Properties

Label 70.6.a.d
Level $70$
Weight $6$
Character orbit 70.a
Self dual yes
Analytic conductor $11.227$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [70,6,Mod(1,70)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(70, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("70.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 70.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.2268673869\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 4 q^{2} + 11 q^{3} + 16 q^{4} - 25 q^{5} - 44 q^{6} - 49 q^{7} - 64 q^{8} - 122 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 4 q^{2} + 11 q^{3} + 16 q^{4} - 25 q^{5} - 44 q^{6} - 49 q^{7} - 64 q^{8} - 122 q^{9} + 100 q^{10} + 83 q^{11} + 176 q^{12} - 83 q^{13} + 196 q^{14} - 275 q^{15} + 256 q^{16} - 177 q^{17} + 488 q^{18} - 2082 q^{19} - 400 q^{20} - 539 q^{21} - 332 q^{22} - 3170 q^{23} - 704 q^{24} + 625 q^{25} + 332 q^{26} - 4015 q^{27} - 784 q^{28} - 8681 q^{29} + 1100 q^{30} + 1636 q^{31} - 1024 q^{32} + 913 q^{33} + 708 q^{34} + 1225 q^{35} - 1952 q^{36} + 4298 q^{37} + 8328 q^{38} - 913 q^{39} + 1600 q^{40} + 2356 q^{41} + 2156 q^{42} + 8738 q^{43} + 1328 q^{44} + 3050 q^{45} + 12680 q^{46} - 3641 q^{47} + 2816 q^{48} + 2401 q^{49} - 2500 q^{50} - 1947 q^{51} - 1328 q^{52} + 33268 q^{53} + 16060 q^{54} - 2075 q^{55} + 3136 q^{56} - 22902 q^{57} + 34724 q^{58} - 30968 q^{59} - 4400 q^{60} + 4560 q^{61} - 6544 q^{62} + 5978 q^{63} + 4096 q^{64} + 2075 q^{65} - 3652 q^{66} + 37788 q^{67} - 2832 q^{68} - 34870 q^{69} - 4900 q^{70} - 59304 q^{71} + 7808 q^{72} - 8910 q^{73} - 17192 q^{74} + 6875 q^{75} - 33312 q^{76} - 4067 q^{77} + 3652 q^{78} + 27589 q^{79} - 6400 q^{80} - 14519 q^{81} - 9424 q^{82} + 67676 q^{83} - 8624 q^{84} + 4425 q^{85} - 34952 q^{86} - 95491 q^{87} - 5312 q^{88} + 10700 q^{89} - 12200 q^{90} + 4067 q^{91} - 50720 q^{92} + 17996 q^{93} + 14564 q^{94} + 52050 q^{95} - 11264 q^{96} + 65075 q^{97} - 9604 q^{98} - 10126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−4.00000 11.0000 16.0000 −25.0000 −44.0000 −49.0000 −64.0000 −122.000 100.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 70.6.a.d 1
3.b odd 2 1 630.6.a.l 1
4.b odd 2 1 560.6.a.a 1
5.b even 2 1 350.6.a.h 1
5.c odd 4 2 350.6.c.c 2
7.b odd 2 1 490.6.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.6.a.d 1 1.a even 1 1 trivial
350.6.a.h 1 5.b even 2 1
350.6.c.c 2 5.c odd 4 2
490.6.a.c 1 7.b odd 2 1
560.6.a.a 1 4.b odd 2 1
630.6.a.l 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 11 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(70))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 4 \) Copy content Toggle raw display
$3$ \( T - 11 \) Copy content Toggle raw display
$5$ \( T + 25 \) Copy content Toggle raw display
$7$ \( T + 49 \) Copy content Toggle raw display
$11$ \( T - 83 \) Copy content Toggle raw display
$13$ \( T + 83 \) Copy content Toggle raw display
$17$ \( T + 177 \) Copy content Toggle raw display
$19$ \( T + 2082 \) Copy content Toggle raw display
$23$ \( T + 3170 \) Copy content Toggle raw display
$29$ \( T + 8681 \) Copy content Toggle raw display
$31$ \( T - 1636 \) Copy content Toggle raw display
$37$ \( T - 4298 \) Copy content Toggle raw display
$41$ \( T - 2356 \) Copy content Toggle raw display
$43$ \( T - 8738 \) Copy content Toggle raw display
$47$ \( T + 3641 \) Copy content Toggle raw display
$53$ \( T - 33268 \) Copy content Toggle raw display
$59$ \( T + 30968 \) Copy content Toggle raw display
$61$ \( T - 4560 \) Copy content Toggle raw display
$67$ \( T - 37788 \) Copy content Toggle raw display
$71$ \( T + 59304 \) Copy content Toggle raw display
$73$ \( T + 8910 \) Copy content Toggle raw display
$79$ \( T - 27589 \) Copy content Toggle raw display
$83$ \( T - 67676 \) Copy content Toggle raw display
$89$ \( T - 10700 \) Copy content Toggle raw display
$97$ \( T - 65075 \) Copy content Toggle raw display
show more
show less