Properties

Label 70.6.a.h.1.1
Level $70$
Weight $6$
Character 70.1
Self dual yes
Analytic conductor $11.227$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [70,6,Mod(1,70)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("70.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(70, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 70.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,8,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.2268673869\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1129}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 282 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(17.3003\) of defining polynomial
Character \(\chi\) \(=\) 70.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -14.3003 q^{3} +16.0000 q^{4} +25.0000 q^{5} -57.2012 q^{6} +49.0000 q^{7} +64.0000 q^{8} -38.5015 q^{9} +100.000 q^{10} +425.904 q^{11} -228.805 q^{12} +399.303 q^{13} +196.000 q^{14} -357.507 q^{15} +256.000 q^{16} +1751.52 q^{17} -154.006 q^{18} +2874.23 q^{19} +400.000 q^{20} -700.715 q^{21} +1703.62 q^{22} -2313.43 q^{23} -915.219 q^{24} +625.000 q^{25} +1597.21 q^{26} +4025.56 q^{27} +784.000 q^{28} -2127.93 q^{29} -1430.03 q^{30} -10262.5 q^{31} +1024.00 q^{32} -6090.55 q^{33} +7006.08 q^{34} +1225.00 q^{35} -616.024 q^{36} -7266.05 q^{37} +11496.9 q^{38} -5710.16 q^{39} +1600.00 q^{40} -5893.44 q^{41} -2802.86 q^{42} +20157.7 q^{43} +6814.46 q^{44} -962.537 q^{45} -9253.72 q^{46} +20056.5 q^{47} -3660.88 q^{48} +2401.00 q^{49} +2500.00 q^{50} -25047.2 q^{51} +6388.85 q^{52} -33954.9 q^{53} +16102.2 q^{54} +10647.6 q^{55} +3136.00 q^{56} -41102.4 q^{57} -8511.71 q^{58} -4319.34 q^{59} -5720.12 q^{60} -12253.6 q^{61} -41050.1 q^{62} -1886.57 q^{63} +4096.00 q^{64} +9982.58 q^{65} -24362.2 q^{66} -17533.8 q^{67} +28024.3 q^{68} +33082.7 q^{69} +4900.00 q^{70} +1658.18 q^{71} -2464.10 q^{72} -8246.91 q^{73} -29064.2 q^{74} -8937.69 q^{75} +45987.7 q^{76} +20869.3 q^{77} -22840.6 q^{78} -9168.61 q^{79} +6400.00 q^{80} -48210.8 q^{81} -23573.7 q^{82} +95203.2 q^{83} -11211.4 q^{84} +43788.0 q^{85} +80631.0 q^{86} +30430.0 q^{87} +27257.8 q^{88} -14441.8 q^{89} -3850.15 q^{90} +19565.9 q^{91} -37014.9 q^{92} +146757. q^{93} +80226.1 q^{94} +71855.8 q^{95} -14643.5 q^{96} +62132.4 q^{97} +9604.00 q^{98} -16397.9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} + 5 q^{3} + 32 q^{4} + 50 q^{5} + 20 q^{6} + 98 q^{7} + 128 q^{8} + 91 q^{9} + 200 q^{10} + 415 q^{11} + 80 q^{12} + 429 q^{13} + 392 q^{14} + 125 q^{15} + 512 q^{16} + 1319 q^{17} + 364 q^{18}+ \cdots - 17810 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) −14.3003 −0.917365 −0.458682 0.888600i \(-0.651678\pi\)
−0.458682 + 0.888600i \(0.651678\pi\)
\(4\) 16.0000 0.500000
\(5\) 25.0000 0.447214
\(6\) −57.2012 −0.648675
\(7\) 49.0000 0.377964
\(8\) 64.0000 0.353553
\(9\) −38.5015 −0.158442
\(10\) 100.000 0.316228
\(11\) 425.904 1.06128 0.530640 0.847597i \(-0.321952\pi\)
0.530640 + 0.847597i \(0.321952\pi\)
\(12\) −228.805 −0.458682
\(13\) 399.303 0.655307 0.327653 0.944798i \(-0.393742\pi\)
0.327653 + 0.944798i \(0.393742\pi\)
\(14\) 196.000 0.267261
\(15\) −357.507 −0.410258
\(16\) 256.000 0.250000
\(17\) 1751.52 1.46992 0.734958 0.678112i \(-0.237202\pi\)
0.734958 + 0.678112i \(0.237202\pi\)
\(18\) −154.006 −0.112036
\(19\) 2874.23 1.82658 0.913289 0.407313i \(-0.133534\pi\)
0.913289 + 0.407313i \(0.133534\pi\)
\(20\) 400.000 0.223607
\(21\) −700.715 −0.346731
\(22\) 1703.62 0.750438
\(23\) −2313.43 −0.911878 −0.455939 0.890011i \(-0.650696\pi\)
−0.455939 + 0.890011i \(0.650696\pi\)
\(24\) −915.219 −0.324337
\(25\) 625.000 0.200000
\(26\) 1597.21 0.463372
\(27\) 4025.56 1.06271
\(28\) 784.000 0.188982
\(29\) −2127.93 −0.469853 −0.234926 0.972013i \(-0.575485\pi\)
−0.234926 + 0.972013i \(0.575485\pi\)
\(30\) −1430.03 −0.290096
\(31\) −10262.5 −1.91801 −0.959004 0.283393i \(-0.908540\pi\)
−0.959004 + 0.283393i \(0.908540\pi\)
\(32\) 1024.00 0.176777
\(33\) −6090.55 −0.973580
\(34\) 7006.08 1.03939
\(35\) 1225.00 0.169031
\(36\) −616.024 −0.0792212
\(37\) −7266.05 −0.872557 −0.436279 0.899812i \(-0.643704\pi\)
−0.436279 + 0.899812i \(0.643704\pi\)
\(38\) 11496.9 1.29159
\(39\) −5710.16 −0.601155
\(40\) 1600.00 0.158114
\(41\) −5893.44 −0.547531 −0.273766 0.961796i \(-0.588269\pi\)
−0.273766 + 0.961796i \(0.588269\pi\)
\(42\) −2802.86 −0.245176
\(43\) 20157.7 1.66253 0.831267 0.555873i \(-0.187616\pi\)
0.831267 + 0.555873i \(0.187616\pi\)
\(44\) 6814.46 0.530640
\(45\) −962.537 −0.0708576
\(46\) −9253.72 −0.644795
\(47\) 20056.5 1.32438 0.662188 0.749338i \(-0.269628\pi\)
0.662188 + 0.749338i \(0.269628\pi\)
\(48\) −3660.88 −0.229341
\(49\) 2401.00 0.142857
\(50\) 2500.00 0.141421
\(51\) −25047.2 −1.34845
\(52\) 6388.85 0.327653
\(53\) −33954.9 −1.66040 −0.830200 0.557466i \(-0.811774\pi\)
−0.830200 + 0.557466i \(0.811774\pi\)
\(54\) 16102.2 0.751452
\(55\) 10647.6 0.474619
\(56\) 3136.00 0.133631
\(57\) −41102.4 −1.67564
\(58\) −8511.71 −0.332236
\(59\) −4319.34 −0.161543 −0.0807713 0.996733i \(-0.525738\pi\)
−0.0807713 + 0.996733i \(0.525738\pi\)
\(60\) −5720.12 −0.205129
\(61\) −12253.6 −0.421638 −0.210819 0.977525i \(-0.567613\pi\)
−0.210819 + 0.977525i \(0.567613\pi\)
\(62\) −41050.1 −1.35624
\(63\) −1886.57 −0.0598856
\(64\) 4096.00 0.125000
\(65\) 9982.58 0.293062
