Properties

Label 700.2.p.c.451.14
Level $700$
Weight $2$
Character 700.451
Analytic conductor $5.590$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,2,Mod(451,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 451.14
Character \(\chi\) \(=\) 700.451
Dual form 700.2.p.c.551.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.26796 + 0.626319i) q^{2} +(1.49907 - 2.59647i) q^{3} +(1.21545 + 1.58830i) q^{4} +(3.52698 - 2.35332i) q^{6} +(2.06101 + 1.65899i) q^{7} +(0.546365 + 2.77516i) q^{8} +(-2.99443 - 5.18651i) q^{9} +(-1.93693 - 1.11828i) q^{11} +(5.94600 - 0.774910i) q^{12} -3.17109i q^{13} +(1.57423 + 3.39438i) q^{14} +(-1.04536 + 3.86099i) q^{16} +(2.98390 + 1.72275i) q^{17} +(-0.548417 - 8.45176i) q^{18} +(1.02618 + 1.77739i) q^{19} +(7.39711 - 2.86441i) q^{21} +(-1.75554 - 2.63107i) q^{22} +(2.30481 - 1.33068i) q^{23} +(8.02464 + 2.74154i) q^{24} +(1.98611 - 4.02082i) q^{26} -8.96105 q^{27} +(-0.129905 + 5.28991i) q^{28} -7.38092 q^{29} +(-2.44599 + 4.23658i) q^{31} +(-3.74369 + 4.24085i) q^{32} +(-5.80718 + 3.35278i) q^{33} +(2.70447 + 4.05325i) q^{34} +(4.59812 - 11.0600i) q^{36} +(-5.59689 - 9.69410i) q^{37} +(0.187940 + 2.89637i) q^{38} +(-8.23364 - 4.75369i) q^{39} +1.46011i q^{41} +(11.1733 + 1.00099i) q^{42} +9.95752i q^{43} +(-0.578071 - 4.43563i) q^{44} +(3.75585 - 0.243709i) q^{46} +(-3.06343 - 5.30601i) q^{47} +(8.45786 + 8.50215i) q^{48} +(1.49553 + 6.83838i) q^{49} +(8.94615 - 5.16506i) q^{51} +(5.03663 - 3.85430i) q^{52} +(2.32888 - 4.03374i) q^{53} +(-11.3623 - 5.61247i) q^{54} +(-3.47788 + 6.62604i) q^{56} +6.15325 q^{57} +(-9.35872 - 4.62281i) q^{58} +(-3.55938 + 6.16503i) q^{59} +(-2.19681 + 1.26833i) q^{61} +(-5.75488 + 3.83985i) q^{62} +(2.43279 - 15.6572i) q^{63} +(-7.40297 + 3.03249i) q^{64} +(-9.46318 + 0.614046i) q^{66} +(0.0456998 + 0.0263848i) q^{67} +(0.890536 + 6.83323i) q^{68} -7.97917i q^{69} -0.212347i q^{71} +(12.7573 - 11.1437i) q^{72} +(12.8816 + 7.43720i) q^{73} +(-1.02505 - 15.7972i) q^{74} +(-1.57575 + 3.79020i) q^{76} +(-2.13680 - 5.51813i) q^{77} +(-7.46261 - 11.1844i) q^{78} +(0.399413 - 0.230601i) q^{79} +(-4.44995 + 7.70755i) q^{81} +(-0.914496 + 1.85137i) q^{82} -10.9174 q^{83} +(13.5403 + 8.26724i) q^{84} +(-6.23658 + 12.6257i) q^{86} +(-11.0645 + 19.1643i) q^{87} +(2.04514 - 5.98626i) q^{88} +(6.07992 - 3.51024i) q^{89} +(5.26080 - 6.53565i) q^{91} +(4.91490 + 2.04334i) q^{92} +(7.33344 + 12.7019i) q^{93} +(-0.561053 - 8.64650i) q^{94} +(5.39918 + 16.0777i) q^{96} +0.185459i q^{97} +(-2.38673 + 9.60747i) q^{98} +13.3945i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 2 q^{2} - 2 q^{4} + 4 q^{8} - 16 q^{9} + 30 q^{12} + 2 q^{14} - 14 q^{16} - 12 q^{21} + 8 q^{22} + 36 q^{24} + 30 q^{26} - 2 q^{28} - 40 q^{29} - 2 q^{32} + 60 q^{36} - 8 q^{37} + 60 q^{38} + 62 q^{42}+ \cdots - 78 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.26796 + 0.626319i 0.896584 + 0.442874i
\(3\) 1.49907 2.59647i 0.865490 1.49907i −0.00107081 0.999999i \(-0.500341\pi\)
0.866560 0.499072i \(-0.166326\pi\)
\(4\) 1.21545 + 1.58830i 0.607725 + 0.794148i
\(5\) 0 0
\(6\) 3.52698 2.35332i 1.43988 0.960741i
\(7\) 2.06101 + 1.65899i 0.778989 + 0.627038i
\(8\) 0.546365 + 2.77516i 0.193169 + 0.981165i
\(9\) −2.99443 5.18651i −0.998144 1.72884i
\(10\) 0 0
\(11\) −1.93693 1.11828i −0.584005 0.337175i 0.178718 0.983900i \(-0.442805\pi\)
−0.762723 + 0.646725i \(0.776138\pi\)
\(12\) 5.94600 0.774910i 1.71646 0.223697i
\(13\) 3.17109i 0.879502i −0.898120 0.439751i \(-0.855067\pi\)
0.898120 0.439751i \(-0.144933\pi\)
\(14\) 1.57423 + 3.39438i 0.420730 + 0.907186i
\(15\) 0 0
\(16\) −1.04536 + 3.86099i −0.261341 + 0.965247i
\(17\) 2.98390 + 1.72275i 0.723701 + 0.417829i 0.816113 0.577892i \(-0.196124\pi\)
−0.0924124 + 0.995721i \(0.529458\pi\)
\(18\) −0.548417 8.45176i −0.129263 1.99210i
\(19\) 1.02618 + 1.77739i 0.235421 + 0.407761i 0.959395 0.282066i \(-0.0910198\pi\)
−0.723974 + 0.689827i \(0.757686\pi\)
\(20\) 0 0
\(21\) 7.39711 2.86441i 1.61418 0.625065i
\(22\) −1.75554 2.63107i −0.374283 0.560947i
\(23\) 2.30481 1.33068i 0.480587 0.277467i −0.240074 0.970755i \(-0.577172\pi\)
0.720661 + 0.693288i \(0.243838\pi\)
\(24\) 8.02464 + 2.74154i 1.63802 + 0.559614i
\(25\) 0 0
\(26\) 1.98611 4.02082i 0.389509 0.788548i
\(27\) −8.96105 −1.72455
\(28\) −0.129905 + 5.28991i −0.0245497 + 0.999699i
\(29\) −7.38092 −1.37060 −0.685301 0.728260i \(-0.740329\pi\)
−0.685301 + 0.728260i \(0.740329\pi\)
\(30\) 0 0
\(31\) −2.44599 + 4.23658i −0.439313 + 0.760913i −0.997637 0.0687104i \(-0.978112\pi\)
0.558323 + 0.829623i \(0.311445\pi\)
\(32\) −3.74369 + 4.24085i −0.661796 + 0.749684i
\(33\) −5.80718 + 3.35278i −1.01090 + 0.583643i
\(34\) 2.70447 + 4.05325i 0.463813 + 0.695127i
\(35\) 0 0
\(36\) 4.59812 11.0600i 0.766354 1.84333i
\(37\) −5.59689 9.69410i −0.920123 1.59370i −0.799222 0.601036i \(-0.794755\pi\)
−0.120902 0.992664i \(-0.538579\pi\)
\(38\) 0.187940 + 2.89637i 0.0304878 + 0.469854i
\(39\) −8.23364 4.75369i −1.31844 0.761200i
\(40\) 0 0
\(41\) 1.46011i 0.228031i 0.993479 + 0.114016i \(0.0363714\pi\)
−0.993479 + 0.114016i \(0.963629\pi\)
\(42\) 11.1733 + 1.00099i 1.72407 + 0.154456i
\(43\) 9.95752i 1.51851i 0.650794 + 0.759254i \(0.274436\pi\)
−0.650794 + 0.759254i \(0.725564\pi\)
\(44\) −0.578071 4.43563i −0.0871474 0.668696i
\(45\) 0 0
\(46\) 3.75585 0.243709i 0.553769 0.0359329i
\(47\) −3.06343 5.30601i −0.446847 0.773962i 0.551332 0.834286i \(-0.314120\pi\)
−0.998179 + 0.0603243i \(0.980787\pi\)
\(48\) 8.45786 + 8.50215i 1.22079 + 1.22718i
\(49\) 1.49553 + 6.83838i 0.213647 + 0.976911i
\(50\) 0 0
\(51\) 8.94615 5.16506i 1.25271 0.723253i
\(52\) 5.03663 3.85430i 0.698455 0.534496i
\(53\) 2.32888 4.03374i 0.319897 0.554077i −0.660570 0.750765i \(-0.729685\pi\)
0.980466 + 0.196688i \(0.0630185\pi\)
\(54\) −11.3623 5.61247i −1.54621 0.763760i
\(55\) 0 0
\(56\) −3.47788 + 6.62604i −0.464751 + 0.885441i
\(57\) 6.15325 0.815018
\(58\) −9.35872 4.62281i −1.22886 0.607004i
\(59\) −3.55938 + 6.16503i −0.463392 + 0.802619i −0.999127 0.0417674i \(-0.986701\pi\)
0.535735 + 0.844386i \(0.320035\pi\)
\(60\) 0 0
\(61\) −2.19681 + 1.26833i −0.281272 + 0.162393i −0.633999 0.773334i \(-0.718588\pi\)
0.352727 + 0.935726i \(0.385254\pi\)
\(62\) −5.75488 + 3.83985i −0.730870 + 0.487662i
\(63\) 2.43279 15.6572i 0.306503 1.97262i
\(64\) −7.40297 + 3.03249i −0.925371 + 0.379062i
\(65\) 0 0
\(66\) −9.46318 + 0.614046i −1.16484 + 0.0755838i
\(67\) 0.0456998 + 0.0263848i 0.00558311 + 0.00322341i 0.502789 0.864409i \(-0.332307\pi\)
−0.497206 + 0.867633i \(0.665641\pi\)
\(68\) 0.890536 + 6.83323i 0.107993 + 0.828650i
\(69\) 7.97917i 0.960579i
\(70\) 0 0
\(71\) 0.212347i 0.0252009i −0.999921 0.0126005i \(-0.995989\pi\)
0.999921 0.0126005i \(-0.00401095\pi\)
\(72\) 12.7573 11.1437i 1.50346 1.31330i
\(73\) 12.8816 + 7.43720i 1.50768 + 0.870459i 0.999960 + 0.00893589i \(0.00284442\pi\)
