Defining parameters
Level: | \( N \) | \(=\) | \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 700.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 10 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(3\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(700))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 138 | 10 | 128 |
Cusp forms | 103 | 10 | 93 |
Eisenstein series | 35 | 0 | 35 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(15\) | \(0\) | \(15\) | \(10\) | \(0\) | \(10\) | \(5\) | \(0\) | \(5\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(21\) | \(0\) | \(21\) | \(15\) | \(0\) | \(15\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(21\) | \(0\) | \(21\) | \(15\) | \(0\) | \(15\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(15\) | \(0\) | \(15\) | \(9\) | \(0\) | \(9\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(15\) | \(2\) | \(13\) | \(12\) | \(2\) | \(10\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(18\) | \(2\) | \(16\) | \(15\) | \(2\) | \(13\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(18\) | \(3\) | \(15\) | \(15\) | \(3\) | \(12\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(15\) | \(3\) | \(12\) | \(12\) | \(3\) | \(9\) | \(3\) | \(0\) | \(3\) | |||
Plus space | \(+\) | \(66\) | \(5\) | \(61\) | \(49\) | \(5\) | \(44\) | \(17\) | \(0\) | \(17\) | |||||
Minus space | \(-\) | \(72\) | \(5\) | \(67\) | \(54\) | \(5\) | \(49\) | \(18\) | \(0\) | \(18\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(700))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(700))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(700)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(140))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(175))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(350))\)\(^{\oplus 2}\)