Properties

Label 700.2.i.c
Level $700$
Weight $2$
Character orbit 700.i
Analytic conductor $5.590$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - \zeta_{6} ) q^{3} + ( 3 - 2 \zeta_{6} ) q^{7} + 2 \zeta_{6} q^{9} +O(q^{10})\) \( q + ( 1 - \zeta_{6} ) q^{3} + ( 3 - 2 \zeta_{6} ) q^{7} + 2 \zeta_{6} q^{9} + ( 3 - 3 \zeta_{6} ) q^{11} -2 q^{13} + ( 3 - 3 \zeta_{6} ) q^{17} + \zeta_{6} q^{19} + ( 1 - 3 \zeta_{6} ) q^{21} + 3 \zeta_{6} q^{23} + 5 q^{27} -6 q^{29} + ( 7 - 7 \zeta_{6} ) q^{31} -3 \zeta_{6} q^{33} -\zeta_{6} q^{37} + ( -2 + 2 \zeta_{6} ) q^{39} + 6 q^{41} + 4 q^{43} -9 \zeta_{6} q^{47} + ( 5 - 8 \zeta_{6} ) q^{49} -3 \zeta_{6} q^{51} + ( 3 - 3 \zeta_{6} ) q^{53} + q^{57} + ( -9 + 9 \zeta_{6} ) q^{59} + \zeta_{6} q^{61} + ( 4 + 2 \zeta_{6} ) q^{63} + ( -7 + 7 \zeta_{6} ) q^{67} + 3 q^{69} + ( -1 + \zeta_{6} ) q^{73} + ( 3 - 9 \zeta_{6} ) q^{77} + 13 \zeta_{6} q^{79} + ( -1 + \zeta_{6} ) q^{81} -12 q^{83} + ( -6 + 6 \zeta_{6} ) q^{87} -15 \zeta_{6} q^{89} + ( -6 + 4 \zeta_{6} ) q^{91} -7 \zeta_{6} q^{93} + 10 q^{97} + 6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{3} + 4q^{7} + 2q^{9} + O(q^{10}) \) \( 2q + q^{3} + 4q^{7} + 2q^{9} + 3q^{11} - 4q^{13} + 3q^{17} + q^{19} - q^{21} + 3q^{23} + 10q^{27} - 12q^{29} + 7q^{31} - 3q^{33} - q^{37} - 2q^{39} + 12q^{41} + 8q^{43} - 9q^{47} + 2q^{49} - 3q^{51} + 3q^{53} + 2q^{57} - 9q^{59} + q^{61} + 10q^{63} - 7q^{67} + 6q^{69} - q^{73} - 3q^{77} + 13q^{79} - q^{81} - 24q^{83} - 6q^{87} - 15q^{89} - 8q^{91} - 7q^{93} + 20q^{97} + 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
401.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0.500000 + 0.866025i 0 0 0 2.00000 + 1.73205i 0 1.00000 1.73205i 0
501.1 0 0.500000 0.866025i 0 0 0 2.00000 1.73205i 0 1.00000 + 1.73205i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 700.2.i.c 2
5.b even 2 1 28.2.e.a 2
5.c odd 4 2 700.2.r.b 4
7.c even 3 1 inner 700.2.i.c 2
7.c even 3 1 4900.2.a.g 1
7.d odd 6 1 4900.2.a.n 1
15.d odd 2 1 252.2.k.c 2
20.d odd 2 1 112.2.i.b 2
35.c odd 2 1 196.2.e.a 2
35.i odd 6 1 196.2.a.a 1
35.i odd 6 1 196.2.e.a 2
35.j even 6 1 28.2.e.a 2
35.j even 6 1 196.2.a.b 1
35.k even 12 2 4900.2.e.h 2
35.l odd 12 2 700.2.r.b 4
35.l odd 12 2 4900.2.e.i 2
40.e odd 2 1 448.2.i.c 2
40.f even 2 1 448.2.i.e 2
45.h odd 6 1 2268.2.i.h 2
45.h odd 6 1 2268.2.l.a 2
45.j even 6 1 2268.2.i.a 2
45.j even 6 1 2268.2.l.h 2
60.h even 2 1 1008.2.s.p 2
105.g even 2 1 1764.2.k.b 2
105.o odd 6 1 252.2.k.c 2
105.o odd 6 1 1764.2.a.a 1
105.p even 6 1 1764.2.a.j 1
105.p even 6 1 1764.2.k.b 2
140.c even 2 1 784.2.i.d 2
140.p odd 6 1 112.2.i.b 2
140.p odd 6 1 784.2.a.d 1
140.s even 6 1 784.2.a.g 1
140.s even 6 1 784.2.i.d 2
280.ba even 6 1 3136.2.a.k 1
280.bf even 6 1 448.2.i.e 2
280.bf even 6 1 3136.2.a.h 1
280.bi odd 6 1 448.2.i.c 2
280.bi odd 6 1 3136.2.a.s 1
280.bk odd 6 1 3136.2.a.v 1
