Properties

Label 70.6.c
Level $70$
Weight $6$
Character orbit 70.c
Rep. character $\chi_{70}(29,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $4$
Sturm bound $72$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 70.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(72\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(70, [\chi])\).

Total New Old
Modular forms 64 16 48
Cusp forms 56 16 40
Eisenstein series 8 0 8

Trace form

\( 16 q - 256 q^{4} - 176 q^{5} - 1648 q^{9} + O(q^{10}) \) \( 16 q - 256 q^{4} - 176 q^{5} - 1648 q^{9} - 336 q^{10} + 864 q^{11} - 784 q^{14} + 2092 q^{15} + 4096 q^{16} + 7024 q^{19} + 2816 q^{20} + 2744 q^{21} - 10020 q^{25} + 1952 q^{26} - 10232 q^{29} + 7792 q^{30} - 22576 q^{31} - 23520 q^{34} - 6076 q^{35} + 26368 q^{36} + 20392 q^{39} + 5376 q^{40} + 9232 q^{41} - 13824 q^{44} + 21528 q^{45} + 24416 q^{46} - 38416 q^{49} - 5904 q^{50} - 20192 q^{51} + 92736 q^{54} + 38696 q^{55} + 12544 q^{56} - 187152 q^{59} - 33472 q^{60} - 51408 q^{61} - 65536 q^{64} - 24284 q^{65} + 71360 q^{66} + 25696 q^{69} - 8624 q^{70} - 196168 q^{71} - 103072 q^{74} + 431760 q^{75} - 112384 q^{76} - 55880 q^{79} - 45056 q^{80} + 366664 q^{81} - 43904 q^{84} + 329072 q^{85} + 333440 q^{86} - 308816 q^{89} - 48912 q^{90} + 65464 q^{91} + 17280 q^{94} + 103516 q^{95} - 480864 q^{99} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(70, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
70.6.c.a 70.c 5.b $2$ $11.227$ \(\Q(\sqrt{-1}) \) None 70.6.c.a \(0\) \(0\) \(-110\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4iq^{2}-2^{4}q^{4}+(-55-10i)q^{5}+\cdots\)
70.6.c.b 70.c 5.b $2$ $11.227$ \(\Q(\sqrt{-1}) \) None 70.6.c.b \(0\) \(0\) \(-20\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4iq^{2}+3^{3}iq^{3}-2^{4}q^{4}+(-10+\cdots)q^{5}+\cdots\)
70.6.c.c 70.c 5.b $2$ $11.227$ \(\Q(\sqrt{-1}) \) None 70.6.c.c \(0\) \(0\) \(20\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4iq^{2}-13iq^{3}-2^{4}q^{4}+(10+55i)q^{5}+\cdots\)
70.6.c.d 70.c 5.b $10$ $11.227$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 70.6.c.d \(0\) \(0\) \(-66\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4\beta _{3}q^{2}+(\beta _{1}-3\beta _{3})q^{3}-2^{4}q^{4}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(70, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(70, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)