Defining parameters
Level: | \( N \) | \(=\) | \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 700.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 140 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 11 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(12\) | ||
Distinguishing \(T_p\): | \(3\), \(11\), \(13\), \(19\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(700, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 132 | 76 | 56 |
Cusp forms | 108 | 68 | 40 |
Eisenstein series | 24 | 8 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(700, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(700, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(700, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 2}\)