Properties

Label 70.6.a.c.1.1
Level $70$
Weight $6$
Character 70.1
Self dual yes
Analytic conductor $11.227$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [70,6,Mod(1,70)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(70, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("70.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 70.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.2268673869\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 70.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -3.00000 q^{3} +16.0000 q^{4} -25.0000 q^{5} +12.0000 q^{6} +49.0000 q^{7} -64.0000 q^{8} -234.000 q^{9} +100.000 q^{10} +405.000 q^{11} -48.0000 q^{12} -391.000 q^{13} -196.000 q^{14} +75.0000 q^{15} +256.000 q^{16} +999.000 q^{17} +936.000 q^{18} +2342.00 q^{19} -400.000 q^{20} -147.000 q^{21} -1620.00 q^{22} +2430.00 q^{23} +192.000 q^{24} +625.000 q^{25} +1564.00 q^{26} +1431.00 q^{27} +784.000 q^{28} +8259.00 q^{29} -300.000 q^{30} +4016.00 q^{31} -1024.00 q^{32} -1215.00 q^{33} -3996.00 q^{34} -1225.00 q^{35} -3744.00 q^{36} -7042.00 q^{37} -9368.00 q^{38} +1173.00 q^{39} +1600.00 q^{40} +3336.00 q^{41} +588.000 q^{42} -23518.0 q^{43} +6480.00 q^{44} +5850.00 q^{45} -9720.00 q^{46} +10317.0 q^{47} -768.000 q^{48} +2401.00 q^{49} -2500.00 q^{50} -2997.00 q^{51} -6256.00 q^{52} +3084.00 q^{53} -5724.00 q^{54} -10125.0 q^{55} -3136.00 q^{56} -7026.00 q^{57} -33036.0 q^{58} -18816.0 q^{59} +1200.00 q^{60} +21668.0 q^{61} -16064.0 q^{62} -11466.0 q^{63} +4096.00 q^{64} +9775.00 q^{65} +4860.00 q^{66} +52124.0 q^{67} +15984.0 q^{68} -7290.00 q^{69} +4900.00 q^{70} -28560.0 q^{71} +14976.0 q^{72} -70342.0 q^{73} +28168.0 q^{74} -1875.00 q^{75} +37472.0 q^{76} +19845.0 q^{77} -4692.00 q^{78} +58823.0 q^{79} -6400.00 q^{80} +52569.0 q^{81} -13344.0 q^{82} +756.000 q^{83} -2352.00 q^{84} -24975.0 q^{85} +94072.0 q^{86} -24777.0 q^{87} -25920.0 q^{88} +135384. q^{89} -23400.0 q^{90} -19159.0 q^{91} +38880.0 q^{92} -12048.0 q^{93} -41268.0 q^{94} -58550.0 q^{95} +3072.00 q^{96} +110435. q^{97} -9604.00 q^{98} -94770.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) −3.00000 −0.192450 −0.0962250 0.995360i \(-0.530677\pi\)
−0.0962250 + 0.995360i \(0.530677\pi\)
\(4\) 16.0000 0.500000
\(5\) −25.0000 −0.447214
\(6\) 12.0000 0.136083
\(7\) 49.0000 0.377964
\(8\) −64.0000 −0.353553
\(9\) −234.000 −0.962963
\(10\) 100.000 0.316228
\(11\) 405.000 1.00919 0.504595 0.863356i \(-0.331642\pi\)
0.504595 + 0.863356i \(0.331642\pi\)
\(12\) −48.0000 −0.0962250
\(13\) −391.000 −0.641680 −0.320840 0.947133i \(-0.603965\pi\)
−0.320840 + 0.947133i \(0.603965\pi\)
\(14\) −196.000 −0.267261
\(15\) 75.0000 0.0860663
\(16\) 256.000 0.250000
\(17\) 999.000 0.838384 0.419192 0.907898i \(-0.362313\pi\)
0.419192 + 0.907898i \(0.362313\pi\)
\(18\) 936.000 0.680918
\(19\) 2342.00 1.48834 0.744171 0.667989i \(-0.232845\pi\)
0.744171 + 0.667989i \(0.232845\pi\)
\(20\) −400.000 −0.223607
\(21\) −147.000 −0.0727393
\(22\) −1620.00 −0.713606
\(23\) 2430.00 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(24\) 192.000 0.0680414
\(25\) 625.000 0.200000
\(26\) 1564.00 0.453736
\(27\) 1431.00 0.377772
\(28\) 784.000 0.188982
\(29\) 8259.00 1.82361 0.911806 0.410621i \(-0.134688\pi\)
0.911806 + 0.410621i \(0.134688\pi\)
\(30\) −300.000 −0.0608581
\(31\) 4016.00 0.750567 0.375284 0.926910i \(-0.377545\pi\)
