Properties

Label 700.2.g.a
Level $700$
Weight $2$
Character orbit 700.g
Analytic conductor $5.590$
Analytic rank $0$
Dimension $2$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-7}) \)
Defining polynomial: \(x^{2} - x + 2\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{-7})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + ( -2 + \beta ) q^{4} + ( 1 - 2 \beta ) q^{7} + ( -2 - \beta ) q^{8} -3 q^{9} +O(q^{10})\) \( q + \beta q^{2} + ( -2 + \beta ) q^{4} + ( 1 - 2 \beta ) q^{7} + ( -2 - \beta ) q^{8} -3 q^{9} + ( 2 - 4 \beta ) q^{11} + ( 4 - \beta ) q^{14} + ( 2 - 3 \beta ) q^{16} -3 \beta q^{18} + ( 8 - 2 \beta ) q^{22} + ( 2 - 4 \beta ) q^{23} + ( 2 + 3 \beta ) q^{28} -2 q^{29} + ( 6 - \beta ) q^{32} + ( 6 - 3 \beta ) q^{36} -6 q^{37} + ( -2 + 4 \beta ) q^{43} + ( 4 + 6 \beta ) q^{44} + ( 8 - 2 \beta ) q^{46} -7 q^{49} + 10 q^{53} + ( -6 + 5 \beta ) q^{56} -2 \beta q^{58} + ( -3 + 6 \beta ) q^{63} + ( 2 + 5 \beta ) q^{64} + ( 6 - 12 \beta ) q^{67} + ( -2 + 4 \beta ) q^{71} + ( 6 + 3 \beta ) q^{72} -6 \beta q^{74} -14 q^{77} + ( 6 - 12 \beta ) q^{79} + 9 q^{81} + ( -8 + 2 \beta ) q^{86} + ( -12 + 10 \beta ) q^{88} + ( 4 + 6 \beta ) q^{92} -7 \beta q^{98} + ( -6 + 12 \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{2} - 3q^{4} - 5q^{8} - 6q^{9} + O(q^{10}) \) \( 2q + q^{2} - 3q^{4} - 5q^{8} - 6q^{9} + 7q^{14} + q^{16} - 3q^{18} + 14q^{22} + 7q^{28} - 4q^{29} + 11q^{32} + 9q^{36} - 12q^{37} + 14q^{44} + 14q^{46} - 14q^{49} + 20q^{53} - 7q^{56} - 2q^{58} + 9q^{64} + 15q^{72} - 6q^{74} - 28q^{77} + 18q^{81} - 14q^{86} - 14q^{88} + 14q^{92} - 7q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
251.1
0.500000 1.32288i
0.500000 + 1.32288i
0.500000 1.32288i 0 −1.50000 1.32288i 0 0 2.64575i −2.50000 + 1.32288i −3.00000 0
251.2 0.500000 + 1.32288i 0 −1.50000 + 1.32288i 0 0 2.64575i −2.50000 1.32288i −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
4.b odd 2 1 inner
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 700.2.g.a 2
4.b odd 2 1 inner 700.2.g.a 2
5.b even 2 1 28.2.d.a 2
5.c odd 4 2 700.2.c.d 4
7.b odd 2 1 CM 700.2.g.a 2
15.d odd 2 1 252.2.b.a 2
20.d odd 2 1 28.2.d.a 2
20.e even 4 2 700.2.c.d 4
28.d even 2 1 inner 700.2.g.a 2
35.c odd 2 1 28.2.d.a 2
35.f even 4 2 700.2.c.d 4
35.i odd 6 2 196.2.f.b 4
35.j even 6 2 196.2.f.b 4
40.e odd 2 1 448.2.f.b 2
40.f even 2 1 448.2.f.b 2
60.h even 2 1 252.2.b.a 2
80.k odd 4 2 1792.2.e.b 4
80.q even 4 2 1792.2.e.b 4
105.g even 2 1 252.2.b.a 2
120.i odd 2 1 4032.2.b.e 2
120.m even 2 1 4032.2.b.e 2
140.c even 2 1 28.2.d.a 2
140.j odd 4 2 700.2.c.d 4
140.p odd 6 2 196.2.f.b 4
140.s even 6 2 196.2.f.b 4
280.c odd 2 1 448.2.f.b 2
280.n even 2 1 448.2.f.b 2
420.o odd 2 1 252.2.b.a 2
560.be even 4 2 1792.2.e.b 4
560.bf odd 4 2 1792.2.e.b 4
840.b odd 2 1 4032.2.b.e 2
840.u even 2 1 4032.2.b.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
28.2.d.a 2 5.b even 2 1
28.2.d.a 2 20.d odd 2 1
28.2.d.a 2 35.c odd 2 1
28.2.d.a 2 140.c even 2 1
196.2.f.b 4 35.i odd 6 2
196.2.f.b 4 35.j even 6 2
196.2.f.b 4 140.p odd 6 2
196.2.f.b 4 140.s even 6 2
252.2.b.a 2 15.d odd 2 1
252.2.b.a 2 60.h even 2 1
252.2.b.a 2 105.g even 2 1
252.2.b.a 2 420.o odd 2 1
448.2.f.b 2 40.e odd 2 1
448.2.f.b 2 40.f even 2 1
448.2.f.b 2 280.c odd 2 1
448.2.f.b 2 280.n even 2 1
700.2.c.d 4 5.c odd 4 2
700.2.c.d 4 20.e even 4 2
700.2.c.d 4 35.f even 4 2
700.2.c.d 4 140.j odd 4 2
700.2.g.a 2 1.a even 1 1 trivial
700.2.g.a 2 4.b odd 2 1 inner
700.2.g.a 2 7.b odd 2 1 CM
700.2.g.a 2 28.d even 2 1 inner
1792.2.e.b 4 80.k odd 4 2
1792.2.e.b 4 80.q even 4 2
1792.2.e.b 4 560.be even 4 2
1792.2.e.b 4 560.bf odd 4 2
4032.2.b.e 2 120.i odd 2 1
4032.2.b.e 2 120.m even 2 1
4032.2.b.e 2 840.b odd 2 1
4032.2.b.e 2 840.u even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(700, [\chi])\):

\( T_{3} \)
\( T_{11}^{2} + 28 \)
\( T_{19} \)
\( T_{37} + 6 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 2 - T + T^{2} \)
$3$ \( T^{2} \)
$5$ \( T^{2} \)
$7$ \( 7 + T^{2} \)
$11$ \( 28 + T^{2} \)
$13$ \( T^{2} \)
$17$ \( T^{2} \)
$19$ \( T^{2} \)
$23$ \( 28 + T^{2} \)
$29$ \( ( 2 + T )^{2} \)
$31$ \( T^{2} \)
$37$ \( ( 6 + T )^{2} \)
$41$ \( T^{2} \)
$43$ \( 28 + T^{2} \)
$47$ \( T^{2} \)
$53$ \( ( -10 + T )^{2} \)
$59$ \( T^{2} \)
$61$ \( T^{2} \)
$67$ \( 252 + T^{2} \)
$71$ \( 28 + T^{2} \)
$73$ \( T^{2} \)
$79$ \( 252 + T^{2} \)
$83$ \( T^{2} \)
$89$ \( T^{2} \)
$97$ \( T^{2} \)
show more
show less