\(66\) −24362.2 −0.688425
\(67\) −17533.8 −0.477188 −0.238594 0.971119i \(-0.576687\pi\)
−0.238594 + 0.971119i \(0.576687\pi\)
\(68\) 28024.3 0.734958
\(69\) 33082.7 0.836524
\(70\) 4900.00 0.119523
\(71\) 1658.18 0.0390379 0.0195189 0.999809i \(-0.493787\pi\)
0.0195189 + 0.999809i \(0.493787\pi\)
\(72\) −2464.10 −0.0560178
\(73\) −8246.91 −0.181127 −0.0905637 0.995891i \(-0.528867\pi\)
−0.0905637 + 0.995891i \(0.528867\pi\)
\(74\) −29064.2 −0.616991
\(75\) −8937.69 −0.183473
\(76\) 45987.7 0.913289
\(77\) 20869.3 0.401126
\(78\) −22840.6 −0.425081
\(79\) −9168.61 −0.165286 −0.0826430 0.996579i \(-0.526336\pi\)
−0.0826430 + 0.996579i \(0.526336\pi\)
\(80\) 6400.00 0.111803
\(81\) −48210.8 −0.816454
\(82\) −23573.7 −0.387163
\(83\) 95203.2 1.51690 0.758449 0.651732i \(-0.225957\pi\)
0.758449 + 0.651732i \(0.225957\pi\)
\(84\) −11211.4 −0.173366
\(85\) 43788.0 0.657367
\(86\) 80631.0 1.17559
\(87\) 30430.0 0.431026
\(88\) 27257.8 0.375219
\(89\) −14441.8 −0.193262 −0.0966311 0.995320i \(-0.530807\pi\)
−0.0966311 + 0.995320i \(0.530807\pi\)
\(90\) −3850.15 −0.0501039
\(91\) 19565.9 0.247683
\(92\) −37014.9 −0.455939
\(93\) 146757. 1.75951
\(94\) 80226.1 0.936475
\(95\) 71855.8 0.816870
\(96\) −14643.5 −0.162169
\(97\) 62132.4 0.670485 0.335242 0.942132i \(-0.391182\pi\)
0.335242 + 0.942132i \(0.391182\pi\)
\(98\) 9604.00 0.101015
\(99\) −16397.9 −0.168152
\(100\) 10000.0 0.100000
\(101\) −108138. −1.05481 −0.527404 0.849615i \(-0.676835\pi\)
−0.527404 + 0.849615i \(0.676835\pi\)
\(102\) −100189. −0.953498
\(103\) 138034. 1.28201 0.641005 0.767536i \(-0.278518\pi\)
0.641005 + 0.767536i \(0.278518\pi\)
\(104\) 25555.4 0.231686
\(105\) −17517.9 −0.155063
\(106\) −135820. −1.17408
\(107\) 6189.61 0.0522641 0.0261321 0.999658i \(-0.491681\pi\)
0.0261321 + 0.999658i \(0.491681\pi\)
\(108\) 64408.9 0.531357
\(109\) −68652.9 −0.553468 −0.276734 0.960947i \(-0.589252\pi\)
−0.276734 + 0.960947i \(0.589252\pi\)
\(110\) 42590.4 0.335606
\(111\) 103907. 0.800453
\(112\) 12544.0 0.0944911
\(113\) −62835.9 −0.462926 −0.231463 0.972844i \(-0.574351\pi\)
−0.231463 + 0.972844i \(0.574351\pi\)
\(114\) −164410. −1.18485
\(115\) −57835.7 −0.407804
\(116\) −34046.8 −0.234926
\(117\) −15373.8 −0.103828
\(118\) −17277.4 −0.114228
\(119\) 85824.4 0.555576
\(120\) −22880.5 −0.145048
\(121\) 20343.1 0.126315
\(122\) −49014.5 −0.298143
\(123\) 84277.9 0.502286
\(124\) −164201. −0.959004
\(125\) 15625.0 0.0894427
\(126\) −7546.29 −0.0423455
\(127\) −198049. −1.08959 −0.544794 0.838570i \(-0.683392\pi\)
−0.544794 + 0.838570i \(0.683392\pi\)
\(128\) 16384.0 0.0883883
\(129\) −288262. −1.52515
\(130\) 39930.3 0.207226
\(131\) −285132. −1.45167 −0.725835 0.687868i \(-0.758547\pi\)
−0.725835 + 0.687868i \(0.758547\pi\)
\(132\) −97448.8 −0.486790
\(133\) 140837. 0.690381
\(134\) −70135.3 −0.337423
\(135\) 100639. 0.475260
\(136\) 112097. 0.519694
\(137\) 406979. 1.85255 0.926277 0.376844i \(-0.122991\pi\)
0.926277 + 0.376844i \(0.122991\pi\)
\(138\) 132331. 0.591512
\(139\) 13530.4 0.0593985 0.0296992 0.999559i \(-0.490545\pi\)
0.0296992 + 0.999559i \(0.490545\pi\)
\(140\) 19600.0 0.0845154
\(141\) −286814. −1.21494
\(142\) 6632.72 0.0276039
\(143\) 170065. 0.695464
\(144\) −9856.38 −0.0396106
\(145\) −53198.2 −0.210125
\(146\) −32987.6 −0.128076
\(147\) −34335.0 −0.131052
\(148\) −116257. −0.436279
\(149\) 77129.8 0.284614 0.142307 0.989823i \(-0.454548\pi\)
0.142307 + 0.989823i \(0.454548\pi\)
\(150\) −35750.7 −0.129735
\(151\) −420464. −1.50067 −0.750336 0.661056i \(-0.770108\pi\)
−0.750336 + 0.661056i \(0.770108\pi\)
\(152\) 183951. 0.645793
\(153\) −67436.1 −0.232897
\(154\) 83477.2 0.283639
\(155\) −256563. −0.857759
\(156\) −91362.5 −0.300577
\(157\) −481908. −1.56032 −0.780162 0.625577i \(-0.784864\pi\)
−0.780162 + 0.625577i \(0.784864\pi\)
\(158\) −36674.4 −0.116875
\(159\) 485565. 1.52319
\(160\) 25600.0 0.0790569
\(161\) −113358. −0.344657
\(162\) −192843. −0.577320
\(163\) 282039. 0.831458 0.415729 0.909488i \(-0.363526\pi\)
0.415729 + 0.909488i \(0.363526\pi\)
\(164\) −94295.0 −0.273766
\(165\) −152264. −0.435398
\(166\) 380813. 1.07261
\(167\) 131971. 0.366173 0.183086 0.983097i \(-0.441391\pi\)
0.183086 + 0.983097i \(0.441391\pi\)
\(168\) −44845.7 −0.122588
\(169\) −211850. −0.570573
\(170\) 175152. 0.464828
\(171\) −110662. −0.289407
\(172\) 322524. 0.831267
\(173\) 55501.5 0.140990 0.0704952 0.997512i \(-0.477542\pi\)
0.0704952 + 0.997512i \(0.477542\pi\)
\(174\) 121720. 0.304782
\(175\) 30625.0 0.0755929
\(176\) 109031. 0.265320
\(177\) 61767.8 0.148193
\(178\) −57767.3 −0.136657
\(179\) 20768.3 0.0484471 0.0242236 0.999707i \(-0.492289\pi\)
0.0242236 + 0.999707i \(0.492289\pi\)
\(180\) −15400.6 −0.0354288
\(181\) −255866. −0.580520 −0.290260 0.956948i \(-0.593742\pi\)
−0.290260 + 0.956948i \(0.593742\pi\)
\(182\) 78263.4 0.175138
\(183\) 175230. 0.386796
\(184\) −148059. −0.322397
\(185\) −181651. −0.390219
\(186\) 587029. 1.24416
\(187\) 745979. 1.55999
\(188\) 320904. 0.662188
\(189\) 197252. 0.401668
\(190\) 287423. 0.577615
\(191\) 649260. 1.28776 0.643881 0.765126i \(-0.277323\pi\)
0.643881 + 0.765126i \(0.277323\pi\)
\(192\) −58574.0 −0.114671
\(193\) −768642. −1.48536 −0.742678 0.669649i \(-0.766445\pi\)
−0.742678 + 0.669649i \(0.766445\pi\)
\(194\) 248530. 0.474104
\(195\) −142754. −0.268845
\(196\) 38416.0 0.0714286