0.375284 + 0.926910i \(0.377545\pi\)
\(32\) −1024.00 −0.176777
\(33\) −1215.00 −0.194219
\(34\) −3996.00 −0.592827
\(35\) −1225.00 −0.169031
\(36\) −3744.00 −0.481481
\(37\) −7042.00 −0.845652 −0.422826 0.906211i \(-0.638962\pi\)
−0.422826 + 0.906211i \(0.638962\pi\)
\(38\) −9368.00 −1.05242
\(39\) 1173.00 0.123491
\(40\) 1600.00 0.158114
\(41\) 3336.00 0.309932 0.154966 0.987920i \(-0.450473\pi\)
0.154966 + 0.987920i \(0.450473\pi\)
\(42\) 588.000 0.0514344
\(43\) −23518.0 −1.93968 −0.969838 0.243750i \(-0.921622\pi\)
−0.969838 + 0.243750i \(0.921622\pi\)
\(44\) 6480.00 0.504595
\(45\) 5850.00 0.430650
\(46\) −9720.00 −0.677285
\(47\) 10317.0 0.681254 0.340627 0.940199i \(-0.389361\pi\)
0.340627 + 0.940199i \(0.389361\pi\)
\(48\) −768.000 −0.0481125
\(49\) 2401.00 0.142857
\(50\) −2500.00 −0.141421
\(51\) −2997.00 −0.161347
\(52\) −6256.00 −0.320840
\(53\) 3084.00 0.150808 0.0754041 0.997153i \(-0.475975\pi\)
0.0754041 + 0.997153i \(0.475975\pi\)
\(54\) −5724.00 −0.267125
\(55\) −10125.0 −0.451324
\(56\) −3136.00 −0.133631
\(57\) −7026.00 −0.286432
\(58\) −33036.0 −1.28949
\(59\) −18816.0 −0.703716 −0.351858 0.936053i \(-0.614450\pi\)
−0.351858 + 0.936053i \(0.614450\pi\)
\(60\) 1200.00 0.0430331
\(61\) 21668.0 0.745580 0.372790 0.927916i \(-0.378401\pi\)
0.372790 + 0.927916i \(0.378401\pi\)
\(62\) −16064.0 −0.530731
\(63\) −11466.0 −0.363966
\(64\) 4096.00 0.125000
\(65\) 9775.00 0.286968
\(66\) 4860.00 0.137333
\(67\) 52124.0 1.41857 0.709285 0.704922i \(-0.249018\pi\)
0.709285 + 0.704922i \(0.249018\pi\)
\(68\) 15984.0 0.419192
\(69\) −7290.00 −0.184334
\(70\) 4900.00 0.119523
\(71\) −28560.0 −0.672376 −0.336188 0.941795i \(-0.609138\pi\)
−0.336188 + 0.941795i \(0.609138\pi\)
\(72\) 14976.0 0.340459
\(73\) −70342.0 −1.54493 −0.772463 0.635060i \(-0.780975\pi\)
−0.772463 + 0.635060i \(0.780975\pi\)
\(74\) 28168.0 0.597966
\(75\) −1875.00 −0.0384900
\(76\) 37472.0 0.744171
\(77\) 19845.0 0.381438
\(78\) −4692.00 −0.0873216
\(79\) 58823.0 1.06042 0.530212 0.847865i \(-0.322112\pi\)
0.530212 + 0.847865i \(0.322112\pi\)
\(80\) −6400.00 −0.111803
\(81\) 52569.0 0.890261
\(82\) −13344.0 −0.219155
\(83\) 756.000 0.0120455 0.00602277 0.999982i \(-0.498083\pi\)
0.00602277 + 0.999982i \(0.498083\pi\)
\(84\) −2352.00 −0.0363696
\(85\) −24975.0 −0.374937
\(86\) 94072.0 1.37156
\(87\) −24777.0 −0.350954
\(88\) −25920.0 −0.356803
\(89\) 135384. 1.81173 0.905863 0.423572i \(-0.139224\pi\)
0.905863 + 0.423572i \(0.139224\pi\)
\(90\) −23400.0 −0.304516
\(91\) −19159.0 −0.242532
\(92\) 38880.0 0.478913
\(93\) −12048.0 −0.144447
\(94\) −41268.0 −0.481719
\(95\) −58550.0 −0.665607
\(96\) 3072.00 0.0340207
\(97\) 110435. 1.19173 0.595864 0.803085i \(-0.296810\pi\)
0.595864 + 0.803085i \(0.296810\pi\)
\(98\) −9604.00 −0.101015
\(99\) −94770.0 −0.971813
\(100\) 10000.0 0.100000
\(101\) 33450.0 0.326282 0.163141 0.986603i \(-0.447838\pi\)
0.163141 + 0.986603i \(0.447838\pi\)
\(102\) 11988.0 0.114090
\(103\) −110311. −1.02453 −0.512266 0.858827i \(-0.671194\pi\)
−0.512266 + 0.858827i \(0.671194\pi\)
\(104\) 25024.0 0.226868
\(105\) 3675.00 0.0325300
\(106\) −12336.0 −0.106637
\(107\) 35358.0 0.298558 0.149279 0.988795i \(-0.452305\pi\)
0.149279 + 0.988795i \(0.452305\pi\)
\(108\) 22896.0 0.188886
\(109\) −151183. −1.21881 −0.609406 0.792858i \(-0.708592\pi\)