0.507719 + 0.861523i \(0.330489\pi\)
\(74\) −1.02505 15.7972i −0.119159 1.83639i
\(75\) 0 0
\(76\) −1.57575 + 3.79020i −0.180751 + 0.434766i
\(77\) −2.13680 5.51813i −0.243511 0.628849i
\(78\) −7.46261 11.1844i −0.844974 1.26638i
\(79\) 0.399413 0.230601i 0.0449375 0.0259447i −0.477363 0.878706i \(-0.658407\pi\)
0.522300 + 0.852762i \(0.325074\pi\)
\(80\) 0 0
\(81\) −4.44995 + 7.70755i −0.494439 + 0.856394i
\(82\) −0.914496 + 1.85137i −0.100989 + 0.204449i
\(83\) −10.9174 −1.19834 −0.599168 0.800624i \(-0.704502\pi\)
−0.599168 + 0.800624i \(0.704502\pi\)
\(84\) 13.5403 + 8.26724i 1.47737 + 0.902030i
\(85\) 0 0
\(86\) −6.23658 + 12.6257i −0.672508 + 1.36147i
\(87\) −11.0645 + 19.1643i −1.18624 + 2.05463i
\(88\) 2.04514 5.98626i 0.218013 0.638137i
\(89\) 6.07992 3.51024i 0.644470 0.372085i −0.141864 0.989886i \(-0.545310\pi\)
0.786334 + 0.617801i \(0.211976\pi\)
\(90\) 0 0
\(91\) 5.26080 6.53565i 0.551481 0.685122i
\(92\) 4.91490 + 2.04334i 0.512414 + 0.213033i
\(93\) 7.33344 + 12.7019i 0.760442 + 1.31712i
\(94\) −0.561053 8.64650i −0.0578682 0.891819i
\(95\) 0 0
\(96\) 5.39918 + 16.0777i 0.551052 + 1.64092i
\(97\) 0.185459i 0.0188305i 0.999956 + 0.00941523i \(0.00299701\pi\)
−0.999956 + 0.00941523i \(0.997003\pi\)
\(98\) −2.38673 + 9.60747i −0.241096 + 0.970501i
\(99\) 13.3945i 1.34620i
\(100\) 0 0
\(101\) −5.41172 3.12446i −0.538486 0.310895i 0.205979 0.978556i \(-0.433962\pi\)
−0.744465 + 0.667661i \(0.767295\pi\)
\(102\) 14.5783 0.945957i 1.44347 0.0936637i
\(103\) 5.70918 + 9.88858i 0.562542 + 0.974351i 0.997274 + 0.0737911i \(0.0235098\pi\)
−0.434732 + 0.900560i \(0.643157\pi\)
\(104\) 8.80027 1.73257i 0.862937 0.169893i
\(105\) 0 0
\(106\) 5.47934 3.65601i 0.532201 0.355103i
\(107\) −2.25502 + 1.30194i −0.218001 + 0.125863i −0.605024 0.796207i \(-0.706837\pi\)
0.387023 + 0.922070i \(0.373503\pi\)
\(108\) −10.8917 14.2328i −1.04805 1.36955i
\(109\) −0.500946 + 0.867663i −0.0479819 + 0.0831071i −0.889019 0.457871i \(-0.848612\pi\)
0.841037 + 0.540978i \(0.181946\pi\)
\(110\) 0 0
\(111\) −33.5606 −3.18543
\(112\) −8.55983 + 6.22329i −0.808828 + 0.588046i
\(113\) −14.8588 −1.39780 −0.698899 0.715220i \(-0.746326\pi\)
−0.698899 + 0.715220i \(0.746326\pi\)
\(114\) 7.80208 + 3.85389i 0.730732 + 0.360950i
\(115\) 0 0
\(116\) −8.97114 11.7231i −0.832949 1.08846i
\(117\) −16.4469 + 9.49562i −1.52052 + 0.877870i
\(118\) −8.37443 + 5.58771i −0.770929 + 0.514391i
\(119\) 3.29182 + 8.50085i 0.301760 + 0.779272i
\(120\) 0 0
\(121\) −2.99888 5.19421i −0.272626 0.472201i
\(122\) −3.57984 + 0.232288i −0.324104 + 0.0210304i
\(123\) 3.79114 + 2.18882i 0.341836 + 0.197359i
\(124\) −9.70193 + 1.26440i −0.871259 + 0.113546i
\(125\) 0 0
\(126\) 12.8911 18.3290i 1.14843 1.63288i
\(127\) 3.02360i 0.268301i −0.990961 0.134151i \(-0.957169\pi\)
0.990961 0.134151i \(-0.0428306\pi\)
\(128\) −11.2860 0.791535i −0.997550 0.0699625i
\(129\) 25.8544 + 14.9270i 2.27635 + 1.31425i
\(130\) 0 0
\(131\) 7.85267 + 13.6012i 0.686091 + 1.18834i 0.973093 + 0.230414i \(0.0740081\pi\)
−0.287002 + 0.957930i \(0.592659\pi\)
\(132\) −12.3835 5.14838i −1.07785 0.448109i
\(133\) −0.833705 + 5.36563i −0.0722914 + 0.465259i
\(134\) 0.0414202 + 0.0620775i 0.00357816 + 0.00536268i
\(135\) 0 0
\(136\) −3.15061 + 9.22202i −0.270163 + 0.790782i
\(137\) 4.80718 8.32628i 0.410705 0.711362i −0.584262 0.811565i \(-0.698616\pi\)
0.994967 + 0.100203i \(0.0319493\pi\)
\(138\) 4.99750 10.1173i 0.425415 0.861239i
\(139\) −7.49745 −0.635925 −0.317963 0.948103i \(-0.602999\pi\)
−0.317963 + 0.948103i \(0.602999\pi\)
\(140\) 0 0
\(141\) −18.3692 −1.54697
\(142\) 0.132997 0.269247i 0.0111608 0.0225947i
\(143\) −3.54618 + 6.14217i −0.296547 + 0.513634i
\(144\) 23.1553 6.13968i 1.92961 0.511640i
\(145\) 0 0
\(146\) 11.6753 + 17.4981i 0.966257 + 1.44815i
\(147\) 19.9975 + 6.36813i 1.64937 + 0.525234i
\(148\) 8.59435 20.6722i 0.706451 1.69925i
\(149\) −3.25066 5.63031i −0.266305 0.461253i 0.701600 0.712571i \(-0.252469\pi\)
−0.967905 + 0.251318i \(0.919136\pi\)
\(150\) 0 0
\(151\) 20.5029 + 11.8373i 1.66850 + 0.963309i 0.968448 + 0.249217i \(0.0801731\pi\)
0.700052 + 0.714092i \(0.253160\pi\)
\(152\) −4.37187 + 3.81890i −0.354605 + 0.309754i
\(153\) 20.6347i 1.66821i
\(154\) 0.746721 8.33509i 0.0601725 0.671661i
\(155\) 0 0
\(156\) −2.45731 18.8553i −0.196742 1.50963i
\(157\) −6.78313 3.91624i −0.541353 0.312550i 0.204274 0.978914i \(-0.434517\pi\)
−0.745627 + 0.666363i \(0.767850\pi\)
\(158\) 0.650870 0.0422336i 0.0517805 0.00335992i
\(159\) −6.98233 12.0937i −0.553734 0.959096i
\(160\) 0 0
\(161\) 6.95783 + 1.08110i 0.548354 + 0.0852026i
\(162\) −10.4697 + 6.98578i −0.822581 + 0.548855i
\(163\) 9.39774 5.42579i 0.736088 0.424980i −0.0845574 0.996419i \(-0.526948\pi\)
0.820645 + 0.571438i \(0.193614\pi\)
\(164\) −2.31909 + 1.77470i −0.181091 + 0.138580i
\(165\) 0 0
\(166\) −13.8428 6.83774i −1.07441 0.530712i
\(167\) 11.7476 0.909058 0.454529 0.890732i \(-0.349808\pi\)
0.454529 + 0.890732i \(0.349808\pi\)
\(168\) 11.9907 + 18.9631i 0.925102 + 1.46304i
\(169\) 2.94418 0.226476
\(170\) 0 0
\(171\) 6.14563 10.6445i 0.469968 0.814009i
\(172\) −15.8155 + 12.1029i −1.20592 + 0.922835i
\(173\) 14.2785 8.24371i 1.08558 0.626758i 0.153181 0.988198i \(-0.451048\pi\)
0.932395 + 0.361440i \(0.117715\pi\)
\(174\) −26.0324 + 17.3697i −1.97351 + 1.31679i
\(175\) 0 0
\(176\) 6.34247 6.30943i 0.478082 0.475591i
\(177\) 10.6715 + 18.4836i 0.802122 + 1.38932i
\(178\) 9.90763 0.642885i 0.742608 0.0481863i
\(179\) −7.88914 4.55480i −0.589662 0.340441i 0.175302 0.984515i \(-0.443910\pi\)
−0.764964 + 0.644073i \(0.777243\pi\)
\(180\) 0 0
\(181\) 16.5755i 1.23205i −0.787728 0.616023i \(-0.788743\pi\)
0.787728 0.616023i \(-0.211257\pi\)
\(182\) 10.7639 4.99202i 0.797872 0.370033i
\(183\) 7.60525i 0.562196i
\(184\) 4.95212 + 5.66917i 0.365075 + 0.417937i
\(185\) 0 0
\(186\) 1.34309 + 20.6986i 0.0984798 + 1.51769i
\(187\) −3.85305 6.67369i −0.281763 0.488028i
\(188\) 4.70407 11.3148i 0.343080 0.825218i
\(189\) −18.4688 14.8663i −1.34341 1.08136i
\(190\) 0 0
\(191\) −2.59197 + 1.49648i −0.187549 + 0.108281i −0.590834 0.806793i \(-0.701201\pi\)
0.403286 + 0.915074i \(0.367868\pi\)
\(192\) −3.22381 + 23.7675i −0.232659 + 1.71527i
\(193\) −7.35442 + 12.7382i −0.529383 + 0.916918i 0.470030 + 0.882651i \(0.344243\pi\)
−0.999413 + 0.0342676i \(0.989090\pi\)
\(194\) −0.116156 + 0.235154i −0.00833953 + 0.0168831i
\(195\) 0 0
\(196\) −9.04362 + 10.6870i −0.645973 + 0.763360i
\(197\) −4.81748 −0.343231 −0.171616 0.985164i \(-0.554899\pi\)
−0.171616 + 0.985164i \(0.554899\pi\)
\(198\) −8.38923 + 16.9837i −0.596196 + 1.20698i
\(199\) −0.637180 + 1.10363i −0.0451685 + 0.0782342i −0.887726 0.460373i \(-0.847716\pi\)
0.842557 + 0.538607i \(0.181049\pi\)
\(200\) 0 0
\(201\) 0.137014 0.0791053i 0.00966425 0.00557966i
\(202\) −4.90494 7.35115i −0.345110 0.517225i