\(197\) −166160. −0.305044 −0.152522 0.988300i \(-0.548739\pi\)
−0.152522 + 0.988300i \(0.548739\pi\)
\(198\) −65591.7 −0.118901
\(199\) −74756.1 −0.133818 −0.0669089 0.997759i \(-0.521314\pi\)
−0.0669089 + 0.997759i \(0.521314\pi\)
\(200\) 40000.0 0.0707107
\(201\) 250739. 0.437756
\(202\) −432551. −0.745862
\(203\) −104268. −0.177588
\(204\) −400756. −0.674225
\(205\) −147336. −0.244863
\(206\) 552134. 0.906518
\(207\) 89070.5 0.144480
\(208\) 102222. 0.163827
\(209\) 1.22415e6 1.93851
\(210\) −70071.5 −0.109646
\(211\) −1.08646e6 −1.67999 −0.839997 0.542591i \(-0.817443\pi\)
−0.839997 + 0.542591i \(0.817443\pi\)
\(212\) −543278. −0.830200
\(213\) −23712.5 −0.0358120
\(214\) 24758.4 0.0369563
\(215\) 503943. 0.743508
\(216\) 257636. 0.375726
\(217\) −502864. −0.724939
\(218\) −274612. −0.391361
\(219\) 117933. 0.166160
\(220\) 170362. 0.237309
\(221\) 699387. 0.963246
\(222\) 415627. 0.566006
\(223\) −430809. −0.580126 −0.290063 0.957008i \(-0.593676\pi\)
−0.290063 + 0.957008i \(0.593676\pi\)
\(224\) 50176.0 0.0668153
\(225\) −24063.4 −0.0316885
\(226\) −251343. −0.327338
\(227\) −228724. −0.294610 −0.147305 0.989091i \(-0.547060\pi\)
−0.147305 + 0.989091i \(0.547060\pi\)
\(228\) −657638. −0.837819
\(229\) −1.01797e6 −1.28276 −0.641378 0.767225i \(-0.721637\pi\)
−0.641378 + 0.767225i \(0.721637\pi\)
\(230\) −231343. −0.288361
\(231\) −298437. −0.367979
\(232\) −136187. −0.166118
\(233\) −236710. −0.285645 −0.142822 0.989748i \(-0.545618\pi\)
−0.142822 + 0.989748i \(0.545618\pi\)
\(234\) −61495.1 −0.0734177
\(235\) 501413. 0.592279
\(236\) −69109.4 −0.0807713
\(237\) 131114. 0.151627
\(238\) 343298. 0.392852
\(239\) 1.73994e6 1.97034 0.985169 0.171587i \(-0.0548894\pi\)
0.985169 + 0.171587i \(0.0548894\pi\)
\(240\) −91521.9 −0.102564
\(241\) −332840. −0.369142 −0.184571 0.982819i \(-0.559090\pi\)
−0.184571 + 0.982819i \(0.559090\pi\)
\(242\) 81372.4 0.0893180
\(243\) −288781. −0.313728
\(244\) −196058. −0.210819
\(245\) 60025.0 0.0638877
\(246\) 337112. 0.355170
\(247\) 1.14769e6 1.19697
\(248\) −656802. −0.678118
\(249\) −1.36143e6 −1.39155
\(250\) 62500.0 0.0632456
\(251\) 1.88585e6 1.88939 0.944696 0.327948i \(-0.106357\pi\)
0.944696 + 0.327948i \(0.106357\pi\)
\(252\) −30185.2 −0.0299428
\(253\) −985298. −0.967757
\(254\) −792194. −0.770455
\(255\) −626181. −0.603045
\(256\) 65536.0 0.0625000
\(257\) 432608. 0.408566 0.204283 0.978912i \(-0.434514\pi\)
0.204283 + 0.978912i \(0.434514\pi\)
\(258\) −1.15305e6 −1.07844
\(259\) −356036. −0.329796
\(260\) 159721. 0.146531
\(261\) 81928.4 0.0744446
\(262\) −1.14053e6 −1.02649
\(263\) −1.20388e6 −1.07323 −0.536614 0.843828i \(-0.680297\pi\)
−0.536614 + 0.843828i \(0.680297\pi\)
\(264\) −389795. −0.344213
\(265\) −848872. −0.742554
\(266\) 563350. 0.488173
\(267\) 206522. 0.177292
\(268\) −280541. −0.238594
\(269\) 548133. 0.461855 0.230927 0.972971i \(-0.425824\pi\)
0.230927 + 0.972971i \(0.425824\pi\)
\(270\) 402556. 0.336060
\(271\) −906590. −0.749873 −0.374936 0.927051i \(-0.622335\pi\)
−0.374936 + 0.927051i \(0.622335\pi\)
\(272\) 448389. 0.367479
\(273\) −279798. −0.227215
\(274\) 1.62792e6 1.30995
\(275\) 266190. 0.212256
\(276\) 529324. 0.418262
\(277\) 1.35338e6 1.05979 0.529895 0.848064i \(-0.322231\pi\)
0.529895 + 0.848064i \(0.322231\pi\)
\(278\) 54121.8 0.0420011
\(279\) 395123. 0.303894
\(280\) 78400.0 0.0597614
\(281\) 752309. 0.568369 0.284185 0.958770i \(-0.408277\pi\)
0.284185 + 0.958770i \(0.408277\pi\)
\(282\) −1.14726e6 −0.859089
\(283\) −820710. −0.609149 −0.304575 0.952489i \(-0.598514\pi\)
−0.304575 + 0.952489i \(0.598514\pi\)
\(284\) 26530.9 0.0195189
\(285\) −1.02756e6 −0.749368
\(286\) 680259. 0.491767
\(287\) −288778. −0.206947
\(288\) −39425.5 −0.0280089
\(289\) 1.64796e6 1.16065
\(290\) −212793. −0.148581
\(291\) −888512. −0.615079
\(292\) −131951. −0.0905637
\(293\) −1.92239e6 −1.30819 −0.654097 0.756411i \(-0.726951\pi\)
−0.654097 + 0.756411i \(0.726951\pi\)
\(294\) −137340. −0.0926678
\(295\) −107983. −0.0722441
\(296\) −465027. −0.308496
\(297\) 1.71450e6 1.12784
\(298\) 308519. 0.201253
\(299\) −923760. −0.597559
\(300\) −143003. −0.0917365
\(301\) 987729. 0.628379
\(302\) −1.68185e6 −1.06114
\(303\) 1.54640e6 0.967643
\(304\) 735804. 0.456644
\(305\) −306340. −0.188562
\(306\) −269744. −0.164683
\(307\) 223229. 0.135177 0.0675887 0.997713i \(-0.478469\pi\)
0.0675887 + 0.997713i \(0.478469\pi\)
\(308\) 333909. 0.200563
\(309\) −1.97392e6 −1.17607
\(310\) −1.02625e6 −0.606527
\(311\) 2.29818e6 1.34736 0.673678 0.739025i \(-0.264714\pi\)
0.673678 + 0.739025i \(0.264714\pi\)
\(312\) −365450. −0.212540
\(313\) −1.62881e6 −0.939744 −0.469872 0.882735i \(-0.655700\pi\)
−0.469872 + 0.882735i \(0.655700\pi\)
\(314\) −1.92763e6 −1.10332
\(315\) −47164.3 −0.0267816
\(316\) −146698. −0.0826430
\(317\) 1.13620e6 0.635049 0.317524 0.948250i \(-0.397149\pi\)
0.317524 + 0.948250i \(0.397149\pi\)
\(318\) 1.94226e6 1.07706
\(319\) −906293. −0.498645
\(320\) 102400. 0.0559017
\(321\) −88513.3 −0.0479453
\(322\) −453432. −0.243710
\(323\) 5.03428e6 2.68492
\(324\) −771372. −0.408227
\(325\) 249565. 0.131061
\(326\) 1.12816e6 0.587930
\(327\) 981757. 0.507732
\(328\) −377180. −0.193582
\(329\) 982770. 0.500567
\(330\) −609055. −0.307873
\(331\) −3.77549e6 −1.89410 −0.947051 0.321084i \(-0.895953\pi\)