−0.609406 + 0.792858i \(0.708592\pi\)
\(110\) 40500.0 0.319134
\(111\) 21126.0 0.162746
\(112\) 12544.0 0.0944911
\(113\) −133686. −0.984895 −0.492447 0.870342i \(-0.663898\pi\)
−0.492447 + 0.870342i \(0.663898\pi\)
\(114\) 28104.0 0.202538
\(115\) −60750.0 −0.428353
\(116\) 132144. 0.911806
\(117\) 91494.0 0.617914
\(118\) 75264.0 0.497602
\(119\) 48951.0 0.316880
\(120\) −4800.00 −0.0304290
\(121\) 2974.00 0.0184662
\(122\) −86672.0 −0.527205
\(123\) −10008.0 −0.0596464
\(124\) 64256.0 0.375284
\(125\) −15625.0 −0.0894427
\(126\) 45864.0 0.257363
\(127\) −283984. −1.56237 −0.781186 0.624298i \(-0.785385\pi\)
−0.781186 + 0.624298i \(0.785385\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 70554.0 0.373291
\(130\) −39100.0 −0.202917
\(131\) 261438. 1.33104 0.665519 0.746381i \(-0.268210\pi\)
0.665519 + 0.746381i \(0.268210\pi\)
\(132\) −19440.0 −0.0971094
\(133\) 114758. 0.562541
\(134\) −208496. −1.00308
\(135\) −35775.0 −0.168945
\(136\) −63936.0 −0.296414
\(137\) 39672.0 0.180585 0.0902927 0.995915i \(-0.471220\pi\)
0.0902927 + 0.995915i \(0.471220\pi\)
\(138\) 29160.0 0.130344
\(139\) −182626. −0.801725 −0.400863 0.916138i \(-0.631290\pi\)
−0.400863 + 0.916138i \(0.631290\pi\)
\(140\) −19600.0 −0.0845154
\(141\) −30951.0 −0.131107
\(142\) 114240. 0.475442
\(143\) −158355. −0.647577
\(144\) −59904.0 −0.240741
\(145\) −206475. −0.815544
\(146\) 281368. 1.09243
\(147\) −7203.00 −0.0274929
\(148\) −112672. −0.422826
\(149\) −12078.0 −0.0445686 −0.0222843 0.999752i \(-0.507094\pi\)
−0.0222843 + 0.999752i \(0.507094\pi\)
\(150\) 7500.00 0.0272166
\(151\) −208417. −0.743859 −0.371930 0.928261i \(-0.621304\pi\)
−0.371930 + 0.928261i \(0.621304\pi\)
\(152\) −149888. −0.526209
\(153\) −233766. −0.807333
\(154\) −79380.0 −0.269718
\(155\) −100400. −0.335664
\(156\) 18768.0 0.0617457
\(157\) 364094. 1.17887 0.589433 0.807817i \(-0.299351\pi\)
0.589433 + 0.807817i \(0.299351\pi\)
\(158\) −235292. −0.749833
\(159\) −9252.00 −0.0290230
\(160\) 25600.0 0.0790569
\(161\) 119070. 0.362024
\(162\) −210276. −0.629509
\(163\) 626.000 0.00184546 0.000922731 1.00000i \(-0.499706\pi\)
0.000922731 1.00000i \(0.499706\pi\)
\(164\) 53376.0 0.154966
\(165\) 30375.0 0.0868573
\(166\) −3024.00 −0.00851749
\(167\) 445617. 1.23643 0.618216 0.786008i \(-0.287856\pi\)
0.618216 + 0.786008i \(0.287856\pi\)
\(168\) 9408.00 0.0257172
\(169\) −218412. −0.588247
\(170\) 99900.0 0.265120
\(171\) −548028. −1.43322
\(172\) −376288. −0.969838
\(173\) 643467. 1.63460 0.817299 0.576214i \(-0.195470\pi\)
0.817299 + 0.576214i \(0.195470\pi\)
\(174\) 99108.0 0.248162
\(175\) 30625.0 0.0755929
\(176\) 103680. 0.252298
\(177\) 56448.0 0.135430
\(178\) −541536. −1.28108
\(179\) 245148. 0.571868 0.285934 0.958249i \(-0.407696\pi\)
0.285934 + 0.958249i \(0.407696\pi\)
\(180\) 93600.0 0.215325
\(181\) 686180. 1.55683 0.778416 0.627749i \(-0.216024\pi\)
0.778416 + 0.627749i \(0.216024\pi\)
\(182\) 76636.0 0.171496
\(183\) −65004.0 −0.143487
\(184\) −155520. −0.338643
\(185\) 176050. 0.378187
\(186\) 48192.0 0.102139
\(187\) 404595. 0.846090
\(188\) 165072. 0.340627
\(189\) 70119.0 0.142785
\(190\) 234200. 0.470655
\(191\) −527031. −1.04533 −0.522664 0.852539i \(-0.675062\pi\)
−0.522664 + 0.852539i \(0.675062\pi\)
\(192\) −12288.0 −0.0240563
\(193\) 143216. 0.276757 0.138378 0.990379i \(-0.455811\pi\)
0.138378 + 0.990379i \(0.455811\pi\)