315.r even 6 1 2268.2.l.h 2
315.v odd 6 1 2268.2.i.h 2
315.bo even 6 1 2268.2.i.a 2
315.br odd 6 1 2268.2.l.a 2
420.ba even 6 1 1008.2.s.p 2
420.ba even 6 1 7056.2.a.f 1
420.be odd 6 1 7056.2.a.bw 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
28.2.e.a 2 5.b even 2 1
28.2.e.a 2 35.j even 6 1
112.2.i.b 2 20.d odd 2 1
112.2.i.b 2 140.p odd 6 1
196.2.a.a 1 35.i odd 6 1
196.2.a.b 1 35.j even 6 1
196.2.e.a 2 35.c odd 2 1
196.2.e.a 2 35.i odd 6 1
252.2.k.c 2 15.d odd 2 1
252.2.k.c 2 105.o odd 6 1
448.2.i.c 2 40.e odd 2 1
448.2.i.c 2 280.bi odd 6 1
448.2.i.e 2 40.f even 2 1
448.2.i.e 2 280.bf even 6 1
700.2.i.c 2 1.a even 1 1 trivial
700.2.i.c 2 7.c even 3 1 inner
700.2.r.b 4 5.c odd 4 2
700.2.r.b 4 35.l odd 12 2
784.2.a.d 1 140.p odd 6 1
784.2.a.g 1 140.s even 6 1
784.2.i.d 2 140.c even 2 1
784.2.i.d 2 140.s even 6 1
1008.2.s.p 2 60.h even 2 1
1008.2.s.p 2 420.ba even 6 1
1764.2.a.a 1 105.o odd 6 1
1764.2.a.j 1 105.p even 6 1
1764.2.k.b 2 105.g even 2 1
1764.2.k.b 2 105.p even 6 1
2268.2.i.a 2 45.j even 6 1
2268.2.i.a 2 315.bo even 6 1
2268.2.i.h 2 45.h odd 6 1
2268.2.i.h 2 315.v odd 6 1
2268.2.l.a 2 45.h odd 6 1
2268.2.l.a 2 315.br odd 6 1
2268.2.l.h 2 45.j even 6 1
2268.2.l.h 2 315.r even 6 1
3136.2.a.h 1 280.bf even 6 1
3136.2.a.k 1 280.ba even 6 1
3136.2.a.s 1 280.bi odd 6 1
3136.2.a.v 1 280.bk odd 6 1
4900.2.a.g 1 7.c even 3 1
4900.2.a.n 1 7.d odd 6 1
4900.2.e.h 2 35.k even 12 2
4900.2.e.i 2 35.l odd 12 2
7056.2.a.f 1 420.ba even 6 1
7056.2.a.bw 1 420.be odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(700, [\chi])\):

\( T_{3}^{2} - T_{3} + 1 \)
\( T_{11}^{2} - 3 T_{11} + 9 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 - T - 2 T^{2} - 3 T^{3} + 9 T^{4} \)
$5$ 1
$7$ \( 1 - 4 T + 7 T^{2} \)
$11$ \( 1 - 3 T - 2 T^{2} - 33 T^{3} + 121 T^{4} \)
$13$ \( ( 1 + 2 T + 13 T^{2} )^{2} \)
$17$ \( 1 - 3 T - 8 T^{2} - 51 T^{3} + 289 T^{4} \)
$19$ \( ( 1 - 8 T + 19 T^{2} )( 1 + 7 T + 19 T^{2} ) \)
$23$ \( 1 - 3 T - 14 T^{2} - 69 T^{3} + 529 T^{4} \)
$29$ \( ( 1 + 6 T + 29 T^{2} )^{2} \)
$31$ \( ( 1 - 11 T + 31 T^{2} )( 1 + 4 T + 31 T^{2} ) \)
$37$ \( ( 1 - 10 T + 37 T^{2} )( 1 + 11 T + 37 T^{2} ) \)
$41$ \( ( 1 - 6 T + 41 T^{2} )^{2} \)
$43$ \( ( 1 - 4 T + 43 T^{2} )^{2} \)
$47$ \( 1 + 9 T + 34 T^{2} + 423 T^{3} + 2209 T^{4} \)
$53$ \( 1 - 3 T - 44 T^{2} - 159 T^{3} + 2809 T^{4} \)
$59$ \( 1 + 9 T + 22 T^{2} + 531 T^{3} + 3481 T^{4} \)
$61$ \( ( 1 - 14 T + 61 T^{2} )( 1 + 13 T + 61 T^{2} ) \)
$67$ \( 1 + 7 T - 18 T^{2} + 469 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 + 71 T^{2} )^{2} \)
$73$ \( 1 + T - 72 T^{2} + 73 T^{3} + 5329 T^{4} \)
$79$ \( ( 1 - 17 T + 79 T^{2} )( 1 + 4 T + 79 T^{2} ) \)
$83$ \( ( 1 + 12 T + 83 T^{2} )^{2} \)
$89$ \( 1 + 15 T + 136 T^{2} + 1335 T^{3} + 7921 T^{4} \)
$97$ \( ( 1 - 10 T + 97 T^{2} )^{2} \)
show more
show less