−0.947051 + 0.321084i \(0.895953\pi\)
\(332\) 1.52325e6 0.758449
\(333\) 279754. 0.138250
\(334\) 527882. 0.258923
\(335\) −438346. −0.213405
\(336\) −179383. −0.0866828
\(337\) 3.74913e6 1.79827 0.899136 0.437669i \(-0.144196\pi\)
0.899136 + 0.437669i \(0.144196\pi\)
\(338\) −847400. −0.403456
\(339\) 898571. 0.424672
\(340\) 700608. 0.328683
\(341\) −4.37085e6 −2.03554
\(342\) −442649. −0.204642
\(343\) 117649. 0.0539949
\(344\) 1.29010e6 0.587795
\(345\) 827068. 0.374105
\(346\) 222006. 0.0996953
\(347\) −1.14843e6 −0.512012 −0.256006 0.966675i \(-0.582407\pi\)
−0.256006 + 0.966675i \(0.582407\pi\)
\(348\) 486880. 0.215513
\(349\) 4.03275e6 1.77230 0.886151 0.463396i \(-0.153369\pi\)
0.886151 + 0.463396i \(0.153369\pi\)
\(350\) 122500. 0.0534522
\(351\) 1.60742e6 0.696403
\(352\) 436126. 0.187610
\(353\) 652660. 0.278773 0.139386 0.990238i \(-0.455487\pi\)
0.139386 + 0.990238i \(0.455487\pi\)
\(354\) 247071. 0.104789
\(355\) 41454.5 0.0174583
\(356\) −231069. −0.0966311
\(357\) −1.22732e6 −0.509666
\(358\) 83073.2 0.0342573
\(359\) −2.84604e6 −1.16548 −0.582741 0.812658i \(-0.698020\pi\)
−0.582741 + 0.812658i \(0.698020\pi\)
\(360\) −61602.4 −0.0250519
\(361\) 5.78512e6 2.33639
\(362\) −1.02347e6 −0.410489
\(363\) −290912. −0.115877
\(364\) 313054. 0.123841
\(365\) −206173. −0.0810026
\(366\) 700921. 0.273506
\(367\) −2.65232e6 −1.02792 −0.513962 0.857813i \(-0.671823\pi\)
−0.513962 + 0.857813i \(0.671823\pi\)
\(368\) −592238. −0.227969
\(369\) 226906. 0.0867521
\(370\) −726605. −0.275927
\(371\) −1.66379e6 −0.627572
\(372\) 2.34812e6 0.879756
\(373\) 2.83283e6 1.05426 0.527132 0.849784i \(-0.323267\pi\)
0.527132 + 0.849784i \(0.323267\pi\)
\(374\) 2.98392e6 1.10308
\(375\) −223442. −0.0820516
\(376\) 1.28362e6 0.468237
\(377\) −849688. −0.307898
\(378\) 789009. 0.284022
\(379\) −1.20678e6 −0.431551 −0.215775 0.976443i \(-0.569228\pi\)
−0.215775 + 0.976443i \(0.569228\pi\)
\(380\) 1.14969e6 0.408435
\(381\) 2.83215e6 0.999550
\(382\) 2.59704e6 0.910585
\(383\) −2.22793e6 −0.776076 −0.388038 0.921643i \(-0.626847\pi\)
−0.388038 + 0.921643i \(0.626847\pi\)
\(384\) −234296. −0.0810843
\(385\) 521732. 0.179389
\(386\) −3.07457e6 −1.05031
\(387\) −776103. −0.263416
\(388\) 994119. 0.335242
\(389\) −3.74004e6 −1.25315 −0.626574 0.779362i \(-0.715543\pi\)
−0.626574 + 0.779362i \(0.715543\pi\)
\(390\) −571016. −0.190102
\(391\) −4.05202e6 −1.34038
\(392\) 153664. 0.0505076
\(393\) 4.07748e6 1.33171
\(394\) −664642. −0.215699
\(395\) −229215. −0.0739181
\(396\) −262367. −0.0840758
\(397\) −2.90335e6 −0.924533 −0.462267 0.886741i \(-0.652964\pi\)
−0.462267 + 0.886741i \(0.652964\pi\)
\(398\) −299024. −0.0946235
\(399\) −2.01402e6 −0.633331
\(400\) 160000. 0.0500000
\(401\) 1.43777e6 0.446506 0.223253 0.974761i \(-0.428332\pi\)
0.223253 + 0.974761i \(0.428332\pi\)
\(402\) 1.00296e6 0.309540
\(403\) −4.09786e6 −1.25688
\(404\) −1.73020e6 −0.527404
\(405\) −1.20527e6 −0.365129
\(406\) −417074. −0.125573
\(407\) −3.09464e6 −0.926027
\(408\) −1.60302e6 −0.476749
\(409\) −4.78825e6 −1.41536 −0.707682 0.706531i \(-0.750259\pi\)
−0.707682 + 0.706531i \(0.750259\pi\)
\(410\) −589344. −0.173145
\(411\) −5.81992e6 −1.69947
\(412\) 2.20854e6 0.641005
\(413\) −211648. −0.0610574
\(414\) 356282. 0.102163
\(415\) 2.38008e6 0.678377
\(416\) 408887. 0.115843
\(417\) −193489. −0.0544900
\(418\) 4.89659e6 1.37073
\(419\) −2.08411e6 −0.579943 −0.289972 0.957035i \(-0.593646\pi\)
−0.289972 + 0.957035i \(0.593646\pi\)
\(420\) −280286. −0.0775315
\(421\) −1.00260e6 −0.275690 −0.137845 0.990454i \(-0.544018\pi\)
−0.137845 + 0.990454i \(0.544018\pi\)
\(422\) −4.34584e6 −1.18793
\(423\) −772206. −0.209837
\(424\) −2.17311e6 −0.587040
\(425\) 1.09470e6 0.293983
\(426\) −94849.9 −0.0253229
\(427\) −600427. −0.159364
\(428\) 99033.8 0.0261321
\(429\) −2.43198e6 −0.637994
\(430\) 2.01577e6 0.525740
\(431\) 1.45620e6 0.377595 0.188798 0.982016i \(-0.439541\pi\)
0.188798 + 0.982016i \(0.439541\pi\)
\(432\) 1.03054e6 0.265678
\(433\) −1.10726e6 −0.283812 −0.141906 0.989880i \(-0.545323\pi\)
−0.141906 + 0.989880i \(0.545323\pi\)
\(434\) −2.01146e6 −0.512609
\(435\) 760750. 0.192761
\(436\) −1.09845e6 −0.276734
\(437\) −6.64934e6 −1.66562
\(438\) 471733. 0.117493
\(439\) 4.15410e6 1.02876 0.514382 0.857561i \(-0.328021\pi\)
0.514382 + 0.857561i \(0.328021\pi\)
\(440\) 681446. 0.167803
\(441\) −92442.1 −0.0226346
\(442\) 2.79755e6 0.681118
\(443\) −7.20799e6 −1.74504 −0.872519 0.488581i \(-0.837515\pi\)
−0.872519 + 0.488581i \(0.837515\pi\)
\(444\) 1.66251e6 0.400227
\(445\) −361046. −0.0864295
\(446\) −1.72324e6 −0.410211
\(447\) −1.10298e6 −0.261095
\(448\) 200704. 0.0472456
\(449\) 5.58367e6 1.30709 0.653543 0.756890i \(-0.273282\pi\)
0.653543 + 0.756890i \(0.273282\pi\)
\(450\) −96253.7 −0.0224071
\(451\) −2.51004e6 −0.581084
\(452\) −1.00537e6 −0.231463
\(453\) 6.01275e6 1.37666
\(454\) −914895. −0.208320
\(455\) 489147. 0.110767
\(456\) −2.63055e6 −0.592427
\(457\) −3.54344e6 −0.793661 −0.396831 0.917892i \(-0.629890\pi\)
−0.396831 + 0.917892i \(0.629890\pi\)
\(458\) −4.07186e6 −0.907046
\(459\) 7.05084e6 1.56210
\(460\) −925372. −0.203902
\(461\) 5.88069e6 1.28877 0.644386 0.764700i \(-0.277113\pi\)
0.644386 + 0.764700i \(0.277113\pi\)
\(462\) −1.19375e6 −0.260200
\(463\) 6.65045e6 1.44178 0.720890 0.693050i \(-0.243733\pi\)