\(194\) −441740. −0.842679
\(195\) −29325.0 −0.0552270
\(196\) 38416.0 0.0714286
\(197\) 348468. 0.639731 0.319865 0.947463i \(-0.396362\pi\)
0.319865 + 0.947463i \(0.396362\pi\)
\(198\) 379080. 0.687176
\(199\) 754520. 1.35064 0.675318 0.737527i \(-0.264007\pi\)
0.675318 + 0.737527i \(0.264007\pi\)
\(200\) −40000.0 −0.0707107
\(201\) −156372. −0.273004
\(202\) −133800. −0.230716
\(203\) 404691. 0.689261
\(204\) −47952.0 −0.0806736
\(205\) −83400.0 −0.138606
\(206\) 441244. 0.724454
\(207\) −568620. −0.922351
\(208\) −100096. −0.160420
\(209\) 948510. 1.50202
\(210\) −14700.0 −0.0230022
\(211\) −590749. −0.913475 −0.456738 0.889601i \(-0.650982\pi\)
−0.456738 + 0.889601i \(0.650982\pi\)
\(212\) 49344.0 0.0754041
\(213\) 85680.0 0.129399
\(214\) −141432. −0.211112
\(215\) 587950. 0.867450
\(216\) −91584.0 −0.133563
\(217\) 196784. 0.283688
\(218\) 604732. 0.861830
\(219\) 211026. 0.297321
\(220\) −162000. −0.225662
\(221\) −390609. −0.537974
\(222\) −84504.0 −0.115079
\(223\) −396103. −0.533391 −0.266696 0.963781i \(-0.585932\pi\)
−0.266696 + 0.963781i \(0.585932\pi\)
\(224\) −50176.0 −0.0668153
\(225\) −146250. −0.192593
\(226\) 534744. 0.696426
\(227\) 9537.00 0.0122842 0.00614210 0.999981i \(-0.498045\pi\)
0.00614210 + 0.999981i \(0.498045\pi\)
\(228\) −112416. −0.143216
\(229\) 705056. 0.888454 0.444227 0.895914i \(-0.353478\pi\)
0.444227 + 0.895914i \(0.353478\pi\)
\(230\) 243000. 0.302891
\(231\) −59535.0 −0.0734078
\(232\) −528576. −0.644744
\(233\) 534216. 0.644655 0.322327 0.946628i \(-0.395535\pi\)
0.322327 + 0.946628i \(0.395535\pi\)
\(234\) −365976. −0.436931
\(235\) −257925. −0.304666
\(236\) −301056. −0.351858
\(237\) −176469. −0.204079
\(238\) −195804. −0.224068
\(239\) −901221. −1.02056 −0.510278 0.860010i \(-0.670457\pi\)
−0.510278 + 0.860010i \(0.670457\pi\)
\(240\) 19200.0 0.0215166
\(241\) −952390. −1.05626 −0.528132 0.849162i \(-0.677107\pi\)
−0.528132 + 0.849162i \(0.677107\pi\)
\(242\) −11896.0 −0.0130576
\(243\) −505440. −0.549103
\(244\) 346688. 0.372790
\(245\) −60025.0 −0.0638877
\(246\) 40032.0 0.0421764
\(247\) −915722. −0.955039
\(248\) −257024. −0.265366
\(249\) −2268.00 −0.00231817
\(250\) 62500.0 0.0632456
\(251\) −1.10024e6 −1.10231 −0.551153 0.834404i \(-0.685812\pi\)
−0.551153 + 0.834404i \(0.685812\pi\)
\(252\) −183456. −0.181983
\(253\) 984150. 0.966629
\(254\) 1.13594e6 1.10476
\(255\) 74925.0 0.0721566
\(256\) 65536.0 0.0625000
\(257\) −1.08230e6 −1.02215 −0.511074 0.859537i \(-0.670752\pi\)
−0.511074 + 0.859537i \(0.670752\pi\)
\(258\) −282216. −0.263957
\(259\) −345058. −0.319626
\(260\) 156400. 0.143484
\(261\) −1.93261e6 −1.75607
\(262\) −1.04575e6 −0.941186
\(263\) 82950.0 0.0739481 0.0369740 0.999316i \(-0.488228\pi\)
0.0369740 + 0.999316i \(0.488228\pi\)
\(264\) 77760.0 0.0686667
\(265\) −77100.0 −0.0674434
\(266\) −459032. −0.397776
\(267\) −406152. −0.348667
\(268\) 833984. 0.709285
\(269\) −633822. −0.534056 −0.267028 0.963689i \(-0.586042\pi\)
−0.267028 + 0.963689i \(0.586042\pi\)
\(270\) 143100. 0.119462
\(271\) −278956. −0.230734 −0.115367 0.993323i \(-0.536804\pi\)
−0.115367 + 0.993323i \(0.536804\pi\)
\(272\) 255744. 0.209596
\(273\) 57477.0 0.0466753
\(274\) −158688. −0.127693
\(275\) 253125. 0.201838
\(276\) −116640. −0.0921669
\(277\) 2.17523e6 1.70336 0.851679 0.524064i \(-0.175585\pi\)