\(203\) −15.2122 12.2448i −1.06768 0.859420i
\(204\) 19.0772 + 7.93125i 1.33567 + 0.555298i
\(205\) 0 0
\(206\) 1.04561 + 16.1141i 0.0728511 + 1.12272i
\(207\) −13.8032 7.96929i −0.959390 0.553904i
\(208\) 12.2435 + 3.31494i 0.848937 + 0.229850i
\(209\) 4.59023i 0.317513i
\(210\) 0 0
\(211\) 3.70986i 0.255397i 0.991813 + 0.127698i \(0.0407590\pi\)
−0.991813 + 0.127698i \(0.959241\pi\)
\(212\) 9.23742 1.20386i 0.634428 0.0826815i
\(213\) −0.551351 0.318323i −0.0377780 0.0218111i
\(214\) −3.67471 + 0.238444i −0.251198 + 0.0162997i
\(215\) 0 0
\(216\) −4.89600 24.8683i −0.333131 1.69207i
\(217\) −12.0697 + 4.67378i −0.819342 + 0.317277i
\(218\) −1.17861 + 0.786412i −0.0798258 + 0.0532625i
\(219\) 38.6209 22.2978i 2.60976 1.50675i
\(220\) 0 0
\(221\) 5.46301 9.46220i 0.367482 0.636497i
\(222\) −42.5535 21.0196i −2.85600 1.41074i
\(223\) 12.9581 0.867737 0.433869 0.900976i \(-0.357148\pi\)
0.433869 + 0.900976i \(0.357148\pi\)
\(224\) −14.7513 + 2.52971i −0.985612 + 0.169024i
\(225\) 0 0
\(226\) −18.8404 9.30634i −1.25324 0.619049i
\(227\) 4.44626 7.70115i 0.295109 0.511143i −0.679901 0.733304i \(-0.737977\pi\)
0.975010 + 0.222160i \(0.0713108\pi\)
\(228\) 7.47897 + 9.77318i 0.495307 + 0.647244i
\(229\) −11.2113 + 6.47287i −0.740866 + 0.427739i −0.822384 0.568933i \(-0.807357\pi\)
0.0815180 + 0.996672i \(0.474023\pi\)
\(230\) 0 0
\(231\) −17.5309 2.72392i −1.15345 0.179221i
\(232\) −4.03267 20.4832i −0.264758 1.34479i
\(233\) −7.60809 13.1776i −0.498423 0.863294i 0.501576 0.865114i \(-0.332754\pi\)
−0.999998 + 0.00182020i \(0.999421\pi\)
\(234\) −26.8013 + 1.73908i −1.75206 + 0.113687i
\(235\) 0 0
\(236\) −14.1181 + 1.83994i −0.919013 + 0.119770i
\(237\) 1.38275i 0.0898194i
\(238\) −1.15035 + 12.8405i −0.0745660 + 0.832324i
\(239\) 0.0438513i 0.00283650i −0.999999 0.00141825i \(-0.999549\pi\)
0.999999 0.00141825i \(-0.000451444\pi\)
\(240\) 0 0
\(241\) 1.99236 + 1.15029i 0.128339 + 0.0740968i 0.562795 0.826596i \(-0.309726\pi\)
−0.434456 + 0.900693i \(0.643059\pi\)
\(242\) −0.549231 8.46432i −0.0353059 0.544107i
\(243\) −0.0999675 0.173149i −0.00641292 0.0111075i
\(244\) −4.68458 1.94759i −0.299900 0.124682i
\(245\) 0 0
\(246\) 3.43612 + 5.14979i 0.219079 + 0.328339i
\(247\) 5.63627 3.25410i 0.358627 0.207053i
\(248\) −13.0936 4.47329i −0.831443 0.284054i
\(249\) −16.3659 + 28.3466i −1.03715 + 1.79639i
\(250\) 0 0
\(251\) 6.32409 0.399173 0.199587 0.979880i \(-0.436040\pi\)
0.199587 + 0.979880i \(0.436040\pi\)
\(252\) 27.8251 15.1665i 1.75282 0.955401i
\(253\) −5.95233 −0.374220
\(254\) 1.89374 3.83381i 0.118824 0.240554i
\(255\) 0 0
\(256\) −13.8144 8.07226i −0.863402 0.504516i
\(257\) 12.3334 7.12068i 0.769335 0.444176i −0.0633025 0.997994i \(-0.520163\pi\)
0.832637 + 0.553819i \(0.186830\pi\)
\(258\) 23.4333 + 35.1200i 1.45889 + 2.18648i
\(259\) 4.54713 29.2648i 0.282545 1.81843i
\(260\) 0 0
\(261\) 22.1017 + 38.2812i 1.36806 + 2.36955i
\(262\) 1.43818 + 22.1641i 0.0888511 + 1.36930i
\(263\) −10.1744 5.87421i −0.627382 0.362219i 0.152355 0.988326i \(-0.451314\pi\)
−0.779738 + 0.626107i \(0.784647\pi\)
\(264\) −12.4773 14.2840i −0.767925 0.879118i
\(265\) 0 0
\(266\) −4.41770 + 6.28125i −0.270867 + 0.385128i
\(267\) 21.0484i 1.28814i
\(268\) 0.0136390 + 0.104654i 0.000833133 + 0.00639276i
\(269\) −7.35196 4.24466i −0.448257 0.258801i 0.258837 0.965921i \(-0.416661\pi\)
−0.707094 + 0.707120i \(0.749994\pi\)
\(270\) 0 0
\(271\) −3.98686 6.90544i −0.242184 0.419476i 0.719152 0.694853i \(-0.244531\pi\)
−0.961336 + 0.275377i \(0.911197\pi\)
\(272\) −9.77078 + 9.71988i −0.592440 + 0.589354i
\(273\) −9.08330 23.4569i −0.549746 1.41968i
\(274\) 11.3102 7.54657i 0.683275 0.455905i
\(275\) 0 0
\(276\) 12.6733 9.69828i 0.762841 0.583768i
\(277\) −6.79754 + 11.7737i −0.408425 + 0.707412i −0.994713 0.102690i \(-0.967255\pi\)
0.586289 + 0.810102i \(0.300588\pi\)
\(278\) −9.50647 4.69579i −0.570160 0.281635i
\(279\) 29.2974 1.75399
\(280\) 0 0
\(281\) 9.48286 0.565700 0.282850 0.959164i \(-0.408720\pi\)
0.282850 + 0.959164i \(0.408720\pi\)
\(282\) −23.2914 11.5050i −1.38698 0.685111i
\(283\) 10.7746 18.6621i 0.640483 1.10935i −0.344842 0.938661i \(-0.612067\pi\)
0.985325 0.170689i \(-0.0545993\pi\)
\(284\) 0.337269 0.258097i 0.0200132 0.0153152i
\(285\) 0 0
\(286\) −8.34337 + 5.56699i −0.493354 + 0.329183i
\(287\) −2.42231 + 3.00931i −0.142984 + 0.177634i
\(288\) 33.2054 + 6.71772i 1.95665 + 0.395845i
\(289\) −2.56424 4.44140i −0.150838 0.261259i
\(290\) 0 0
\(291\) 0.481537 + 0.278016i 0.0282282 + 0.0162976i
\(292\) 3.84449 + 29.4994i 0.224982 + 1.72632i
\(293\) 28.9496i 1.69125i −0.533776 0.845626i \(-0.679227\pi\)
0.533776 0.845626i \(-0.320773\pi\)
\(294\) 21.3676 + 20.5994i 1.24618 + 1.20138i
\(295\) 0 0
\(296\) 23.8447 20.8288i 1.38594 1.21065i
\(297\) 17.3569 + 10.0210i 1.00715 + 0.581477i
\(298\) −0.595344 9.17496i −0.0344873 0.531491i
\(299\) −4.21972 7.30877i −0.244033 0.422677i
\(300\) 0 0
\(301\) −16.5194 + 20.5226i −0.952162 + 1.18290i
\(302\) 18.5829 + 27.8506i 1.06933 + 1.60262i
\(303\) −16.2251 + 9.36757i −0.932108 + 0.538153i
\(304\) −7.93521 + 2.10404i −0.455115 + 0.120675i
\(305\) 0 0
\(306\) 12.9239 26.1640i 0.738809 1.49569i
\(307\) 8.00589 0.456920 0.228460 0.973553i \(-0.426631\pi\)
0.228460 + 0.973553i \(0.426631\pi\)
\(308\) 6.16724 10.1009i 0.351411 0.575551i
\(309\) 34.2339 1.94750
\(310\) 0 0
\(311\) 6.87633 11.9101i 0.389921 0.675363i −0.602518 0.798105i \(-0.705836\pi\)
0.992438 + 0.122743i \(0.0391691\pi\)
\(312\) 8.69367 25.4469i 0.492182 1.44065i
\(313\) −9.21091 + 5.31792i −0.520631 + 0.300587i −0.737193 0.675682i \(-0.763849\pi\)
0.216562 + 0.976269i \(0.430516\pi\)
\(314\) −6.14793 9.21404i −0.346948 0.519979i
\(315\) 0 0
\(316\) 0.851730 + 0.354102i 0.0479136 + 0.0199198i
\(317\) −8.49175 14.7081i −0.476944 0.826091i 0.522707 0.852513i \(-0.324922\pi\)
−0.999651 + 0.0264211i \(0.991589\pi\)
\(318\) −1.27878 19.7076i −0.0717105 1.10514i
\(319\) 14.2963 + 8.25397i 0.800439 + 0.462133i
\(320\) 0 0
\(321\) 7.80679i 0.435732i
\(322\) 8.14515 + 5.72861i 0.453911 + 0.319243i
\(323\) 7.07140i 0.393463i
\(324\) −17.6506 + 2.30030i −0.980586 + 0.127794i
\(325\) 0 0
\(326\) 15.3142 0.993708i 0.848177 0.0550364i
\(327\) 1.50191 + 2.60138i 0.0830557 + 0.143857i
\(328\) −4.05204 + 0.797755i −0.223737 + 0.0440486i
\(329\) 2.48885 16.0179i 0.137215 0.883097i
\(330\) 0 0
\(331\) 7.21415 4.16509i 0.396525 0.228934i −0.288458 0.957492i \(-0.593143\pi\)
0.684984 + 0.728558i \(0.259809\pi\)
\(332\) −13.2695 17.3400i −0.728258 0.951655i
\(333\) −33.5190 + 58.0567i −1.83683 + 3.18149i
\(334\) 14.8955 + 7.35775i 0.815046 + 0.402598i
\(335\) 0 0
\(336\) 3.32679 + 31.5545i 0.181491 + 1.72144i
\(337\) 27.0772 1.47499 0.737495 0.675353i \(-0.236009\pi\)
0.737495 + 0.675353i \(0.236009\pi\)
\(338\) 3.73311 + 1.84400i 0.203054 + 0.100300i
\(339\) −22.2744 + 38.5804i −1.20978 + 2.09540i
\(340\) 0 0