0.720890 + 0.693050i \(0.243733\pi\)
\(464\) −544749. −0.117463
\(465\) 3.66893e6 0.786878
\(466\) −946839. −0.201981
\(467\) 4.34743e6 0.922445 0.461222 0.887285i \(-0.347411\pi\)
0.461222 + 0.887285i \(0.347411\pi\)
\(468\) −245980. −0.0519141
\(469\) −859158. −0.180360
\(470\) 2.00565e6 0.418804
\(471\) 6.89143e6 1.43139
\(472\) −276438. −0.0571139
\(473\) 8.58526e6 1.76441
\(474\) 524456. 0.107217
\(475\) 1.79640e6 0.365316
\(476\) 1.37319e6 0.277788
\(477\) 1.30731e6 0.263078
\(478\) 6.95978e6 1.39324
\(479\) −929680. −0.185138 −0.0925688 0.995706i \(-0.529508\pi\)
−0.0925688 + 0.995706i \(0.529508\pi\)
\(480\) −366088. −0.0725240
\(481\) −2.90136e6 −0.571792
\(482\) −1.33136e6 −0.261023
\(483\) 1.62105e6 0.316176
\(484\) 325490. 0.0631573
\(485\) 1.55331e6 0.299850
\(486\) −1.15513e6 −0.221839
\(487\) −5.44887e6 −1.04108 −0.520540 0.853837i \(-0.674269\pi\)
−0.520540 + 0.853837i \(0.674269\pi\)
\(488\) −784232. −0.149072
\(489\) −4.03324e6 −0.762750
\(490\) 240100. 0.0451754
\(491\) −670070. −0.125434 −0.0627172 0.998031i \(-0.519977\pi\)
−0.0627172 + 0.998031i \(0.519977\pi\)
\(492\) 1.34845e6 0.251143
\(493\) −3.72711e6 −0.690644
\(494\) 4.59076e6 0.846384
\(495\) −409948. −0.0751997
\(496\) −2.62721e6 −0.479502
\(497\) 81250.9 0.0147549
\(498\) −5.44574e6 −0.983973
\(499\) 6.58017e6 1.18300 0.591501 0.806304i \(-0.298535\pi\)
0.591501 + 0.806304i \(0.298535\pi\)
\(500\) 250000. 0.0447214
\(501\) −1.88722e6 −0.335914
\(502\) 7.54339e6 1.33600
\(503\) −1.47714e6 −0.260317 −0.130159 0.991493i \(-0.541549\pi\)
−0.130159 + 0.991493i \(0.541549\pi\)
\(504\) −120741. −0.0211727
\(505\) −2.70344e6 −0.471724
\(506\) −3.94119e6 −0.684308
\(507\) 3.02952e6 0.523424
\(508\) −3.16878e6 −0.544794
\(509\) 5.16474e6 0.883597 0.441799 0.897114i \(-0.354341\pi\)
0.441799 + 0.897114i \(0.354341\pi\)
\(510\) −2.50472e6 −0.426417
\(511\) −404099. −0.0684597
\(512\) 262144. 0.0441942
\(513\) 1.15704e7 1.94113
\(514\) 1.73043e6 0.288899
\(515\) 3.45084e6 0.573333
\(516\) −4.61219e6 −0.762575
\(517\) 8.54215e6 1.40553
\(518\) −1.42415e6 −0.233201
\(519\) −793688. −0.129340
\(520\) 638885. 0.103613
\(521\) 294103. 0.0474684 0.0237342 0.999718i \(-0.492444\pi\)
0.0237342 + 0.999718i \(0.492444\pi\)
\(522\) 327714. 0.0526403
\(523\) 1.39098e6 0.222365 0.111182 0.993800i \(-0.464536\pi\)
0.111182 + 0.993800i \(0.464536\pi\)
\(524\) −4.56212e6 −0.725835
\(525\) −437947. −0.0693462
\(526\) −4.81550e6 −0.758887
\(527\) −1.79750e7 −2.81931
\(528\) −1.55918e6 −0.243395
\(529\) −1.08439e6 −0.168479
\(530\) −3.39549e6 −0.525065
\(531\) 166301. 0.0255952
\(532\) 2.25340e6 0.345191
\(533\) −2.35327e6 −0.358801
\(534\) 826090. 0.125364
\(535\) 154740. 0.0233732
\(536\) −1.12216e6 −0.168712
\(537\) −296993. −0.0444437
\(538\) 2.19253e6 0.326581
\(539\) 1.02260e6 0.151611
\(540\) 1.61022e6 0.237630
\(541\) 2.36315e6 0.347134 0.173567 0.984822i \(-0.444471\pi\)
0.173567 + 0.984822i \(0.444471\pi\)
\(542\) −3.62636e6 −0.530240
\(543\) 3.65897e6 0.532548
\(544\) 1.79356e6 0.259847
\(545\) −1.71632e6 −0.247519
\(546\) −1.11919e6 −0.160665
\(547\) 4.52298e6 0.646333 0.323167 0.946342i \(-0.395253\pi\)
0.323167 + 0.946342i \(0.395253\pi\)
\(548\) 6.51167e6 0.926277
\(549\) 471782. 0.0668053
\(550\) 1.06476e6 0.150088
\(551\) −6.11616e6 −0.858223
\(552\) 2.11729e6 0.295756
\(553\) −449262. −0.0624722
\(554\) 5.41351e6 0.749384
\(555\) 2.59767e6 0.357973
\(556\) 216487. 0.0296992
\(557\) −8.40670e6 −1.14812 −0.574060 0.818813i \(-0.694633\pi\)
−0.574060 + 0.818813i \(0.694633\pi\)
\(558\) 1.58049e6 0.214885
\(559\) 8.04905e6 1.08947
\(560\) 313600. 0.0422577
\(561\) −1.06677e7 −1.43108
\(562\) 3.00924e6 0.401898
\(563\) −2.22527e6 −0.295877 −0.147938 0.988997i \(-0.547264\pi\)
−0.147938 + 0.988997i \(0.547264\pi\)
\(564\) −4.58903e6 −0.607468
\(565\) −1.57090e6 −0.207027
\(566\) −3.28284e6 −0.430733
\(567\) −2.36233e6 −0.308590
\(568\) 106124. 0.0138020
\(569\) 1.58379e6 0.205078 0.102539 0.994729i \(-0.467303\pi\)
0.102539 + 0.994729i \(0.467303\pi\)
\(570\) −4.11024e6 −0.529883
\(571\) 1.25695e7 1.61335 0.806676 0.590994i \(-0.201264\pi\)
0.806676 + 0.590994i \(0.201264\pi\)
\(572\) 2.72104e6 0.347732
\(573\) −9.28462e6 −1.18135
\(574\) −1.15511e6 −0.146334
\(575\) −1.44589e6 −0.182376
\(576\) −157702. −0.0198053
\(577\) 1.37636e7 1.72104 0.860521 0.509414i \(-0.170138\pi\)
0.860521 + 0.509414i \(0.170138\pi\)
\(578\) 6.59185e6 0.820706
\(579\) 1.09918e7 1.36261
\(580\) −851171. −0.105062
\(581\) 4.66496e6 0.573334
\(582\) −3.55405e6 −0.434927
\(583\) −1.44615e7 −1.76215
\(584\) −527802. −0.0640382
\(585\) −384344. −0.0464334
\(586\) −7.68956e6 −0.925033
\(587\) 1.43475e6 0.171862 0.0859311 0.996301i \(-0.472614\pi\)
0.0859311 + 0.996301i \(0.472614\pi\)
\(588\) −549360. −0.0655260
\(589\) −2.94969e7 −3.50339
\(590\) −431934. −0.0510843
\(591\) 2.37614e6 0.279836
\(592\) −1.86011e6 −0.218139
\(593\) 2.58486e6 0.301856 0.150928 0.988545i \(-0.451774\pi\)
0.150928 + 0.988545i \(0.451774\pi\)
\(594\) 6.85800e6 0.797501
\(595\) 2.14561e6 0.248461
\(596\) 1.23408e6 0.142307
\(597\) 1.06903e6 0.122760
\(598\) −3.69504e6 −0.422538
\(599\) −5.51209e6 −0.627696 −0.313848 0.949473i \(-0.601618\pi\)
−0.313848 + 0.949473i \(0.601618\pi\)
\(600\) −572012. −0.0648675
\(601\) 6.92526e6 0.782077 0.391039 0.920374i \(-0.372116\pi\)