0.851679 + 0.524064i \(0.175585\pi\)
\(278\) 730504. 0.566905
\(279\) −939744. −0.722768
\(280\) 78400.0 0.0597614
\(281\) −692901. −0.523486 −0.261743 0.965138i \(-0.584297\pi\)
−0.261743 + 0.965138i \(0.584297\pi\)
\(282\) 123804. 0.0927069
\(283\) 1.04021e6 0.772065 0.386032 0.922485i \(-0.373845\pi\)
0.386032 + 0.922485i \(0.373845\pi\)
\(284\) −456960. −0.336188
\(285\) 175650. 0.128096
\(286\) 633420. 0.457906
\(287\) 163464. 0.117143
\(288\) 239616. 0.170229
\(289\) −421856. −0.297112
\(290\) 825900. 0.576677
\(291\) −331305. −0.229348
\(292\) −1.12547e6 −0.772463
\(293\) −1.08565e6 −0.738789 −0.369394 0.929273i \(-0.620435\pi\)
−0.369394 + 0.929273i \(0.620435\pi\)
\(294\) 28812.0 0.0194404
\(295\) 470400. 0.314711
\(296\) 450688. 0.298983
\(297\) 579555. 0.381244
\(298\) 48312.0 0.0315148
\(299\) −950130. −0.614618
\(300\) −30000.0 −0.0192450
\(301\) −1.15238e6 −0.733129
\(302\) 833668. 0.525988
\(303\) −100350. −0.0627929
\(304\) 599552. 0.372086
\(305\) −541700. −0.333434
\(306\) 935064. 0.570871
\(307\) 1463.00 0.000885928 0 0.000442964 1.00000i \(-0.499859\pi\)
0.000442964 1.00000i \(0.499859\pi\)
\(308\) 317520. 0.190719
\(309\) 330933. 0.197171
\(310\) 401600. 0.237350
\(311\) 3.11977e6 1.82903 0.914515 0.404551i \(-0.132572\pi\)
0.914515 + 0.404551i \(0.132572\pi\)
\(312\) −75072.0 −0.0436608
\(313\) 831425. 0.479692 0.239846 0.970811i \(-0.422903\pi\)
0.239846 + 0.970811i \(0.422903\pi\)
\(314\) −1.45638e6 −0.833584
\(315\) 286650. 0.162770
\(316\) 941168. 0.530212
\(317\) −1.25851e6 −0.703408 −0.351704 0.936111i \(-0.614398\pi\)
−0.351704 + 0.936111i \(0.614398\pi\)
\(318\) 37008.0 0.0205224
\(319\) 3.34489e6 1.84037
\(320\) −102400. −0.0559017
\(321\) −106074. −0.0574575
\(322\) −476280. −0.255990
\(323\) 2.33966e6 1.24780
\(324\) 841104. 0.445130
\(325\) −244375. −0.128336
\(326\) −2504.00 −0.00130494
\(327\) 453549. 0.234560
\(328\) −213504. −0.109578
\(329\) 505533. 0.257490
\(330\) −121500. −0.0614174
\(331\) −2.30465e6 −1.15621 −0.578103 0.815964i \(-0.696207\pi\)
−0.578103 + 0.815964i \(0.696207\pi\)
\(332\) 12096.0 0.00602277
\(333\) 1.64783e6 0.814332
\(334\) −1.78247e6 −0.874290
\(335\) −1.30310e6 −0.634404
\(336\) −37632.0 −0.0181848
\(337\) 769166. 0.368931 0.184466 0.982839i \(-0.440945\pi\)
0.184466 + 0.982839i \(0.440945\pi\)
\(338\) 873648. 0.415953
\(339\) 401058. 0.189543
\(340\) −399600. −0.187468
\(341\) 1.62648e6 0.757465
\(342\) 2.19211e6 1.01344
\(343\) 117649. 0.0539949
\(344\) 1.50515e6 0.685779
\(345\) 182250. 0.0824365
\(346\) −2.57387e6 −1.15584
\(347\) 382074. 0.170343 0.0851714 0.996366i \(-0.472856\pi\)
0.0851714 + 0.996366i \(0.472856\pi\)
\(348\) −396432. −0.175477
\(349\) −3.88710e6 −1.70829 −0.854146 0.520034i \(-0.825919\pi\)
−0.854146 + 0.520034i \(0.825919\pi\)
\(350\) −122500. −0.0534522
\(351\) −559521. −0.242409
\(352\) −414720. −0.178401
\(353\) −366453. −0.156524 −0.0782621 0.996933i \(-0.524937\pi\)
−0.0782621 + 0.996933i \(0.524937\pi\)
\(354\) −225792. −0.0957636
\(355\) 714000. 0.300696
\(356\) 2.16614e6 0.905863
\(357\) −146853. −0.0609835
\(358\) −980592. −0.404372
\(359\) −3.14858e6 −1.28937 −0.644687 0.764446i \(-0.723012\pi\)
−0.644687 + 0.764446i \(0.723012\pi\)
\(360\) −374400. −0.152258
\(361\) 3.00887e6 1.21516
\(362\) −2.74472e6 −1.10085
\(363\) −8922.00 −0.00355382
\(364\) −306544. −0.121266