\(341\) 9.47541 5.47063i 0.513122 0.296251i
\(342\) 14.4593 9.64775i 0.781870 0.521690i
\(343\) −8.26248 + 16.5750i −0.446132 + 0.894967i
\(344\) −27.6337 + 5.44044i −1.48991 + 0.293329i
\(345\) 0 0
\(346\) 23.2678 1.50980i 1.25089 0.0811672i
\(347\) 24.0514 + 13.8861i 1.29115 + 0.745443i 0.978857 0.204544i \(-0.0655713\pi\)
0.312288 + 0.949987i \(0.398905\pi\)
\(348\) −43.8870 + 5.71955i −2.35259 + 0.306600i
\(349\) 9.64063i 0.516051i 0.966138 + 0.258026i \(0.0830719\pi\)
−0.966138 + 0.258026i \(0.916928\pi\)
\(350\) 0 0
\(351\) 28.4163i 1.51675i
\(352\) 11.9937 4.02771i 0.639267 0.214677i
\(353\) 14.1283 + 8.15697i 0.751973 + 0.434152i 0.826406 0.563074i \(-0.190381\pi\)
−0.0744333 + 0.997226i \(0.523715\pi\)
\(354\) 1.95444 + 30.1203i 0.103877 + 1.60088i
\(355\) 0 0
\(356\) 12.9651 + 5.39018i 0.687151 + 0.285679i
\(357\) 27.0069 + 4.19629i 1.42936 + 0.222091i
\(358\) −7.15037 10.7164i −0.377909 0.566380i
\(359\) 1.38744 0.801040i 0.0732264 0.0422773i −0.462940 0.886390i \(-0.653205\pi\)
0.536166 + 0.844112i \(0.319872\pi\)
\(360\) 0 0
\(361\) 7.39392 12.8067i 0.389154 0.674034i
\(362\) 10.3815 21.0171i 0.545642 1.10463i
\(363\) −17.9822 −0.943818
\(364\) 16.7748 + 0.411939i 0.879237 + 0.0215915i
\(365\) 0 0
\(366\) −4.76331 + 9.64316i −0.248982 + 0.504056i
\(367\) 0.630259 1.09164i 0.0328993 0.0569832i −0.849107 0.528221i \(-0.822859\pi\)
0.882006 + 0.471238i \(0.156193\pi\)
\(368\) 2.72839 + 10.2899i 0.142227 + 0.536398i
\(369\) 7.57289 4.37221i 0.394229 0.227608i
\(370\) 0 0
\(371\) 11.4918 4.45000i 0.596623 0.231033i
\(372\) −11.2609 + 27.0862i −0.583851 + 1.40435i
\(373\) 4.61372 + 7.99120i 0.238889 + 0.413768i 0.960396 0.278639i \(-0.0898833\pi\)
−0.721507 + 0.692408i \(0.756550\pi\)
\(374\) −0.705669 10.8752i −0.0364893 0.562344i
\(375\) 0 0
\(376\) 13.0513 11.4005i 0.673068 0.587936i
\(377\) 23.4056i 1.20545i
\(378\) −14.1067 30.4172i −0.725571 1.56449i
\(379\) 2.53516i 0.130223i 0.997878 + 0.0651113i \(0.0207403\pi\)
−0.997878 + 0.0651113i \(0.979260\pi\)
\(380\) 0 0
\(381\) −7.85068 4.53259i −0.402203 0.232212i
\(382\) −4.22379 + 0.274073i −0.216108 + 0.0140228i
\(383\) 0.662435 + 1.14737i 0.0338489 + 0.0586279i 0.882454 0.470400i \(-0.155890\pi\)
−0.848605 + 0.529027i \(0.822557\pi\)
\(384\) −18.9737 + 28.1171i −0.968248 + 1.43485i
\(385\) 0 0
\(386\) −17.3033 + 11.5454i −0.880715 + 0.587644i
\(387\) 51.6448 29.8171i 2.62525 1.51569i
\(388\) −0.294563 + 0.225416i −0.0149542 + 0.0114437i
\(389\) −16.1134 + 27.9093i −0.816983 + 1.41506i 0.0909120 + 0.995859i \(0.471022\pi\)
−0.907895 + 0.419197i \(0.862312\pi\)
\(390\) 0 0
\(391\) 9.16976 0.463735
\(392\) −18.1605 + 7.88657i −0.917241 + 0.398332i
\(393\) 47.0869 2.37522
\(394\) −6.10838 3.01728i −0.307736 0.152008i
\(395\) 0 0
\(396\) −21.2744 + 16.2804i −1.06908 + 0.818119i
\(397\) 30.4617 17.5871i 1.52883 0.882670i 0.529419 0.848361i \(-0.322410\pi\)
0.999411 0.0343095i \(-0.0109232\pi\)
\(398\) −1.49914 + 1.00028i −0.0751452 + 0.0501395i
\(399\) 12.6819 + 10.2082i 0.634890 + 0.511047i
\(400\) 0 0
\(401\) −15.9623 27.6476i −0.797120 1.38065i −0.921484 0.388416i \(-0.873022\pi\)
0.124364 0.992237i \(-0.460311\pi\)
\(402\) 0.223274 0.0144878i 0.0111359 0.000722585i
\(403\) 13.4346 + 7.75647i 0.669225 + 0.386377i
\(404\) −1.61511 12.3930i −0.0803549 0.616576i
\(405\) 0 0
\(406\) −11.6192 25.0536i −0.576653 1.24339i
\(407\) 25.0357i 1.24097i
\(408\) 19.2217 + 22.0049i 0.951616 + 1.08941i
\(409\) 14.2151 + 8.20712i 0.702894 + 0.405816i 0.808424 0.588600i \(-0.200321\pi\)
−0.105530 + 0.994416i \(0.533654\pi\)
\(410\) 0 0
\(411\) −14.4126 24.9634i −0.710922 1.23135i
\(412\) −8.76677 + 21.0869i −0.431908 + 1.03888i
\(413\) −17.5636 + 6.80123i −0.864250 + 0.334666i
\(414\) −12.5106 18.7500i −0.614864 0.921510i
\(415\) 0 0
\(416\) 13.4481 + 11.8716i 0.659349 + 0.582052i
\(417\) −11.2392 + 19.4669i −0.550387 + 0.953298i
\(418\) 2.87495 5.82023i 0.140618 0.284677i
\(419\) −11.8654 −0.579665 −0.289832 0.957077i \(-0.593600\pi\)
−0.289832 + 0.957077i \(0.593600\pi\)
\(420\) 0 0
\(421\) 10.3433 0.504101 0.252051 0.967714i \(-0.418895\pi\)
0.252051 + 0.967714i \(0.418895\pi\)
\(422\) −2.32355 + 4.70395i −0.113109 + 0.228985i
\(423\) −18.3465 + 31.7770i −0.892035 + 1.54505i
\(424\) 12.4667 + 4.25912i 0.605436 + 0.206841i
\(425\) 0 0
\(426\) −0.499720 0.748942i −0.0242115 0.0362864i
\(427\) −6.63178 1.03044i −0.320934 0.0498663i
\(428\) −4.80873 1.99920i −0.232439 0.0966349i
\(429\) 10.6320 + 18.4151i 0.513316 + 0.889089i
\(430\) 0 0
\(431\) −25.6838 14.8286i −1.23715 0.714267i −0.268636 0.963242i \(-0.586573\pi\)
−0.968510 + 0.248975i \(0.919906\pi\)
\(432\) 9.36754 34.5985i 0.450696 1.66462i
\(433\) 29.4107i 1.41339i 0.707520 + 0.706693i \(0.249814\pi\)
−0.707520 + 0.706693i \(0.750186\pi\)
\(434\) −18.2311 1.63328i −0.875122 0.0784001i
\(435\) 0 0
\(436\) −1.98698 + 0.258952i −0.0951591 + 0.0124016i
\(437\) 4.73029 + 2.73103i 0.226280 + 0.130643i
\(438\) 62.9354 4.08374i 3.00717 0.195129i
\(439\) 4.41191 + 7.64165i 0.210569 + 0.364716i 0.951893 0.306432i \(-0.0991351\pi\)
−0.741324 + 0.671147i \(0.765802\pi\)
\(440\) 0 0
\(441\) 30.9890 28.2336i 1.47567 1.34446i
\(442\) 12.8532 8.57612i 0.611366 0.407925i
\(443\) 16.9454 9.78342i 0.805099 0.464824i −0.0401518 0.999194i \(-0.512784\pi\)
0.845251 + 0.534369i \(0.179451\pi\)
\(444\) −40.7912 53.3041i −1.93586 2.52970i
\(445\) 0 0
\(446\) 16.4303 + 8.11589i 0.777999 + 0.384298i
\(447\) −19.4919 −0.921935
\(448\) −20.2885 6.03143i −0.958540 0.284958i
\(449\) 5.02309 0.237054 0.118527 0.992951i \(-0.462183\pi\)
0.118527 + 0.992951i \(0.462183\pi\)
\(450\) 0 0
\(451\) 1.63282 2.82813i 0.0768866 0.133171i
\(452\) −18.0601 23.6002i −0.849477 1.11006i
\(453\) 61.4705 35.4900i 2.88814 1.66747i
\(454\) 10.4611 6.97998i 0.490962 0.327587i
\(455\) 0 0
\(456\) 3.36192 + 17.0762i 0.157436 + 0.799667i
\(457\) −13.9225 24.1144i −0.651265 1.12802i −0.982816 0.184587i \(-0.940905\pi\)
0.331551 0.943437i \(-0.392428\pi\)
\(458\) −18.2696 + 1.18548i −0.853683 + 0.0553937i
\(459\) −26.7388 15.4377i −1.24806 0.720569i
\(460\) 0 0
\(461\) 19.8494i 0.924481i 0.886755 + 0.462240i \(0.152954\pi\)
−0.886755 + 0.462240i \(0.847046\pi\)
\(462\) −20.5224 14.4337i −0.954789 0.671518i
\(463\) 35.7118i 1.65967i −0.558012 0.829833i \(-0.688436\pi\)
0.558012 0.829833i \(-0.311564\pi\)
\(464\) 7.71573 28.4976i 0.358194 1.32297i
\(465\) 0 0
\(466\) −1.39339 21.4738i −0.0645474 0.994754i
\(467\) −11.3055 19.5818i −0.523158 0.906136i −0.999637 0.0269503i \(-0.991420\pi\)
0.476479 0.879186i \(-0.341913\pi\)
\(468\) −35.0722 14.5811i −1.62121 0.674010i
\(469\) 0.0504157 + 0.130195i 0.00232798 + 0.00601183i
\(470\) 0 0
\(471\) −20.3368 + 11.7415i −0.937070 + 0.541018i
\(472\) −19.0536 6.50948i −0.877015 0.299623i
\(473\) 11.1353 19.2870i 0.512003 0.886816i
\(474\) 0.866043 1.75328i 0.0397787 0.0805306i
\(475\) 0 0
