Defining parameters
Level: | \( N \) | \(=\) | \( 70 = 2 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 70.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(70, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 64 | 16 | 48 |
Cusp forms | 56 | 16 | 40 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(70, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
70.6.c.a | $2$ | $11.227$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-110\) | \(0\) | \(q+4iq^{2}-2^{4}q^{4}+(-55-10i)q^{5}+\cdots\) |
70.6.c.b | $2$ | $11.227$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-20\) | \(0\) | \(q+4iq^{2}+3^{3}iq^{3}-2^{4}q^{4}+(-10+\cdots)q^{5}+\cdots\) |
70.6.c.c | $2$ | $11.227$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(20\) | \(0\) | \(q+4iq^{2}-13iq^{3}-2^{4}q^{4}+(10+55i)q^{5}+\cdots\) |
70.6.c.d | $10$ | $11.227$ | \(\mathbb{Q}[x]/(x^{10} + \cdots)\) | None | \(0\) | \(0\) | \(-66\) | \(0\) | \(q+4\beta _{3}q^{2}+(\beta _{1}-3\beta _{3})q^{3}-2^{4}q^{4}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(70, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(70, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)