\(365\) 1.75855e6 0.690912
\(366\) 260016. 0.101461
\(367\) 2.13740e6 0.828362 0.414181 0.910195i \(-0.364068\pi\)
0.414181 + 0.910195i \(0.364068\pi\)
\(368\) 622080. 0.239457
\(369\) −780624. −0.298453
\(370\) −704200. −0.267419
\(371\) 151116. 0.0570001
\(372\) −192768. −0.0722233
\(373\) −205624. −0.0765247 −0.0382624 0.999268i \(-0.512182\pi\)
−0.0382624 + 0.999268i \(0.512182\pi\)
\(374\) −1.61838e6 −0.598276
\(375\) 46875.0 0.0172133
\(376\) −660288. −0.240860
\(377\) −3.22927e6 −1.17018
\(378\) −280476. −0.100964
\(379\) 3.50536e6 1.25353 0.626766 0.779208i \(-0.284378\pi\)
0.626766 + 0.779208i \(0.284378\pi\)
\(380\) −936800. −0.332804
\(381\) 851952. 0.300679
\(382\) 2.10812e6 0.739159
\(383\) 1.12904e6 0.393291 0.196645 0.980475i \(-0.436995\pi\)
0.196645 + 0.980475i \(0.436995\pi\)
\(384\) 49152.0 0.0170103
\(385\) −496125. −0.170584
\(386\) −572864. −0.195697
\(387\) 5.50321e6 1.86784
\(388\) 1.76696e6 0.595864
\(389\) −1.20003e6 −0.402084 −0.201042 0.979583i \(-0.564433\pi\)
−0.201042 + 0.979583i \(0.564433\pi\)
\(390\) 117300. 0.0390514
\(391\) 2.42757e6 0.803026
\(392\) −153664. −0.0505076
\(393\) −784314. −0.256158
\(394\) −1.39387e6 −0.452358
\(395\) −1.47058e6 −0.474236
\(396\) −1.51632e6 −0.485907
\(397\) −4.41836e6 −1.40697 −0.703486 0.710709i \(-0.748374\pi\)
−0.703486 + 0.710709i \(0.748374\pi\)
\(398\) −3.01808e6 −0.955043
\(399\) −344274. −0.108261
\(400\) 160000. 0.0500000
\(401\) −3.13278e6 −0.972903 −0.486451 0.873708i \(-0.661709\pi\)
−0.486451 + 0.873708i \(0.661709\pi\)
\(402\) 625488. 0.193043
\(403\) −1.57026e6 −0.481624
\(404\) 535200. 0.163141
\(405\) −1.31422e6 −0.398137
\(406\) −1.61876e6 −0.487381
\(407\) −2.85201e6 −0.853424
\(408\) 191808. 0.0570448
\(409\) 861494. 0.254650 0.127325 0.991861i \(-0.459361\pi\)
0.127325 + 0.991861i \(0.459361\pi\)
\(410\) 333600. 0.0980091
\(411\) −119016. −0.0347537
\(412\) −1.76498e6 −0.512266
\(413\) −921984. −0.265980
\(414\) 2.27448e6 0.652201
\(415\) −18900.0 −0.00538693
\(416\) 400384. 0.113434
\(417\) 547878. 0.154292
\(418\) −3.79404e6 −1.06209
\(419\) 4.65796e6 1.29617 0.648083 0.761570i \(-0.275571\pi\)
0.648083 + 0.761570i \(0.275571\pi\)
\(420\) 58800.0 0.0162650
\(421\) 6.99894e6 1.92454 0.962271 0.272093i \(-0.0877159\pi\)
0.962271 + 0.272093i \(0.0877159\pi\)
\(422\) 2.36300e6 0.645925
\(423\) −2.41418e6 −0.656022
\(424\) −197376. −0.0533187
\(425\) 624375. 0.167677
\(426\) −342720. −0.0914988
\(427\) 1.06173e6 0.281803
\(428\) 565728. 0.149279
\(429\) 475065. 0.124626
\(430\) −2.35180e6 −0.613379
\(431\) −227091. −0.0588853 −0.0294426 0.999566i \(-0.509373\pi\)
−0.0294426 + 0.999566i \(0.509373\pi\)
\(432\) 366336. 0.0944431
\(433\) −7.09613e6 −1.81887 −0.909435 0.415846i \(-0.863485\pi\)
−0.909435 + 0.415846i \(0.863485\pi\)
\(434\) −787136. −0.200597
\(435\) 619425. 0.156952
\(436\) −2.41893e6 −0.609406
\(437\) 5.69106e6 1.42557
\(438\) −844104. −0.210238
\(439\) 593258. 0.146920 0.0734602 0.997298i \(-0.476596\pi\)
0.0734602 + 0.997298i \(0.476596\pi\)
\(440\) 648000. 0.159567
\(441\) −561834. −0.137566
\(442\) 1.56244e6 0.380405
\(443\) −3.27692e6 −0.793334 −0.396667 0.917963i \(-0.629833\pi\)
−0.396667 + 0.917963i \(0.629833\pi\)
\(444\) 338016. 0.0813729
\(445\) −3.38460e6 −0.810228
\(446\) 1.58441e6 0.377165
\(447\) 36234.0 0.00857724
\(448\) 200704. 0.0472456