\(476\) −9.50083 + 15.5607i −0.435470 + 0.713225i
\(477\) −27.8947 −1.27721
\(478\) 0.0274649 0.0556017i 0.00125621 0.00254316i
\(479\) −4.28200 + 7.41664i −0.195649 + 0.338875i −0.947113 0.320900i \(-0.896015\pi\)
0.751464 + 0.659774i \(0.229348\pi\)
\(480\) 0 0
\(481\) −30.7409 + 17.7483i −1.40166 + 0.809251i
\(482\) 1.80579 + 2.70638i 0.0822515 + 0.123272i
\(483\) 13.2373 16.4451i 0.602319 0.748280i
\(484\) 4.60495 11.0764i 0.209316 0.503473i
\(485\) 0 0
\(486\) −0.0183086 0.282157i −0.000830494 0.0127989i
\(487\) −27.4054 15.8225i −1.24186 0.716987i −0.272386 0.962188i \(-0.587813\pi\)
−0.969472 + 0.245201i \(0.921146\pi\)
\(488\) −4.72006 5.40351i −0.213667 0.244605i
\(489\) 32.5346i 1.47126i
\(490\) 0 0
\(491\) 35.7781i 1.61464i −0.590113 0.807321i \(-0.700917\pi\)
0.590113 0.807321i \(-0.299083\pi\)
\(492\) 1.13146 + 8.68184i 0.0510100 + 0.391408i
\(493\) −22.0239 12.7155i −0.991906 0.572677i
\(494\) 9.18467 0.595973i 0.413238 0.0268141i
\(495\) 0 0
\(496\) −13.8004 13.8727i −0.619658 0.622903i
\(497\) 0.352280 0.437649i 0.0158019 0.0196312i
\(498\) −38.5053 + 25.6921i −1.72546 + 1.15129i
\(499\) −35.7797 + 20.6574i −1.60172 + 0.924752i −0.610574 + 0.791959i \(0.709061\pi\)
−0.991144 + 0.132793i \(0.957605\pi\)
\(500\) 0 0
\(501\) 17.6105 30.5023i 0.786780 1.36274i
\(502\) 8.01870 + 3.96090i 0.357892 + 0.176783i
\(503\) 29.0170 1.29381 0.646903 0.762572i \(-0.276064\pi\)
0.646903 + 0.762572i \(0.276064\pi\)
\(504\) 44.7803 1.80315i 1.99467 0.0803187i
\(505\) 0 0
\(506\) −7.54733 3.72806i −0.335520 0.165732i
\(507\) 4.41354 7.64448i 0.196012 0.339503i
\(508\) 4.80237 3.67503i 0.213071 0.163053i
\(509\) 17.3474 10.0155i 0.768910 0.443931i −0.0635754 0.997977i \(-0.520250\pi\)
0.832486 + 0.554046i \(0.186917\pi\)
\(510\) 0 0
\(511\) 14.2109 + 36.6986i 0.628654 + 1.62345i
\(512\) −12.4604 18.8875i −0.550675 0.834720i
\(513\) −9.19562 15.9273i −0.405996 0.703206i
\(514\) 20.0981 1.30412i 0.886487 0.0575222i
\(515\) 0 0
\(516\) 7.71618 + 59.2075i 0.339686 + 2.60646i
\(517\) 13.7031i 0.602663i
\(518\) 24.0947 34.2587i 1.05866 1.50524i
\(519\) 49.4317i 2.16981i
\(520\) 0 0
\(521\) 18.5712 + 10.7221i 0.813620 + 0.469743i 0.848211 0.529658i \(-0.177680\pi\)
−0.0345917 + 0.999402i \(0.511013\pi\)
\(522\) 4.04782 + 62.3818i 0.177168 + 2.73038i
\(523\) 20.5020 + 35.5105i 0.896491 + 1.55277i 0.831949 + 0.554852i \(0.187225\pi\)
0.0645418 + 0.997915i \(0.479441\pi\)
\(524\) −12.0582 + 29.0040i −0.526766 + 1.26704i
\(525\) 0 0
\(526\) −9.22165 13.8207i −0.402083 0.602611i
\(527\) −14.5972 + 8.42768i −0.635863 + 0.367116i
\(528\) −6.87442 25.9263i −0.299171 1.12830i
\(529\) −7.95856 + 13.7846i −0.346024 + 0.599332i
\(530\) 0 0
\(531\) 42.6333 1.85013
\(532\) −9.53553 + 5.19749i −0.413418 + 0.225340i
\(533\) 4.63015 0.200554
\(534\) 13.1830 26.6886i 0.570485 1.15493i
\(535\) 0 0
\(536\) −0.0482531 + 0.141240i −0.00208422 + 0.00610062i
\(537\) −23.6528 + 13.6559i −1.02069 + 0.589297i
\(538\) −6.66349 9.98673i −0.287284 0.430559i
\(539\) 4.75052 14.9178i 0.204620 0.642557i
\(540\) 0 0
\(541\) −1.72641 2.99023i −0.0742242 0.128560i 0.826524 0.562901i \(-0.190315\pi\)
−0.900749 + 0.434341i \(0.856981\pi\)
\(542\) −0.730175 11.2529i −0.0313637 0.483352i
\(543\) −43.0377 24.8479i −1.84693 1.06632i
\(544\) −18.4767 + 6.20481i −0.792182 + 0.266029i
\(545\) 0 0
\(546\) 3.17422 35.4315i 0.135844 1.51633i
\(547\) 28.2607i 1.20834i 0.796855 + 0.604170i \(0.206495\pi\)
−0.796855 + 0.604170i \(0.793505\pi\)
\(548\) 19.0675 2.48496i 0.814522 0.106152i
\(549\) 13.1564 + 7.59584i 0.561500 + 0.324182i
\(550\) 0 0
\(551\) −7.57413 13.1188i −0.322669 0.558879i
\(552\) 22.1434 4.35953i 0.942487 0.185554i
\(553\) 1.20576 + 0.187349i 0.0512741 + 0.00796691i
\(554\) −15.9931 + 10.6711i −0.679481 + 0.453374i
\(555\) 0 0
\(556\) −9.11277 11.9082i −0.386468 0.505018i
\(557\) 1.03826 1.79833i 0.0439927 0.0761976i −0.843191 0.537615i \(-0.819326\pi\)
0.887183 + 0.461417i \(0.152659\pi\)
\(558\) 37.1480 + 18.3495i 1.57260 + 0.776798i
\(559\) 31.5762 1.33553
\(560\) 0 0
\(561\) −23.1040 −0.975453
\(562\) 12.0239 + 5.93929i 0.507197 + 0.250534i
\(563\) −22.9547 + 39.7588i −0.967426 + 1.67563i −0.264477 + 0.964392i \(0.585199\pi\)
−0.702949 + 0.711240i \(0.748134\pi\)
\(564\) −22.3268 29.1757i −0.940130 1.22852i
\(565\) 0 0
\(566\) 25.3502 16.9145i 1.06555 0.710971i
\(567\) −21.9581 + 8.50292i −0.922154 + 0.357089i
\(568\) 0.589295 0.116019i 0.0247263 0.00486803i
\(569\) −3.96413 6.86607i −0.166185 0.287840i 0.770891 0.636968i \(-0.219811\pi\)
−0.937075 + 0.349127i \(0.886478\pi\)
\(570\) 0 0
\(571\) 18.3314 + 10.5837i 0.767147 + 0.442912i 0.831856 0.554992i \(-0.187279\pi\)
−0.0647092 + 0.997904i \(0.520612\pi\)
\(572\) −14.0658 + 1.83311i −0.588120 + 0.0766464i
\(573\) 8.97330i 0.374865i
\(574\) −4.95618 + 2.29855i −0.206867 + 0.0959396i
\(575\) 0 0
\(576\) 37.8958 + 29.3150i 1.57899 + 1.22146i
\(577\) −8.94731 5.16573i −0.372481 0.215052i 0.302061 0.953289i \(-0.402325\pi\)
−0.674542 + 0.738237i \(0.735659\pi\)
\(578\) −0.469630 7.23756i −0.0195340 0.301043i
\(579\) 22.0496 + 38.1911i 0.916351 + 1.58717i
\(580\) 0 0
\(581\) −22.5008 18.1117i −0.933490 0.751402i
\(582\) 0.436444 + 0.654109i 0.0180912 + 0.0271137i
\(583\) −9.02174 + 5.20871i −0.373642 + 0.215723i
\(584\) −13.6013 + 39.8119i −0.562827 + 1.64743i
\(585\) 0 0
\(586\) 18.1317 36.7069i 0.749012 1.51635i
\(587\) 20.4660 0.844722 0.422361 0.906428i \(-0.361201\pi\)
0.422361 + 0.906428i \(0.361201\pi\)
\(588\) 14.1915 + 39.5021i 0.585249 + 1.62904i
\(589\) −10.0401 −0.413694
\(590\) 0 0
\(591\) −7.22175 + 12.5084i −0.297063 + 0.514529i
\(592\) 43.2796 11.4757i 1.77878 0.471648i
\(593\) −38.8389 + 22.4236i −1.59492 + 0.920828i −0.602477 + 0.798136i \(0.705819\pi\)
−0.992445 + 0.122692i \(0.960847\pi\)
\(594\) 15.7315 + 23.5772i 0.645471 + 0.967383i
\(595\) 0 0
\(596\) 4.99158 12.0064i 0.204463 0.491800i
\(597\) 1.91036 + 3.30884i 0.0781857 + 0.135422i
\(598\) −0.772823 11.9101i −0.0316031 0.487041i
\(599\) −14.1499 8.16942i −0.578147 0.333793i 0.182250 0.983252i \(-0.441662\pi\)
−0.760397 + 0.649459i \(0.774995\pi\)
\(600\) 0 0
\(601\) 39.8029i 1.62359i 0.583941 + 0.811796i \(0.301510\pi\)
−0.583941 + 0.811796i \(0.698490\pi\)
\(602\) −33.7996 + 15.6754i −1.37757 + 0.638882i
\(603\) 0.316030i 0.0128697i
\(604\) 6.11903 + 46.9523i 0.248980 + 1.91046i
\(605\) 0 0
\(606\) −26.4399 + 1.71563i −1.07405 + 0.0696926i
\(607\) −4.70373 8.14710i −0.190919 0.330681i 0.754636 0.656143i \(-0.227813\pi\)
−0.945555 + 0.325463i \(0.894480\pi\)
\(608\) −11.3793 2.30213i −0.461493 0.0933636i
\(609\) −54.5975 + 21.1420i −2.21240 + 0.856716i
\(610\) 0 0
\(611\) −16.8259 + 9.71441i −0.680701 + 0.393003i
\(612\) 32.7739 25.0804i 1.32481 1.01382i
\(613\) 6.81796 11.8091i 0.275375 0.476963i −0.694855 0.719150i \(-0.744531\pi\)
0.970230 + 0.242187i \(0.0778646\pi\)