0.391039 + 0.920374i \(0.372116\pi\)
\(602\) 3.95092e6 0.444331
\(603\) 675078. 0.0756068
\(604\) −6.72742e6 −0.750336
\(605\) 508578. 0.0564896
\(606\) 6.18560e6 0.684227
\(607\) 1.19865e7 1.32045 0.660225 0.751067i \(-0.270461\pi\)
0.660225 + 0.751067i \(0.270461\pi\)
\(608\) 2.94322e6 0.322896
\(609\) 1.49107e6 0.162913
\(610\) −1.22536e6 −0.133334
\(611\) 8.00864e6 0.867872
\(612\) −1.07898e6 −0.116448
\(613\) −4.84046e6 −0.520278 −0.260139 0.965571i \(-0.583768\pi\)
−0.260139 + 0.965571i \(0.583768\pi\)
\(614\) 892915. 0.0955849
\(615\) 2.10695e6 0.224629
\(616\) 1.33563e6 0.141819
\(617\) −9.94864e6 −1.05208 −0.526042 0.850458i \(-0.676325\pi\)
−0.526042 + 0.850458i \(0.676325\pi\)
\(618\) −7.89568e6 −0.831608
\(619\) −1.38913e7 −1.45719 −0.728597 0.684943i \(-0.759827\pi\)
−0.728597 + 0.684943i \(0.759827\pi\)
\(620\) −4.10501e6 −0.428880
\(621\) −9.31284e6 −0.969065
\(622\) 9.19270e6 0.952724
\(623\) −707649. −0.0730463
\(624\) −1.46180e6 −0.150289
\(625\) 390625. 0.0400000
\(626\) −6.51524e6 −0.664499
\(627\) −1.75057e7 −1.77832
\(628\) −7.71053e6 −0.780162
\(629\) −1.27266e7 −1.28259
\(630\) −188657. −0.0189375
\(631\) −7.29060e6 −0.728937 −0.364469 0.931216i \(-0.618749\pi\)
−0.364469 + 0.931216i \(0.618749\pi\)
\(632\) −586791. −0.0584374
\(633\) 1.55367e7 1.54117
\(634\) 4.54480e6 0.449047
\(635\) −4.95121e6 −0.487279
\(636\) 7.76904e6 0.761596
\(637\) 958727. 0.0936152
\(638\) −3.62517e6 −0.352595
\(639\) −63842.4 −0.00618525
\(640\) 409600. 0.0395285
\(641\) 1.58175e7 1.52052 0.760259 0.649620i \(-0.225072\pi\)
0.760259 + 0.649620i \(0.225072\pi\)
\(642\) −354053. −0.0339024
\(643\) −7.35926e6 −0.701951 −0.350975 0.936385i \(-0.614150\pi\)
−0.350975 + 0.936385i \(0.614150\pi\)
\(644\) −1.81373e6 −0.172329
\(645\) −7.20654e6 −0.682068
\(646\) 2.01371e7 1.89852
\(647\) 1.08644e7 1.02034 0.510172 0.860072i \(-0.329582\pi\)
0.510172 + 0.860072i \(0.329582\pi\)
\(648\) −3.08549e6 −0.288660
\(649\) −1.83962e6 −0.171442
\(650\) 998258. 0.0926743
\(651\) 7.19111e6 0.665033
\(652\) 4.51263e6 0.415729
\(653\) −2.85006e6 −0.261560 −0.130780 0.991411i \(-0.541748\pi\)
−0.130780 + 0.991411i \(0.541748\pi\)
\(654\) 3.92703e6 0.359021
\(655\) −7.12831e6 −0.649207
\(656\) −1.50872e6 −0.136883
\(657\) 317518. 0.0286982
\(658\) 3.93108e6 0.353954
\(659\) −214583. −0.0192479 −0.00962393 0.999954i \(-0.503063\pi\)
−0.00962393 + 0.999954i \(0.503063\pi\)
\(660\) −2.43622e6 −0.217699
\(661\) 2.26579e6 0.201704 0.100852 0.994901i \(-0.467843\pi\)
0.100852 + 0.994901i \(0.467843\pi\)
\(662\) −1.51020e7 −1.33933
\(663\) −1.00014e7 −0.883648
\(664\) 6.09301e6 0.536304
\(665\) 3.52094e6 0.308748
\(666\) 1.11901e6 0.0977575
\(667\) 4.92281e6 0.428448
\(668\) 2.11153e6 0.183086
\(669\) 6.16070e6 0.532187
\(670\) −1.75338e6 −0.150900
\(671\) −5.21886e6 −0.447476
\(672\) −717532. −0.0612940
\(673\) −9.52991e6 −0.811057 −0.405528 0.914082i \(-0.632912\pi\)
−0.405528 + 0.914082i \(0.632912\pi\)
\(674\) 1.49965e7 1.27157
\(675\) 2.51597e6 0.212543
\(676\) −3.38960e6 −0.285287
\(677\) 2.14827e7 1.80143 0.900714 0.434412i \(-0.143044\pi\)
0.900714 + 0.434412i \(0.143044\pi\)
\(678\) 3.59429e6 0.300288
\(679\) 3.04449e6 0.253419
\(680\) 2.80243e6 0.232414
\(681\) 3.27082e6 0.270264
\(682\) −1.74834e7 −1.43935
\(683\) −2.89672e6 −0.237605 −0.118802 0.992918i \(-0.537905\pi\)
−0.118802 + 0.992918i \(0.537905\pi\)
\(684\) −1.77060e6 −0.144704
\(685\) 1.01745e7 0.828487
\(686\) 470596. 0.0381802
\(687\) 1.45572e7 1.17676
\(688\) 5.16038e6 0.415634
\(689\) −1.35583e7 −1.08807
\(690\) 3.30827e6 0.264532
\(691\) −2.09710e6 −0.167080 −0.0835399 0.996504i \(-0.526623\pi\)
−0.0835399 + 0.996504i \(0.526623\pi\)
\(692\) 888024. 0.0704952
\(693\) −803499. −0.0635553
\(694\) −4.59371e6 −0.362047
\(695\) 338261. 0.0265638
\(696\) 1.94752e6 0.152391
\(697\) −1.03225e7 −0.804825
\(698\) 1.61310e7 1.25321
\(699\) 3.38502e6 0.262041
\(700\) 490000. 0.0377964
\(701\) 6.59970e6 0.507258 0.253629 0.967302i \(-0.418376\pi\)
0.253629 + 0.967302i \(0.418376\pi\)
\(702\) 6.42967e6 0.492432
\(703\) −2.08843e7 −1.59379
\(704\) 1.74450e6 0.132660
\(705\) −7.17036e6 −0.543336
\(706\) 2.61064e6 0.197122
\(707\) −5.29874e6 −0.398680
\(708\) 988285. 0.0740967
\(709\) −2.22011e7 −1.65866 −0.829332 0.558756i \(-0.811279\pi\)
−0.829332 + 0.558756i \(0.811279\pi\)
\(710\) 165818. 0.0123449
\(711\) 353005. 0.0261883
\(712\) −924277. −0.0683285
\(713\) 2.37416e7 1.74899
\(714\) −4.90926e6 −0.360388
\(715\) 4.25162e6 0.311021
\(716\) 332293. 0.0242236
\(717\) −2.48817e7 −1.80752
\(718\) −1.13842e7 −0.824120
\(719\) 1.87540e7 1.35292 0.676460 0.736479i \(-0.263513\pi\)
0.676460 + 0.736479i \(0.263513\pi\)
\(720\) −246410. −0.0177144
\(721\) 6.76365e6 0.484555
\(722\) 2.31405e7 1.65207
\(723\) 4.75972e6 0.338638
\(724\) −4.09386e6 −0.290260
\(725\) −1.32995e6 −0.0939706
\(726\) −1.16365e6 −0.0819371
\(727\) 1.38593e7 0.972537 0.486269 0.873809i \(-0.338358\pi\)
0.486269 + 0.873809i \(0.338358\pi\)
\(728\) 1.25222e6 0.0875690
\(729\) 1.58449e7 1.10426
\(730\) −824691. −0.0572775
\(731\) 3.53067e7 2.44379
\(732\) 2.80369e6 0.193398
\(733\) 1.08280e7 0.744372 0.372186 0.928158i \(-0.378608\pi\)
0.372186 + 0.928158i \(0.378608\pi\)
\(734\) −1.06093e7 −0.726851
\(735\) −858375. −0.0586083
\(736\) −2.36895e6 −0.161199
\(737\) −7.46772e6 −0.506430
\(738\) 907624. 0.0613430