\(449\) −4.32930e6 −1.01345 −0.506724 0.862108i \(-0.669144\pi\)
−0.506724 + 0.862108i \(0.669144\pi\)
\(450\) 585000. 0.136184
\(451\) 1.35108e6 0.312781
\(452\) −2.13898e6 −0.492447
\(453\) 625251. 0.143156
\(454\) −38148.0 −0.00868625
\(455\) 478975. 0.108464
\(456\) 449664. 0.101269
\(457\) −4.91638e6 −1.10117 −0.550586 0.834779i \(-0.685596\pi\)
−0.550586 + 0.834779i \(0.685596\pi\)
\(458\) −2.82022e6 −0.628232
\(459\) 1.42957e6 0.316718
\(460\) −972000. −0.214176
\(461\) 7.02919e6 1.54047 0.770235 0.637761i \(-0.220139\pi\)
0.770235 + 0.637761i \(0.220139\pi\)
\(462\) 238140. 0.0519072
\(463\) 2.88559e6 0.625579 0.312789 0.949823i \(-0.398737\pi\)
0.312789 + 0.949823i \(0.398737\pi\)
\(464\) 2.11430e6 0.455903
\(465\) 301200. 0.0645985
\(466\) −2.13686e6 −0.455840
\(467\) −6.00583e6 −1.27433 −0.637163 0.770729i \(-0.719892\pi\)
−0.637163 + 0.770729i \(0.719892\pi\)
\(468\) 1.46390e6 0.308957
\(469\) 2.55408e6 0.536169
\(470\) 1.03170e6 0.215431
\(471\) −1.09228e6 −0.226873
\(472\) 1.20422e6 0.248801
\(473\) −9.52479e6 −1.95750
\(474\) 705876. 0.144305
\(475\) 1.46375e6 0.297669
\(476\) 783216. 0.158440
\(477\) −721656. −0.145223
\(478\) 3.60488e6 0.721642
\(479\) 941094. 0.187411 0.0937053 0.995600i \(-0.470129\pi\)
0.0937053 + 0.995600i \(0.470129\pi\)
\(480\) −76800.0 −0.0152145
\(481\) 2.75342e6 0.542638
\(482\) 3.80956e6 0.746891
\(483\) −357210. −0.0696716
\(484\) 47584.0 0.00923310
\(485\) −2.76087e6 −0.532957
\(486\) 2.02176e6 0.388275
\(487\) 1.91121e6 0.365162 0.182581 0.983191i \(-0.441555\pi\)
0.182581 + 0.983191i \(0.441555\pi\)
\(488\) −1.38675e6 −0.263602
\(489\) −1878.00 −0.000355160 0
\(490\) 240100. 0.0451754
\(491\) 3.95490e6 0.740342 0.370171 0.928964i \(-0.379299\pi\)
0.370171 + 0.928964i \(0.379299\pi\)
\(492\) −160128. −0.0298232
\(493\) 8.25074e6 1.52889
\(494\) 3.66289e6 0.675315
\(495\) 2.36925e6 0.434608
\(496\) 1.02810e6 0.187642
\(497\) −1.39944e6 −0.254134
\(498\) 9072.00 0.00163919
\(499\) 7.09708e6 1.27593 0.637967 0.770063i \(-0.279775\pi\)
0.637967 + 0.770063i \(0.279775\pi\)
\(500\) −250000. −0.0447214
\(501\) −1.33685e6 −0.237952
\(502\) 4.40095e6 0.779448
\(503\) −9.15982e6 −1.61424 −0.807118 0.590390i \(-0.798974\pi\)
−0.807118 + 0.590390i \(0.798974\pi\)
\(504\) 733824. 0.128681
\(505\) −836250. −0.145918
\(506\) −3.93660e6 −0.683510
\(507\) 655236. 0.113208
\(508\) −4.54374e6 −0.781186
\(509\) −9.42509e6 −1.61247 −0.806234 0.591596i \(-0.798498\pi\)
−0.806234 + 0.591596i \(0.798498\pi\)
\(510\) −299700. −0.0510224
\(511\) −3.44676e6 −0.583927
\(512\) −262144. −0.0441942
\(513\) 3.35140e6 0.562255
\(514\) 4.32919e6 0.722768
\(515\) 2.75778e6 0.458185
\(516\) 1.12886e6 0.186645
\(517\) 4.17838e6 0.687515
\(518\) 1.38023e6 0.226010
\(519\) −1.93040e6 −0.314579
\(520\) −625600. −0.101458
\(521\) −6.18917e6 −0.998938 −0.499469 0.866332i \(-0.666471\pi\)
−0.499469 + 0.866332i \(0.666471\pi\)
\(522\) 7.73042e6 1.24173
\(523\) −3.81497e6 −0.609870 −0.304935 0.952373i \(-0.598635\pi\)
−0.304935 + 0.952373i \(0.598635\pi\)
\(524\) 4.18301e6 0.665519
\(525\) −91875.0 −0.0145479
\(526\) −331800. −0.0522892
\(527\) 4.01198e6 0.629264
\(528\) −311040. −0.0485547
\(529\) −531443. −0.0825691
\(530\) 308400. 0.0476897
\(531\) 4.40294e6 0.677652
\(532\) 1.83613e6 0.281270
\(533\) −1.30438e6 −0.198877
\(534\) 1.62461e6 0.246545
\(535\) −883950. −0.133519