\(614\) 10.1512 + 5.01423i 0.409667 + 0.202358i
\(615\) 0 0
\(616\) 14.1462 8.94487i 0.569966 0.360399i
\(617\) −39.1144 −1.57469 −0.787343 0.616515i \(-0.788544\pi\)
−0.787343 + 0.616515i \(0.788544\pi\)
\(618\) 43.4072 + 21.4413i 1.74609 + 0.862496i
\(619\) 9.50950 16.4709i 0.382219 0.662023i −0.609160 0.793047i \(-0.708493\pi\)
0.991379 + 0.131024i \(0.0418266\pi\)
\(620\) 0 0
\(621\) −20.6535 + 11.9243i −0.828798 + 0.478507i
\(622\) 16.1785 10.7948i 0.648697 0.432833i
\(623\) 18.3542 + 2.85186i 0.735347 + 0.114257i
\(624\) 26.9611 26.8206i 1.07931 1.07368i
\(625\) 0 0
\(626\) −15.0098 + 0.973953i −0.599912 + 0.0389270i
\(627\) −11.9184 6.88108i −0.475974 0.274804i
\(628\) −2.02441 15.5336i −0.0807827 0.619859i
\(629\) 38.5683i 1.53782i
\(630\) 0 0
\(631\) 16.4987i 0.656802i 0.944538 + 0.328401i \(0.106510\pi\)
−0.944538 + 0.328401i \(0.893490\pi\)
\(632\) 0.858180 + 0.982441i 0.0341366 + 0.0390794i
\(633\) 9.63252 + 5.56134i 0.382858 + 0.221043i
\(634\) −1.55522 23.9679i −0.0617659 0.951886i
\(635\) 0 0
\(636\) 10.7218 25.7893i 0.425146 1.02261i
\(637\) 21.6851 4.74245i 0.859196 0.187903i
\(638\) 12.9575 + 19.4197i 0.512993 + 0.768835i
\(639\) −1.10134 + 0.635857i −0.0435682 + 0.0251541i
\(640\) 0 0
\(641\) −13.4723 + 23.3347i −0.532124 + 0.921665i 0.467173 + 0.884166i \(0.345272\pi\)
−0.999297 + 0.0374991i \(0.988061\pi\)
\(642\) −4.88954 + 9.89870i −0.192975 + 0.390671i
\(643\) 43.6730 1.72229 0.861147 0.508355i \(-0.169746\pi\)
0.861147 + 0.508355i \(0.169746\pi\)
\(644\) 6.73979 + 12.3651i 0.265585 + 0.487254i
\(645\) 0 0
\(646\) −4.42895 + 8.96625i −0.174255 + 0.352773i
\(647\) −14.0540 + 24.3422i −0.552518 + 0.956989i 0.445574 + 0.895245i \(0.353000\pi\)
−0.998092 + 0.0617443i \(0.980334\pi\)
\(648\) −23.8209 8.13818i −0.935775 0.319698i
\(649\) 13.7885 7.96080i 0.541246 0.312489i
\(650\) 0 0
\(651\) −5.95797 + 38.3448i −0.233511 + 1.50285i
\(652\) 20.0402 + 8.33161i 0.784836 + 0.326291i
\(653\) −20.8367 36.0902i −0.815403 1.41232i −0.909038 0.416713i \(-0.863182\pi\)
0.0936346 0.995607i \(-0.470151\pi\)
\(654\) 0.275067 + 4.23912i 0.0107560 + 0.165763i
\(655\) 0 0
\(656\) −5.63748 1.52635i −0.220107 0.0595939i
\(657\) 89.0808i 3.47537i
\(658\) 13.1881 18.7513i 0.514125 0.731002i
\(659\) 47.0951i 1.83457i 0.398236 + 0.917283i \(0.369622\pi\)
−0.398236 + 0.917283i \(0.630378\pi\)
\(660\) 0 0
\(661\) −10.0792 5.81924i −0.392036 0.226342i 0.291006 0.956721i \(-0.406010\pi\)
−0.683042 + 0.730379i \(0.739343\pi\)
\(662\) 11.7559 0.762817i 0.456907 0.0296477i
\(663\) −16.3789 28.3690i −0.636103 1.10176i
\(664\) −5.96486 30.2973i −0.231481 1.17577i
\(665\) 0 0
\(666\) −78.8628 + 52.6200i −3.05587 + 2.03898i
\(667\) −17.0116 + 9.82168i −0.658693 + 0.380297i
\(668\) 14.2786 + 18.6587i 0.552457 + 0.721926i
\(669\) 19.4251 33.6452i 0.751017 1.30080i
\(670\) 0 0
\(671\) 5.67340 0.219019
\(672\) −15.5449 + 42.0935i −0.599658 + 1.62379i
\(673\) −14.9849 −0.577626 −0.288813 0.957385i \(-0.593261\pi\)
−0.288813 + 0.957385i \(0.593261\pi\)
\(674\) 34.3328 + 16.9590i 1.32245 + 0.653234i
\(675\) 0 0
\(676\) 3.57851 + 4.67623i 0.137635 + 0.179855i
\(677\) −19.9347 + 11.5093i −0.766154 + 0.442339i −0.831501 0.555524i \(-0.812518\pi\)
0.0653470 + 0.997863i \(0.479185\pi\)
\(678\) −52.4067 + 34.9676i −2.01267 + 1.34292i
\(679\) −0.307673 + 0.382232i −0.0118074 + 0.0146687i
\(680\) 0 0
\(681\) −13.3305 23.0892i −0.510827 0.884779i
\(682\) 15.4408 1.00192i 0.591259 0.0383655i
\(683\) −32.2762 18.6347i −1.23502 0.713037i −0.266945 0.963712i \(-0.586014\pi\)
−0.968071 + 0.250675i \(0.919348\pi\)
\(684\) 24.3764 3.17684i 0.932055 0.121469i
\(685\) 0 0
\(686\) −20.8577 + 15.8415i −0.796352 + 0.604833i
\(687\) 38.8132i 1.48082i
\(688\) −38.4459 10.4092i −1.46573 0.396848i
\(689\) −12.7914 7.38510i −0.487312 0.281350i
\(690\) 0 0
\(691\) −13.9969 24.2433i −0.532467 0.922260i −0.999281 0.0379044i \(-0.987932\pi\)
0.466815 0.884355i \(-0.345402\pi\)
\(692\) 30.4483 + 12.6587i 1.15747 + 0.481211i
\(693\) −22.2213 + 27.6062i −0.844118 + 1.04867i
\(694\) 21.7991 + 32.6708i 0.827483 + 1.24017i
\(695\) 0 0
\(696\) −59.2292 20.2351i −2.24508 0.767009i
\(697\) −2.51542 + 4.35683i −0.0952782 + 0.165027i
\(698\) −6.03811 + 12.2239i −0.228546 + 0.462683i
\(699\) −45.6203 −1.72552
\(700\) 0 0
\(701\) 29.2334 1.10413 0.552065 0.833801i \(-0.313840\pi\)
0.552065 + 0.833801i \(0.313840\pi\)
\(702\) −17.7977 + 36.0308i −0.671729 + 1.35989i
\(703\) 11.4868 19.8957i 0.433233 0.750381i
\(704\) 17.7302 + 2.40491i 0.668232 + 0.0906386i
\(705\) 0 0
\(706\) 12.8053 + 19.1915i 0.481932 + 0.722283i
\(707\) −5.97017 15.4175i −0.224532 0.579835i
\(708\) −16.3868 + 39.4155i −0.615852 + 1.48133i
\(709\) 2.08074 + 3.60395i 0.0781440 + 0.135349i 0.902449 0.430796i \(-0.141767\pi\)
−0.824305 + 0.566146i \(0.808434\pi\)
\(710\) 0 0
\(711\) −2.39203 1.38104i −0.0897082 0.0517931i
\(712\) 13.0633 + 14.9548i 0.489569 + 0.560457i
\(713\) 13.0194i 0.487580i
\(714\) 31.6154 + 22.2356i 1.18318 + 0.832148i
\(715\) 0 0
\(716\) −2.35449 18.0664i −0.0879916 0.675173i
\(717\) −0.113858 0.0657362i −0.00425212 0.00245496i
\(718\) 2.26093 0.146707i 0.0843771 0.00547505i
\(719\) −21.1113 36.5658i −0.787318 1.36368i −0.927604 0.373564i \(-0.878135\pi\)
0.140286 0.990111i \(-0.455198\pi\)
\(720\) 0 0
\(721\) −4.63835 + 29.8519i −0.172741 + 1.11174i
\(722\) 17.3962 11.6074i 0.647421 0.431982i
\(723\) 5.97339 3.44874i 0.222153 0.128260i
\(724\) 26.3268 20.1467i 0.978427 0.748746i
\(725\) 0 0
\(726\) −22.8007 11.2626i −0.846212 0.417993i
\(727\) −27.2605 −1.01104 −0.505519 0.862816i \(-0.668699\pi\)
−0.505519 + 0.862816i \(0.668699\pi\)
\(728\) 21.0118 + 11.0287i 0.778748 + 0.408750i
\(729\) −27.2992 −1.01108
\(730\) 0 0
\(731\) −17.1544 + 29.7122i −0.634477 + 1.09895i
\(732\) −12.0794 + 9.24380i −0.446467 + 0.341661i
\(733\) −13.2554 + 7.65300i −0.489599 + 0.282670i −0.724408 0.689372i \(-0.757887\pi\)
0.234809 + 0.972041i \(0.424553\pi\)
\(734\) 1.48286 0.989415i 0.0547333 0.0365200i
\(735\) 0 0
\(736\) −2.98526 + 14.7560i −0.110038 + 0.543915i
\(737\) −0.0590113 0.102211i −0.00217371 0.00376498i
\(738\) 12.3405 0.800751i 0.454261 0.0294760i
\(739\) 42.5694 + 24.5774i 1.56594 + 0.904096i 0.996635 + 0.0819692i \(0.0261209\pi\)
0.569305 + 0.822126i \(0.307212\pi\)
\(740\) 0 0
\(741\) 19.5125i 0.716810i
\(742\) 17.3582 + 1.55508i 0.637241 + 0.0570890i
\(743\) 35.2067i 1.29161i −0.763503 0.645805i \(-0.776522\pi\)
0.763503 0.645805i \(-0.223478\pi\)
\(744\) −31.2430 + 27.2913i −1.14542 + 1.00055i
\(745\) 0 0
\(746\) 0.844982 + 13.0222i 0.0309370 + 0.476776i
\(747\) 32.6913 + 56.6229i 1.19611 + 2.07173i
\(748\) 5.91659 14.2313i 0.216332 0.520349i
\(749\) −6.80752 1.05774i −0.248741 0.0386491i
\(750\) 0 0
\(751\) 0.584292 0.337341i 0.0213211 0.0123098i −0.489302 0.872115i \(-0.662748\pi\)
0.510623 + 0.859805i \(0.329415\pi\)
\(752\) 23.6888 6.28115i 0.863843 0.229050i