\(739\) −906866. −0.0610846 −0.0305423 0.999533i \(-0.509723\pi\)
−0.0305423 + 0.999533i \(0.509723\pi\)
\(740\) −2.90642e6 −0.195110
\(741\) −1.64123e7 −1.09806
\(742\) −6.65516e6 −0.443761
\(743\) −1.76804e7 −1.17495 −0.587475 0.809242i \(-0.699878\pi\)
−0.587475 + 0.809242i \(0.699878\pi\)
\(744\) 9.39247e6 0.622082
\(745\) 1.92825e6 0.127283
\(746\) 1.13313e7 0.745477
\(747\) −3.66547e6 −0.240341
\(748\) 1.19357e7 0.779996
\(749\) 303291. 0.0197540
\(750\) −893769. −0.0580192
\(751\) 1.96975e7 1.27441 0.637207 0.770692i \(-0.280089\pi\)
0.637207 + 0.770692i \(0.280089\pi\)
\(752\) 5.13447e6 0.331094
\(753\) −2.69682e7 −1.73326
\(754\) −3.39875e6 −0.217717
\(755\) −1.05116e7 −0.671121
\(756\) 3.15604e6 0.200834
\(757\) −1.88790e7 −1.19740 −0.598699 0.800974i \(-0.704315\pi\)
−0.598699 + 0.800974i \(0.704315\pi\)
\(758\) −4.82714e6 −0.305152
\(759\) 1.40901e7 0.887786
\(760\) 4.59877e6 0.288807
\(761\) 9.74849e6 0.610205 0.305102 0.952320i \(-0.401309\pi\)
0.305102 + 0.952320i \(0.401309\pi\)
\(762\) 1.13286e7 0.706788
\(763\) −3.36399e6 −0.209191
\(764\) 1.03882e7 0.643881
\(765\) −1.68590e6 −0.104155
\(766\) −8.91171e6 −0.548768
\(767\) −1.72473e6 −0.105860
\(768\) −937184. −0.0573353
\(769\) 6.11920e6 0.373146 0.186573 0.982441i \(-0.440262\pi\)
0.186573 + 0.982441i \(0.440262\pi\)
\(770\) 2.08693e6 0.126847
\(771\) −6.18642e6 −0.374804
\(772\) −1.22983e7 −0.742678
\(773\) 1.47893e6 0.0890223 0.0445111 0.999009i \(-0.485827\pi\)
0.0445111 + 0.999009i \(0.485827\pi\)
\(774\) −3.10441e6 −0.186263
\(775\) −6.41408e6 −0.383602
\(776\) 3.97648e6 0.237052
\(777\) 5.09143e6 0.302543
\(778\) −1.49602e7 −0.886109
\(779\) −1.69391e7 −1.00011
\(780\) −2.28406e6 −0.134422
\(781\) 706226. 0.0414301
\(782\) −1.62081e7 −0.947795
\(783\) −8.56609e6 −0.499319
\(784\) 614656. 0.0357143
\(785\) −1.20477e7 −0.697799
\(786\) 1.63099e7 0.941662
\(787\) 2.39360e7 1.37758 0.688788 0.724963i \(-0.258143\pi\)
0.688788 + 0.724963i \(0.258143\pi\)
\(788\) −2.65857e6 −0.152522
\(789\) 1.72158e7 0.984542
\(790\) −916861. −0.0522680
\(791\) −3.07896e6 −0.174970
\(792\) −1.04947e6 −0.0594506
\(793\) −4.89291e6 −0.276302
\(794\) −1.16134e7 −0.653744
\(795\) 1.21391e7 0.681192
\(796\) −1.19610e6 −0.0669089
\(797\) 6.21796e6 0.346738 0.173369 0.984857i \(-0.444535\pi\)
0.173369 + 0.984857i \(0.444535\pi\)
\(798\) −8.05607e6 −0.447833
\(799\) 3.51294e7 1.94672
\(800\) 640000. 0.0353553
\(801\) 556032. 0.0306209
\(802\) 5.75106e6 0.315727
\(803\) −3.51239e6 −0.192227
\(804\) 4.01182e6 0.218878
\(805\) −2.83395e6 −0.154135
\(806\) −1.63915e7 −0.888750
\(807\) −7.83847e6 −0.423689
\(808\) −6.92081e6 −0.372931
\(809\) −4.98100e6 −0.267575 −0.133787 0.991010i \(-0.542714\pi\)
−0.133787 + 0.991010i \(0.542714\pi\)
\(810\) −4.82108e6 −0.258185
\(811\) −3.09722e7 −1.65356 −0.826780 0.562525i \(-0.809830\pi\)
−0.826780 + 0.562525i \(0.809830\pi\)
\(812\) −1.66830e6 −0.0887938
\(813\) 1.29645e7 0.687907
\(814\) −1.23786e7 −0.654800
\(815\) 7.05098e6 0.371839
\(816\) −6.41210e6 −0.337112
\(817\) 5.79381e7 3.03675
\(818\) −1.91530e7 −1.00081
\(819\) −753315. −0.0392434
\(820\) −2.35737e6 −0.122432
\(821\) −2.87667e7 −1.48947 −0.744734 0.667361i \(-0.767424\pi\)
−0.744734 + 0.667361i \(0.767424\pi\)
\(822\) −2.32797e7 −1.20170
\(823\) 3.55713e7 1.83063 0.915313 0.402743i \(-0.131943\pi\)
0.915313 + 0.402743i \(0.131943\pi\)
\(824\) 8.83415e6 0.453259
\(825\) −3.80660e6 −0.194716
\(826\) −846590. −0.0431741
\(827\) 3.01542e7 1.53315 0.766575 0.642155i \(-0.221960\pi\)
0.766575 + 0.642155i \(0.221960\pi\)
\(828\) 1.42513e6 0.0722400
\(829\) −3.11697e7 −1.57524 −0.787618 0.616164i \(-0.788686\pi\)
−0.787618 + 0.616164i \(0.788686\pi\)
\(830\) 9.52032e6 0.479685
\(831\) −1.93537e7 −0.972213
\(832\) 1.63555e6 0.0819133
\(833\) 4.20540e6 0.209988
\(834\) −773958. −0.0385303
\(835\) 3.29926e6 0.163757
\(836\) 1.95864e7 0.969255
\(837\) −4.13124e7 −2.03829
\(838\) −8.33644e6 −0.410082
\(839\) 3.63050e7 1.78058 0.890291 0.455393i \(-0.150501\pi\)
0.890291 + 0.455393i \(0.150501\pi\)
\(840\) −1.12114e6 −0.0548230
\(841\) −1.59831e7 −0.779238
\(842\) −4.01039e6 −0.194942
\(843\) −1.07582e7 −0.521402
\(844\) −1.73834e7 −0.839997
\(845\) −5.29625e6 −0.255168
\(846\) −3.08883e6 −0.148377
\(847\) 996812. 0.0477425
\(848\) −8.69245e6 −0.415100
\(849\) 1.17364e7 0.558812
\(850\) 4.37880e6 0.207878
\(851\) 1.68095e7 0.795666
\(852\) −379400. −0.0179060
\(853\) 1.00191e7 0.471472 0.235736 0.971817i \(-0.424250\pi\)
0.235736 + 0.971817i \(0.424250\pi\)
\(854\) −2.40171e6 −0.112687
\(855\) −2.76656e6 −0.129427
\(856\) 396135. 0.0184782
\(857\) −1.17397e7 −0.546014 −0.273007 0.962012i \(-0.588018\pi\)
−0.273007 + 0.962012i \(0.588018\pi\)
\(858\) −9.72791e6 −0.451130
\(859\) −1.69498e7 −0.783756 −0.391878 0.920017i \(-0.628175\pi\)
−0.391878 + 0.920017i \(0.628175\pi\)
\(860\) 8.06310e6 0.371754
\(861\) 4.12962e6 0.189846
\(862\) 5.82478e6 0.267000
\(863\) −2.11590e7 −0.967091 −0.483546 0.875319i \(-0.660651\pi\)
−0.483546 + 0.875319i \(0.660651\pi\)
\(864\) 4.12217e6 0.187863
\(865\) 1.38754e6 0.0630528
\(866\) −4.42905e6 −0.200686
\(867\) −2.35664e7 −1.06474
\(868\) −8.04583e6 −0.362469
\(869\) −3.90495e6 −0.175415
\(870\) 3.04300e6 0.136302
\(871\) −7.00131e6 −0.312705
\(872\) −4.39379e6 −0.195681
\(873\) −2.39219e6 −0.106233
\(874\) −2.65973e7 −1.17777
