) −27.0889 12.7355i −0.904976 0.425462i
\(897\) −25.3027 −0.844831
\(898\) −0.459978 7.08882i −0.0153497 0.236557i
\(899\) −18.0537 31.2699i −0.602124 1.04291i
\(900\) 0 0
\(901\) 13.8983 + 8.02418i 0.463019 + 0.267324i
\(902\) −3.84167 + 2.56329i −0.127913 + 0.0853483i
\(903\) −28.5224 + 73.6569i −0.949167 + 2.45115i
\(904\) −8.11832 41.2355i −0.270011 1.37147i
\(905\) 0 0
\(906\) 44.4561 90.0000i 1.47696 2.99005i
\(907\) −13.0052 + 7.50854i −0.431830 + 0.249317i −0.700126 0.714020i \(-0.746873\pi\)
0.268296 + 0.963336i \(0.413539\pi\)
\(908\) 10.8084 + 14.1240i 0.358690 + 0.468720i
\(909\) 37.4239i 1.24127i
\(910\) 0 0
\(911\) 24.0198i 0.795811i 0.917426 + 0.397906i \(0.130263\pi\)
−0.917426 + 0.397906i \(0.869737\pi\)
\(912\) 23.7909 6.30821i 0.787795 0.208886i
\(913\) 21.1461 12.2087i 0.699834 0.404049i
\(914\) 35.3063 + 17.4398i 1.16783 + 0.576857i
\(915\) 0 0
\(916\) 23.9076 + 9.93946i 0.789931 + 0.328409i
\(917\) −6.37981 41.0597i −0.210680 1.35591i
\(918\) −24.2349 36.3214i −0.799871 1.19878i
\(919\) 49.7575 + 28.7275i 1.64135 + 0.947632i 0.980355 + 0.197239i \(0.0631976\pi\)
0.660992 + 0.750393i \(0.270136\pi\)
\(920\) 0 0
\(921\) 12.0014 + 20.7870i 0.395459 + 0.684956i
\(922\) −28.0124 + 1.81767i −0.922541 + 0.0598617i
\(923\) 0.673370 0.0221643
\(924\) −34.0637 + 9.93325i −1.12061 + 0.326780i
\(925\) 0 0
\(926\) −50.3981 + 3.27022i −1.65618 + 0.107466i
\(927\) −34.1915 59.2214i −1.12300 1.94509i
\(928\) 13.2919 + 39.5806i 0.436327 + 1.29930i
\(929\) 3.45964 + 1.99743i 0.113507 + 0.0655334i 0.555679 0.831397i \(-0.312458\pi\)
−0.442172 + 0.896930i \(0.645792\pi\)
\(930\) 0 0
\(931\) 10.6198 + 9.67552i 0.348049 + 0.317102i
\(932\) 11.6827 28.1006i 0.382678 0.920466i
\(933\) −20.6162 + 35.7083i −0.674945 + 1.16904i
\(934\) −28.6700 14.1617i −0.938110 0.463386i
\(935\) 0 0
\(936\) 17.3658 50.8307i 0.567619 1.66145i
\(937\) 43.2204i 1.41195i 0.708237 + 0.705975i \(0.249491\pi\)
−0.708237 + 0.705975i \(0.750509\pi\)
\(938\) −0.188353 0.0592267i −0.00614995 0.00193382i
\(939\) 31.8878i 1.04062i
\(940\) 0 0
\(941\) −30.6731 + 17.7091i −0.999915 + 0.577301i −0.908223 0.418486i \(-0.862561\pi\)
−0.0916918 + 0.995787i \(0.529227\pi\)
\(942\) 14.7078 29.7754i 0.479206 0.970136i
\(943\) −1.94295 + 3.36529i −0.0632712 + 0.109589i
\(944\) 20.0823 + 20.1874i 0.653622 + 0.657044i
\(945\) 0 0
\(946\) 26.1990 17.4809i 0.851802 0.568352i
\(947\) 42.1696 + 24.3466i 1.37033 + 0.791159i 0.990969 0.134091i \(-0.0428116\pi\)
0.379358 + 0.925250i \(0.376145\pi\)
\(948\) −0.357390 2.74231i −0.0116075 0.0890662i
\(949\) 23.5840 + 40.8488i 0.765571 + 1.32601i
\(950\) 0 0
\(951\) 50.9190 1.65116
\(952\) −25.3897 4.49073i −0.822886 0.145546i
\(953\) 47.5308 1.53967 0.769837 0.638241i \(-0.220338\pi\)
0.769837 + 0.638241i \(0.220338\pi\)
\(954\) 2.55440 + 39.3663i 0.0827016 + 1.27453i
\(955\) 0 0
\(956\) 0.0113339 + 0.0869671i 0.000366566 + 0.00281272i
\(957\) 42.8623 + 24.7466i 1.38554 + 0.799943i
\(958\) 10.0746 6.72211i 0.325495 0.217182i
\(959\) −23.7208 9.18550i −0.765986 0.296615i
\(960\) 0 0
\(961\) 3.53423 6.12147i 0.114008 0.197467i
\(962\) −22.2321 + 45.0082i −0.716792 + 1.45112i
\(963\) −13.5050 + 7.79713i −0.435193 + 0.251259i
\(964\) −3.65400 + 2.79624i −0.117688 + 0.0900609i
\(965\) 0 0
\(966\) −21.9960 + 20.1870i −0.707708 + 0.649508i
\(967\) 29.3643i 0.944292i −0.881520 0.472146i \(-0.843479\pi\)