\(753\) 9.48027 16.4203i 0.345480 0.598389i
\(754\) −14.6593 + 29.6773i −0.533862 + 1.08079i
\(755\) 0 0
\(756\) 1.16408 47.4031i 0.0423372 1.72403i
\(757\) 45.8640 1.66695 0.833477 0.552553i \(-0.186346\pi\)
0.833477 + 0.552553i \(0.186346\pi\)
\(758\) −1.58782 + 3.21449i −0.0576723 + 0.116756i
\(759\) −8.92298 + 15.4550i −0.323883 + 0.560983i
\(760\) 0 0
\(761\) 18.9229 10.9252i 0.685956 0.396037i −0.116139 0.993233i \(-0.537052\pi\)
0.802095 + 0.597196i \(0.203719\pi\)
\(762\) −7.11551 10.6642i −0.257768 0.386322i
\(763\) −2.47190 + 0.957201i −0.0894886 + 0.0346530i
\(764\) −5.52726 2.29793i −0.199969 0.0831360i
\(765\) 0 0
\(766\) 0.121322 + 1.86972i 0.00438354 + 0.0675556i
\(767\) 19.5499 + 11.2871i 0.705905 + 0.407554i
\(768\) −41.6682 + 23.7679i −1.50357 + 0.857649i
\(769\) 16.0214i 0.577745i −0.957368 0.288872i \(-0.906720\pi\)
0.957368 0.288872i \(-0.0932803\pi\)
\(770\) 0 0
\(771\) 42.6976i 1.53772i
\(772\) −29.1710 + 3.80169i −1.04989 + 0.136826i
\(773\) 36.6688 + 21.1707i 1.31888 + 0.761458i 0.983549 0.180641i \(-0.0578171\pi\)
0.335335 + 0.942099i \(0.391150\pi\)
\(774\) 84.1586 5.46087i 3.02502 0.196287i
\(775\) 0 0
\(776\) −0.514676 + 0.101328i −0.0184758 + 0.00363746i
\(777\) −69.1687 55.6765i −2.48141 1.99738i
\(778\) −37.9113 + 25.2957i −1.35919 + 0.906896i
\(779\) −2.59519 + 1.49833i −0.0929824 + 0.0536834i
\(780\) 0 0
\(781\) −0.237464 + 0.411299i −0.00849712 + 0.0147174i
\(782\) 11.6269 + 5.74319i 0.415777 + 0.205376i
\(783\) 66.1408 2.36368
\(784\) −27.9662 1.37437i −0.998795 0.0490845i
\(785\) 0 0
\(786\) 59.7043 + 29.4914i 2.12958 + 1.05192i
\(787\) 2.19121 3.79528i 0.0781081 0.135287i −0.824326 0.566116i \(-0.808445\pi\)
0.902434 + 0.430829i \(0.141779\pi\)
\(788\) −5.85541 7.65158i −0.208590 0.272576i
\(789\) −30.5044 + 17.6117i −1.08599 + 0.626994i
\(790\) 0 0
\(791\) −30.6241 24.6506i −1.08887 0.876473i
\(792\) −37.1718 + 7.31828i −1.32084 + 0.260044i
\(793\) 4.02198 + 6.96627i 0.142825 + 0.247380i
\(794\) 49.6394 3.22099i 1.76164 0.114309i
\(795\) 0 0
\(796\) −2.52735 + 0.329375i −0.0895795 + 0.0116744i
\(797\) 53.6019i 1.89868i 0.314255 + 0.949339i \(0.398245\pi\)
−0.314255 + 0.949339i \(0.601755\pi\)
\(798\) 9.68661 + 20.8865i 0.342902 + 0.739373i
\(799\) 21.1101i 0.746822i
\(800\) 0 0
\(801\) −36.4118 21.0224i −1.28655 0.742789i
\(802\) −2.92343 45.0535i −0.103230 1.59090i
\(803\) −16.6338 28.8106i −0.586995 1.01670i
\(804\) 0.292177 + 0.121471i 0.0103043 + 0.00428394i
\(805\) 0 0
\(806\) 12.1765 + 18.2492i 0.428900 + 0.642802i
\(807\) −22.0422 + 12.7261i −0.775924 + 0.447980i
\(808\) 5.71408 16.7254i 0.201021 0.588399i
\(809\) 0.754693 1.30717i 0.0265336 0.0459575i −0.852454 0.522803i \(-0.824886\pi\)
0.878987 + 0.476845i \(0.158220\pi\)
\(810\) 0 0
\(811\) 43.1894 1.51658 0.758292 0.651915i \(-0.226034\pi\)
0.758292 + 0.651915i \(0.226034\pi\)
\(812\) 0.958815 39.0444i 0.0336478 1.37019i
\(813\) −23.9063 −0.838432
\(814\) −15.6803 + 31.7442i −0.549594 + 1.11264i
\(815\) 0 0
\(816\) 10.5903 + 39.9403i 0.370733 + 1.39819i
\(817\) −17.6984 + 10.2182i −0.619189 + 0.357489i
\(818\) 12.8840 + 19.3095i 0.450478 + 0.675142i
\(819\) −49.6503 7.71460i −1.73492 0.269570i
\(820\) 0 0
\(821\) 4.56478 + 7.90644i 0.159312 + 0.275937i 0.934621 0.355646i \(-0.115739\pi\)
−0.775309 + 0.631582i \(0.782406\pi\)
\(822\) −2.63960 40.6795i −0.0920668 1.41886i
\(823\) 0.329424 + 0.190193i 0.0114830 + 0.00662972i 0.505731 0.862692i \(-0.331223\pi\)
−0.494248 + 0.869321i \(0.664556\pi\)
\(824\) −24.3231 + 21.2466i −0.847334 + 0.740161i
\(825\) 0 0
\(826\) −26.5297 2.37674i −0.923087 0.0826972i
\(827\) 23.9044i 0.831236i −0.909539 0.415618i \(-0.863565\pi\)
0.909539 0.415618i \(-0.136435\pi\)
\(828\) −4.11954 31.6099i −0.143164 1.09852i
\(829\) 35.8241 + 20.6830i 1.24422 + 0.718352i 0.969951 0.243301i \(-0.0782303\pi\)
0.274271 + 0.961653i \(0.411564\pi\)
\(830\) 0 0
\(831\) 20.3800 + 35.2992i 0.706974 + 1.22452i
\(832\) 9.61631 + 23.4755i 0.333386 + 0.813866i
\(833\) −7.31833 + 22.9814i −0.253565 + 0.796259i
\(834\) −26.4434 + 17.6439i −0.915659 + 0.610959i
\(835\) 0 0
\(836\) 7.29064 5.57919i 0.252152 0.192960i
\(837\) 21.9187 37.9642i 0.757620 1.31224i
\(838\) −15.0449 7.43155i −0.519718 0.256718i
\(839\) 46.4174 1.60251 0.801253 0.598326i \(-0.204167\pi\)
0.801253 + 0.598326i \(0.204167\pi\)
\(840\) 0 0
\(841\) 25.4780 0.878551
\(842\) 13.1149 + 6.47819i 0.451969 + 0.223253i
\(843\) 14.2155 24.6219i 0.489607 0.848025i
\(844\) −5.89234 + 4.50914i −0.202823 + 0.155211i
\(845\) 0 0
\(846\) −43.1651 + 28.8013i −1.48405 + 0.990208i
\(847\) 2.43641 15.6804i 0.0837159 0.538786i
\(848\) 13.1397 + 13.2085i 0.451219 + 0.453582i
\(849\) −32.3038 55.9518i −1.10866 1.92026i
\(850\) 0 0
\(851\) −25.7996 14.8954i −0.884398 0.510608i
\(852\) −0.164549 1.26261i −0.00563737 0.0432564i
\(853\) 10.5928i 0.362692i 0.983419 + 0.181346i \(0.0580454\pi\)
−0.983419 + 0.181346i \(0.941955\pi\)
\(854\) −7.76345 5.46016i −0.265660 0.186843i
\(855\) 0 0
\(856\) −4.84514 5.54670i −0.165604 0.189582i
\(857\) 0.245410 + 0.141688i 0.00838305 + 0.00483996i 0.504186 0.863595i \(-0.331793\pi\)
−0.495803 + 0.868435i \(0.665126\pi\)
\(858\) 1.94719 + 30.0086i 0.0664761 + 1.02448i
\(859\) 4.93861 + 8.55393i 0.168503 + 0.291856i 0.937894 0.346922i \(-0.112773\pi\)
−0.769391 + 0.638779i \(0.779440\pi\)
\(860\) 0 0
\(861\) 4.18236 + 10.8006i 0.142535 + 0.368084i
\(862\) −23.2787 34.8883i −0.792875 1.18830i
\(863\) −28.2007 + 16.2817i −0.959963 + 0.554235i −0.896162 0.443728i \(-0.853656\pi\)
−0.0638012 + 0.997963i \(0.520322\pi\)
\(864\) 33.5473 38.0025i 1.14130 1.29287i
\(865\) 0 0
\(866\) −18.4205 + 37.2916i −0.625952 + 1.26722i
\(867\) −15.3759 −0.522195
\(868\) −22.0934 13.4894i −0.749899 0.457861i
\(869\) −1.03151 −0.0349916
\(870\) 0 0
\(871\) 0.0836685 0.144918i 0.00283500 0.00491036i
\(872\) −2.68160 0.916141i −0.0908104 0.0310245i
\(873\) 0.961883 0.555343i 0.0325548 0.0187955i
\(874\) 4.28733 + 6.42551i 0.145021 + 0.217346i
\(875\) 0 0
\(876\) 82.3573 + 34.2396i 2.78260 + 1.15685i
\(877\) 19.0353 + 32.9700i 0.642775 + 1.11332i 0.984811 + 0.173632i \(0.0555503\pi\)
−0.342036 + 0.939687i \(0.611116\pi\)
\(878\) 0.808020 + 12.4526i 0.0272694 + 0.420254i
\(879\) −75.1666 43.3975i −2.53531 1.46376i
\(880\) 0 0
\(881\) 27.7529i 0.935019i 0.883988 + 0.467509i \(0.154849\pi\)
−0.883988 + 0.467509i \(0.845151\pi\)
\(882\) 56.9761 16.3901i 1.91849 0.551884i
\(883\) 44.1707i 1.48646i 0.669034 + 0.743232i \(0.266708\pi\)
−0.669034 + 0.743232i \(0.733292\pi\)
\(884\) 21.6688 2.82397i 0.728800 0.0949804i
\(885\) 0 0
\(886\) 27.6136 1.79179i 0.927698 0.0601963i
\(887\) −10.0638 17.4310i −0.337909 0.585275i 0.646130 0.763227i \(-0.276386\pi\)
−0.984039 + 0.177952i \(0.943053\pi\)
\(888\) −18.3363 93.1358i −0.615326 3.12543i
\(889\) 5.01611 6.23167i 0.168235 0.209003i
\(890\) 0 0