\(875\) 765625. 0.0338062
\(876\) 1.88693e6 0.0830799
\(877\) 1.01611e7 0.446109 0.223055 0.974806i \(-0.428397\pi\)
0.223055 + 0.974806i \(0.428397\pi\)
\(878\) 1.66164e7 0.727446
\(879\) 2.74907e7 1.20009
\(880\) 2.72578e6 0.118655
\(881\) −3.50223e7 −1.52021 −0.760106 0.649799i \(-0.774853\pi\)
−0.760106 + 0.649799i \(0.774853\pi\)
\(882\) −369768. −0.0160051
\(883\) −2.15600e7 −0.930566 −0.465283 0.885162i \(-0.654047\pi\)
−0.465283 + 0.885162i \(0.654047\pi\)
\(884\) 1.11902e7 0.481623
\(885\) 1.54420e6 0.0662741
\(886\) −2.88319e7 −1.23393
\(887\) −1.29121e7 −0.551048 −0.275524 0.961294i \(-0.588851\pi\)
−0.275524 + 0.961294i \(0.588851\pi\)
\(888\) 6.65003e6 0.283003
\(889\) −9.70438e6 −0.411826
\(890\) −1.44418e6 −0.0611149
\(891\) −2.05332e7 −0.866486
\(892\) −6.89294e6 −0.290063
\(893\) 5.76472e7 2.41907
\(894\) −4.41192e6 −0.184622
\(895\) 519207. 0.0216662
\(896\) 802816. 0.0334077
\(897\) 1.32100e7 0.548180
\(898\) 2.23347e7 0.924249
\(899\) 2.18379e7 0.901181
\(900\) −385015. −0.0158442
\(901\) −5.94727e7 −2.44065
\(902\) −1.00401e7 −0.410888
\(903\) −1.41248e7 −0.576453
\(904\) −4.02149e6 −0.163669
\(905\) −6.39666e6 −0.259616
\(906\) 2.40510e7 0.973448
\(907\) 2.63522e7 1.06365 0.531825 0.846854i \(-0.321506\pi\)
0.531825 + 0.846854i \(0.321506\pi\)
\(908\) −3.65958e6 −0.147305
\(909\) 4.16346e6 0.167126
\(910\) 1.95659e6 0.0783241
\(911\) −4.82227e6 −0.192511 −0.0962555 0.995357i \(-0.530687\pi\)
−0.0962555 + 0.995357i \(0.530687\pi\)
\(912\) −1.05222e7 −0.418909
\(913\) 4.05474e7 1.60985
\(914\) −1.41738e7 −0.561203
\(915\) 4.38076e6 0.172980
\(916\) −1.62874e7 −0.641378
\(917\) −1.39715e7 −0.548680
\(918\) 2.82034e7 1.10457
\(919\) −121562. −0.00474798 −0.00237399 0.999997i \(-0.500756\pi\)
−0.00237399 + 0.999997i \(0.500756\pi\)
\(920\) −3.70149e6 −0.144181
\(921\) −3.19224e6 −0.124007
\(922\) 2.35228e7 0.911299
\(923\) 662117. 0.0255818
\(924\) −4.77499e6 −0.183989
\(925\) −4.54128e6 −0.174511
\(926\) 2.66018e7 1.01949
\(927\) −5.31450e6 −0.203125
\(928\) −2.17900e6 −0.0830590
\(929\) 1.74856e7 0.664725 0.332362 0.943152i \(-0.392154\pi\)
0.332362 + 0.943152i \(0.392154\pi\)
\(930\) 1.46757e7 0.556407
\(931\) 6.90104e6 0.260940
\(932\) −3.78736e6 −0.142822
\(933\) −3.28646e7 −1.23602
\(934\) 1.73897e7 0.652267
\(935\) 1.86495e7 0.697650
\(936\) −983921. −0.0367088
\(937\) −1.97882e7 −0.736304 −0.368152 0.929766i \(-0.620009\pi\)
−0.368152 + 0.929766i \(0.620009\pi\)
\(938\) −3.43663e6 −0.127534
\(939\) 2.32925e7 0.862088
\(940\) 8.02261e6 0.296139
\(941\) 2.05948e7 0.758199 0.379100 0.925356i \(-0.376234\pi\)
0.379100 + 0.925356i \(0.376234\pi\)
\(942\) 2.75657e7 1.01214
\(943\) 1.36340e7 0.499282
\(944\) −1.10575e6 −0.0403857
\(945\) 4.93130e6 0.179631
\(946\) 3.43410e7 1.24763
\(947\) 6.90803e6 0.250311 0.125155 0.992137i \(-0.460057\pi\)
0.125155 + 0.992137i \(0.460057\pi\)
\(948\) 2.09782e6 0.0758137
\(949\) −3.29302e6 −0.118694
\(950\) 7.18558e6 0.258317
\(951\) −1.62480e7 −0.582571
\(952\) 5.49276e6 0.196426
\(953\) 3.72040e7 1.32696 0.663480 0.748194i \(-0.269079\pi\)
0.663480 + 0.748194i \(0.269079\pi\)
\(954\) 5.22926e6 0.186024
\(955\) 1.62315e7 0.575905
\(956\) 2.78391e7 0.985169
\(957\) 1.29603e7 0.457440
\(958\) −3.71872e6 −0.130912
\(959\) 1.99420e7 0.700199
\(960\) −1.46435e6 −0.0512822
\(961\) 7.66904e7 2.67875
\(962\) −1.16054e7 −0.404318
\(963\) −238309. −0.00828085
\(964\) −5.32545e6 −0.184571
\(965\) −1.92160e7 −0.664272
\(966\) 6.48421e6 0.223571
\(967\) 1.88878e7 0.649555 0.324778 0.945790i \(-0.394711\pi\)
0.324778 + 0.945790i \(0.394711\pi\)
\(968\) 1.30196e6 0.0446590
\(969\) −7.19916e7 −2.46305
\(970\) 6.21324e6 0.212026
\(971\) −4.20566e7 −1.43148 −0.715741 0.698366i \(-0.753911\pi\)
−0.715741 + 0.698366i \(0.753911\pi\)
\(972\) −4.62050e6 −0.156864
\(973\) 662992. 0.0224505
\(974\) −2.17955e7 −0.736155
\(975\) −3.56885e6 −0.120231
\(976\) −3.13693e6 −0.105409
\(977\) 4.61174e7 1.54571 0.772855 0.634583i \(-0.218828\pi\)
0.772855 + 0.634583i \(0.218828\pi\)
\(978\) −1.61330e7 −0.539346
\(979\) −6.15083e6 −0.205105
\(980\) 960400. 0.0319438
\(981\) 2.64324e6 0.0876928
\(982\) −2.68028e6 −0.0886954
\(983\) 3.25827e7 1.07548 0.537741 0.843110i \(-0.319278\pi\)
0.537741 + 0.843110i \(0.319278\pi\)
\(984\) 5.39378e6 0.177585
\(985\) −4.15401e6 −0.136420
\(986\) −1.49084e7 −0.488359
\(987\) −1.40539e7 −0.459202
\(988\) 1.83631e7 0.598484
\(989\) −4.66335e7 −1.51603
\(990\) −1.63979e6 −0.0531742
\(991\) 1.68209e7 0.544084 0.272042 0.962285i \(-0.412301\pi\)
0.272042 + 0.962285i \(0.412301\pi\)
\(992\) −1.05088e7 −0.339059
\(993\) 5.39906e7 1.73758
\(994\) 325003. 0.0104333
\(995\) −1.86890e6 −0.0598451
\(996\) −2.17829e7 −0.695774
\(997\) 7.67044e6 0.244389 0.122195 0.992506i \(-0.461007\pi\)
0.122195 + 0.992506i \(0.461007\pi\)
\(998\) 2.63207e7 0.836509
\(999\) −2.92499e7 −0.927279
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 70.6.a.h.1.1 2
3.2 odd 2 630.6.a.s.1.1 2
4.3 odd 2 560.6.a.k.1.2 2
5.2 odd 4 350.6.c.k.99.4 4
5.3 odd 4 350.6.c.k.99.1 4
5.4 even 2 350.6.a.p.1.2 2
7.6 odd 2 490.6.a.u.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.h.1.1 2 1.1 even 1 trivial
350.6.a.p.1.2 2 5.4 even 2
350.6.c.k.99.1 4 5.3 odd 4
350.6.c.k.99.4 4 5.2 odd 4
490.6.a.u.1.2 2 7.6 odd 2
560.6.a.k.1.2 2 4.3 odd 2
630.6.a.s.1.1 2 3.2 odd 2