0.881520 0.472146i \(-0.156521\pi\)
\(968\) −16.0532 5.48442i −0.515970 0.176276i
\(969\) 18.3607 10.6005i 0.589829 0.340538i
\(970\) 0 0
\(971\) −13.3188 + 23.0688i −0.427419 + 0.740312i −0.996643 0.0818708i \(-0.973911\pi\)
0.569224 + 0.822183i \(0.307244\pi\)
\(972\) −0.153506 + 0.369231i −0.00492370 + 0.0118431i
\(973\) −15.4523 + 12.4382i −0.495379 + 0.398749i
\(974\) −24.8391 37.2269i −0.795895 1.19283i
\(975\) 0 0
\(976\) −9.79398 2.65172i −0.313498 0.0848795i
\(977\) 7.73476 + 13.3970i 0.247457 + 0.428608i 0.962819 0.270146i \(-0.0870718\pi\)
−0.715363 + 0.698753i \(0.753739\pi\)
\(978\) 45.9143 2.97928i 1.46818 0.0952668i
\(979\) 15.7018 0.501832
\(980\) 0 0
\(981\) 6.00019 0.191571
\(982\) −50.4916 + 3.27629i −1.61125 + 0.104551i
\(983\) 22.0131 + 38.1277i 0.702107 + 1.21609i 0.967725 + 0.252007i \(0.0810907\pi\)
−0.265618 + 0.964078i \(0.585576\pi\)
\(984\) −8.14565 9.32511i −0.259674 0.297274i
\(985\) 0 0
\(986\) 19.9615 + 29.9167i 0.635703 + 0.952743i
\(987\) 37.8591 30.4743i 1.20507 0.970006i
\(988\) 12.0191 + 4.99686i 0.382378 + 0.158971i
\(989\) 13.2503 22.9502i 0.421336 0.729775i
\(990\) 0 0
\(991\) 14.4776 8.35865i 0.459896 0.265521i −0.252104 0.967700i \(-0.581123\pi\)
0.712001 + 0.702179i \(0.247789\pi\)
\(992\) 18.3141 20.7462i 0.581472 0.658692i
\(993\) 24.9751i 0.792560i
\(994\) 0.585370 0.537230i 0.0185668 0.0170399i
\(995\) 0 0
\(996\) 39.7839 + 51.9877i 1.26060 + 1.64729i
\(997\) −23.8844 + 13.7897i −0.756427 + 0.436723i −0.828011 0.560711i \(-0.810528\pi\)
0.0715845 + 0.997435i \(0.477194\pi\)
\(998\) 25.8762 52.3856i 0.819098 1.65824i
\(999\) −50.1540 + 86.8693i −1.58680 + 2.74842i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.p.c.551.9 32
4.3 odd 2 inner 700.2.p.c.551.14 32
5.2 odd 4 700.2.t.c.299.16 32
5.3 odd 4 700.2.t.d.299.1 32
5.4 even 2 140.2.o.a.131.8 yes 32
7.3 odd 6 inner 700.2.p.c.451.14 32
20.3 even 4 700.2.t.d.299.6 32
20.7 even 4 700.2.t.c.299.11 32
20.19 odd 2 140.2.o.a.131.3 yes 32
28.3 even 6 inner 700.2.p.c.451.9 32
35.3 even 12 700.2.t.c.199.11 32
35.4 even 6 980.2.o.f.31.3 32
35.9 even 6 980.2.g.a.391.25 32
35.17 even 12 700.2.t.d.199.6 32
35.19 odd 6 980.2.g.a.391.26 32
35.24 odd 6 140.2.o.a.31.3 32
35.34 odd 2 980.2.o.f.411.8 32
140.3 odd 12 700.2.t.c.199.16 32
140.19 even 6 980.2.g.a.391.27 32
140.39 odd 6 980.2.o.f.31.8 32
140.59 even 6 140.2.o.a.31.8 yes 32
140.79 odd 6 980.2.g.a.391.28 32
140.87 odd 12 700.2.t.d.199.1 32
140.139 even 2 980.2.o.f.411.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.o.a.31.3 32 35.24 odd 6
140.2.o.a.31.8 yes 32 140.59 even 6
140.2.o.a.131.3 yes 32 20.19 odd 2
140.2.o.a.131.8 yes 32 5.4 even 2
700.2.p.c.451.9 32 28.3 even 6 inner
700.2.p.c.451.14 32 7.3 odd 6 inner
700.2.p.c.551.9 32 1.1 even 1 trivial
700.2.p.c.551.14 32 4.3 odd 2 inner
700.2.t.c.199.11 32 35.3 even 12
700.2.t.c.199.16 32 140.3 odd 12
700.2.t.c.299.11 32 20.7 even 4
700.2.t.c.299.16 32 5.2 odd 4
700.2.t.d.199.1 32 140.87 odd 12
700.2.t.d.199.6 32 35.17 even 12
700.2.t.d.299.1 32 5.3 odd 4
700.2.t.d.299.6 32 20.3 even 4
980.2.g.a.391.25 32 35.9 even 6
980.2.g.a.391.26 32 35.19 odd 6
980.2.g.a.391.27 32 140.19 even 6
980.2.g.a.391.28 32 140.79 odd 6
980.2.o.f.31.3 32 35.4 even 6
980.2.o.f.31.8 32 140.39 odd 6
980.2.o.f.411.3 32 140.139 even 2
980.2.o.f.411.8 32 35.34 odd 2