\(891\) 17.2385 9.95263i 0.577510 0.333426i
\(892\) 15.7499 + 20.5813i 0.527346 + 0.689111i
\(893\) 6.28724 10.8898i 0.210394 0.364414i
\(894\) −24.7150 12.2081i −0.826592 0.408301i
\(895\) 0 0
\(896\) −21.9474 20.3547i −0.733211 0.680001i
\(897\) −25.3027 −0.844831
\(898\) 6.36909 + 3.14606i 0.212539 + 0.104985i
\(899\) 18.0537 31.2699i 0.602124 1.04291i
\(900\) 0 0
\(901\) 13.8983 8.02418i 0.463019 0.267324i
\(902\) 3.84167 2.56329i 0.127913 0.0853483i
\(903\) 28.5224 + 73.6569i 0.949167 + 2.45115i
\(904\) −8.11832 41.2355i −0.270011 1.37147i
\(905\) 0 0
\(906\) 100.170 6.49984i 3.32794 0.215943i
\(907\) 13.0052 + 7.50854i 0.431830 + 0.249317i 0.700126 0.714020i \(-0.253127\pi\)
−0.268296 + 0.963336i \(0.586461\pi\)
\(908\) 17.6359 2.29839i 0.585268 0.0762748i
\(909\) 37.4239i 1.24127i
\(910\) 0 0
\(911\) 24.0198i 0.795811i 0.917426 + 0.397906i \(0.130263\pi\)
−0.917426 + 0.397906i \(0.869737\pi\)
\(912\) −6.43237 + 23.7576i −0.212997 + 0.786693i
\(913\) 21.1461 + 12.2087i 0.699834 + 0.404049i
\(914\) −2.54983 39.2960i −0.0843410 1.29980i
\(915\) 0 0
\(916\) −23.9076 9.93946i −0.789931 0.328409i
\(917\) −6.37981 + 41.0597i −0.210680 + 1.35591i
\(918\) −24.2349 36.3214i −0.799871 1.19878i
\(919\) −49.7575 + 28.7275i −1.64135 + 0.947632i −0.660992 + 0.750393i \(0.729864\pi\)
−0.980355 + 0.197239i \(0.936802\pi\)
\(920\) 0 0
\(921\) 12.0014 20.7870i 0.395459 0.684956i
\(922\) −12.4321 + 25.1683i −0.409429 + 0.828875i
\(923\) −0.673370 −0.0221643
\(924\) −16.9815 31.1550i −0.558650 1.02492i
\(925\) 0 0
\(926\) 22.3669 45.2811i 0.735023 1.48803i
\(927\) 34.1915 59.2214i 1.12300 1.94509i
\(928\) 27.6318 31.3014i 0.907060 1.02752i
\(929\) 3.45964 1.99743i 0.113507 0.0655334i −0.442172 0.896930i \(-0.645792\pi\)
0.555679 + 0.831397i \(0.312458\pi\)
\(930\) 0 0
\(931\) −10.6198 + 9.67552i −0.348049 + 0.317102i
\(932\) 11.6827 28.1006i 0.382678 0.920466i
\(933\) −20.6162 35.7083i −0.674945 1.16904i
\(934\) −2.07056 31.9098i −0.0677507 1.04412i
\(935\) 0 0
\(936\) −35.3378 40.4546i −1.15505 1.32230i
\(937\) 43.2204i 1.41195i −0.708237 0.705975i \(-0.750509\pi\)
0.708237 0.705975i \(-0.249491\pi\)
\(938\) −0.0176181 + 0.196658i −0.000575252 + 0.00642111i
\(939\) 31.8878i 1.04062i
\(940\) 0 0
\(941\) −30.6731 17.7091i −0.999915 0.577301i −0.0916918 0.995787i \(-0.529227\pi\)
−0.908223 + 0.418486i \(0.862561\pi\)
\(942\) −33.1402 + 2.15039i −1.07976 + 0.0700636i
\(943\) 1.94295 + 3.36529i 0.0632712 + 0.109589i
\(944\) −20.0823 20.1874i −0.653622 0.657044i
\(945\) 0 0
\(946\) 26.1990 17.4809i 0.851802 0.568352i
\(947\) −42.1696 + 24.3466i −1.37033 + 0.791159i −0.990969 0.134091i \(-0.957188\pi\)
−0.379358 + 0.925250i \(0.623855\pi\)
\(948\) 2.19622 1.68067i 0.0713299 0.0545855i
\(949\) 23.5840 40.8488i 0.765571 1.32601i
\(950\) 0 0
\(951\) −50.9190 −1.65116
\(952\) −21.7927 + 13.7799i −0.706304 + 0.446608i
\(953\) 47.5308 1.53967 0.769837 0.638241i \(-0.220338\pi\)
0.769837 + 0.638241i \(0.220338\pi\)
\(954\) −35.3694 17.4710i −1.14513 0.565644i
\(955\) 0 0
\(956\) 0.0696488 0.0532990i 0.00225260 0.00172381i
\(957\) 42.8623 24.7466i 1.38554 0.799943i
\(958\) −10.0746 + 6.72211i −0.325495 + 0.217182i
\(959\) 23.7208 9.18550i 0.765986 0.296615i
\(960\) 0 0
\(961\) 3.53423 + 6.12147i 0.114008 + 0.197467i
\(962\) −50.0943 + 3.25051i −1.61510 + 0.104801i
\(963\) 13.5050 + 7.79713i 0.435193 + 0.251259i
\(964\) 0.594616 + 4.56258i 0.0191513 + 0.146951i
\(965\) 0 0
\(966\) 27.0843 12.5610i 0.871424 0.404144i
\(967\) 29.3643i 0.944292i −0.881520 0.472146i \(-0.843479\pi\)
0.881520 0.472146i \(-0.156521\pi\)
\(968\) 12.7763 11.1603i 0.410645 0.358705i
\(969\) 18.3607 + 10.6005i 0.589829 + 0.340538i
\(970\) 0 0
\(971\) 13.3188 + 23.0688i 0.427419 + 0.740312i 0.996643 0.0818708i \(-0.0260895\pi\)
−0.569224 + 0.822183i \(0.692756\pi\)
\(972\) 0.153506 0.369231i 0.00492370 0.0118431i
\(973\) −15.4523 12.4382i −0.495379 0.398749i
\(974\) −24.8391 37.2269i −0.795895 1.19283i
\(975\) 0 0
\(976\) −2.60053 9.80770i −0.0832411 0.313937i
\(977\) 7.73476 13.3970i 0.247457 0.428608i −0.715363 0.698753i \(-0.753739\pi\)
0.962819 + 0.270146i \(0.0870718\pi\)
\(978\) 20.3770 41.2526i 0.651585 1.31911i
\(979\) −15.7018 −0.501832
\(980\) 0 0
\(981\) 6.00019 0.191571
\(982\) 22.4085 45.3652i 0.715083 1.44766i
\(983\) −22.0131 + 38.1277i −0.702107 + 1.21609i 0.265618 + 0.964078i \(0.414424\pi\)
−0.967725 + 0.252007i \(0.918909\pi\)
\(984\) −4.00296 + 11.7169i −0.127610 + 0.373521i
\(985\) 0 0
\(986\) −19.9615 29.9167i −0.635703 0.952743i
\(987\) −37.8591 30.4743i −1.20507 0.970006i
\(988\) 12.0191 + 4.99686i 0.382378 + 0.158971i
\(989\) 13.2503 + 22.9502i 0.421336 + 0.729775i
\(990\) 0 0
\(991\) −14.4776 8.35865i −0.459896 0.265521i 0.252104 0.967700i \(-0.418877\pi\)
−0.712001 + 0.702179i \(0.752211\pi\)
\(992\) −8.80969 26.2335i −0.279708 0.832916i
\(993\) 24.9751i 0.792560i
\(994\) 0.720785 0.334282i 0.0228619 0.0106028i
\(995\) 0 0
\(996\) −64.9146 + 8.45996i −2.05690 + 0.268064i
\(997\) −23.8844 13.7897i −0.756427 0.436723i 0.0715845 0.997435i \(-0.477194\pi\)
−0.828011 + 0.560711i \(0.810528\pi\)
\(998\) −58.3053 + 3.78331i −1.84562 + 0.119759i
\(999\) 50.1540 + 86.8693i 1.58680 + 2.74842i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.p.c.451.14 32
4.3 odd 2 inner 700.2.p.c.451.9 32
5.2 odd 4 700.2.t.d.199.6 32
5.3 odd 4 700.2.t.c.199.11 32
5.4 even 2 140.2.o.a.31.3 32
7.5 odd 6 inner 700.2.p.c.551.9 32
20.3 even 4 700.2.t.c.199.16 32
20.7 even 4 700.2.t.d.199.1 32
20.19 odd 2 140.2.o.a.31.8 yes 32
28.19 even 6 inner 700.2.p.c.551.14 32
35.4 even 6 980.2.g.a.391.26 32
35.9 even 6 980.2.o.f.411.8 32
35.12 even 12 700.2.t.c.299.16 32
35.19 odd 6 140.2.o.a.131.8 yes 32
35.24 odd 6 980.2.g.a.391.25 32
35.33 even 12 700.2.t.d.299.1 32
35.34 odd 2 980.2.o.f.31.3 32
140.19 even 6 140.2.o.a.131.3 yes 32
140.39 odd 6 980.2.g.a.391.27 32
140.47 odd 12 700.2.t.c.299.11 32
140.59 even 6 980.2.g.a.391.28 32
140.79 odd 6 980.2.o.f.411.3 32
140.103 odd 12 700.2.t.d.299.6 32
140.139 even 2 980.2.o.f.31.8 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.o.a.31.3 32 5.4 even 2
140.2.o.a.31.8 yes 32 20.19 odd 2
140.2.o.a.131.3 yes 32 140.19 even 6
140.2.o.a.131.8 yes 32 35.19 odd 6
700.2.p.c.451.9 32 4.3 odd 2 inner
700.2.p.c.451.14 32 1.1 even 1 trivial
700.2.p.c.551.9 32 7.5 odd 6 inner
700.2.p.c.551.14 32 28.19 even 6 inner
700.2.t.c.199.11 32 5.3 odd 4
700.2.t.c.199.16 32 20.3 even 4
700.2.t.c.299.11 32 140.47 odd 12
700.2.t.c.299.16 32 35.12 even 12
700.2.t.d.199.1 32 20.7 even 4
700.2.t.d.199.6 32 5.2 odd 4
700.2.t.d.299.1 32 35.33 even 12
700.2.t.d.299.6 32 140.103 odd 12
980.2.g.a.391.25 32 35.24 odd 6
980.2.g.a.391.26 32 35.4 even 6
980.2.g.a.391.27 32 140.39 odd 6
980.2.g.a.391.28 32 140.59 even 6
980.2.o.f.31.3 32 35.34 odd 2
980.2.o.f.31.8 32 140.139 even 2
980.2.o.f.411.3 32 140.79 odd 6
980.2.o.f.411.8 32 35.9 even 6