\(536\) −3.33594e6 −0.501540
\(537\) −735444. −0.110056
\(538\) 2.53529e6 0.377634
\(539\) 972405. 0.144170
\(540\) −572400. −0.0844725
\(541\) 6.30404e6 0.926032 0.463016 0.886350i \(-0.346767\pi\)
0.463016 + 0.886350i \(0.346767\pi\)
\(542\) 1.11582e6 0.163154
\(543\) −2.05854e6 −0.299612
\(544\) −1.02298e6 −0.148207
\(545\) 3.77957e6 0.545069
\(546\) −229908. −0.0330044
\(547\) −8.48475e6 −1.21247 −0.606234 0.795286i \(-0.707321\pi\)
−0.606234 + 0.795286i \(0.707321\pi\)
\(548\) 634752. 0.0902927
\(549\) −5.07031e6 −0.717966
\(550\) −1.01250e6 −0.142721
\(551\) 1.93426e7 2.71416
\(552\) 466560. 0.0651718
\(553\) 2.88233e6 0.400802
\(554\) −8.70092e6 −1.20446
\(555\) −528150. −0.0727821
\(556\) −2.92202e6 −0.400863
\(557\) 6.87794e6 0.939335 0.469668 0.882843i \(-0.344374\pi\)
0.469668 + 0.882843i \(0.344374\pi\)
\(558\) 3.75898e6 0.511074
\(559\) 9.19554e6 1.24465
\(560\) −313600. −0.0422577
\(561\) −1.21378e6 −0.162830
\(562\) 2.77160e6 0.370161
\(563\) −1.02257e7 −1.35964 −0.679820 0.733379i \(-0.737942\pi\)
−0.679820 + 0.733379i \(0.737942\pi\)
\(564\) −495216. −0.0655537
\(565\) 3.34215e6 0.440458
\(566\) −4.16083e6 −0.545932
\(567\) 2.57588e6 0.336487
\(568\) 1.82784e6 0.237721
\(569\) −1.26751e7 −1.64123 −0.820614 0.571482i \(-0.806369\pi\)
−0.820614 + 0.571482i \(0.806369\pi\)
\(570\) −702600. −0.0905776
\(571\) −6.67155e6 −0.856321 −0.428160 0.903703i \(-0.640838\pi\)
−0.428160 + 0.903703i \(0.640838\pi\)
\(572\) −2.53368e6 −0.323789
\(573\) 1.58109e6 0.201174
\(574\) −653856. −0.0828328
\(575\) 1.51875e6 0.191565
\(576\) −958464. −0.120370
\(577\) −3.36511e6 −0.420784 −0.210392 0.977617i \(-0.567474\pi\)
−0.210392 + 0.977617i \(0.567474\pi\)
\(578\) 1.68742e6 0.210090
\(579\) −429648. −0.0532619
\(580\) −3.30360e6 −0.407772
\(581\) 37044.0 0.00455279
\(582\) 1.32522e6 0.162174
\(583\) 1.24902e6 0.152194
\(584\) 4.50189e6 0.546214
\(585\) −2.28735e6 −0.276339
\(586\) 4.34260e6 0.522403
\(587\) −1.10055e7 −1.31830 −0.659150 0.752012i \(-0.729084\pi\)
−0.659150 + 0.752012i \(0.729084\pi\)
\(588\) −115248. −0.0137464
\(589\) 9.40547e6 1.11710
\(590\) −1.88160e6 −0.222534
\(591\) −1.04540e6 −0.123116
\(592\) −1.80275e6 −0.211413
\(593\) 1.40222e6 0.163749 0.0818747 0.996643i \(-0.473909\pi\)
0.0818747 + 0.996643i \(0.473909\pi\)
\(594\) −2.31822e6 −0.269581
\(595\) −1.22378e6 −0.141713
\(596\) −193248. −0.0222843
\(597\) −2.26356e6 −0.259930
\(598\) 3.80052e6 0.434600
\(599\) 1.93034e6 0.219820 0.109910 0.993942i \(-0.464944\pi\)
0.109910 + 0.993942i \(0.464944\pi\)
\(600\) 120000. 0.0136083
\(601\) −1.82271e6 −0.205841 −0.102921 0.994690i \(-0.532819\pi\)
−0.102921 + 0.994690i \(0.532819\pi\)
\(602\) 4.60953e6 0.518400
\(603\) −1.21970e7 −1.36603
\(604\) −3.33467e6 −0.371930
\(605\) −74350.0 −0.00825834
\(606\) 401400. 0.0444013
\(607\) −1.36917e7 −1.50830 −0.754148 0.656704i \(-0.771950\pi\)
−0.754148 + 0.656704i \(0.771950\pi\)
\(608\) −2.39821e6 −0.263104
\(609\) −1.21407e6 −0.132648
\(610\) 2.16680e6 0.235773
\(611\) −4.03395e6 −0.437147
\(612\) −3.74026e6 −0.403667
\(613\) 1.11975e7 1.20357 0.601785 0.798658i \(-0.294456\pi\)
0.601785 + 0.798658i \(0.294456\pi\)
\(614\) −5852.00 −0.000626446 0
\(615\) 250200. 0.0266747
\(616\) −1.27008e6 −0.134859
\(617\) −1.37060e7 −1.44944 −0.724718 0.689045i \(-0.758030\pi\)
−0.724718 + 0.689045i \(0.758030\pi\)
\(618\) −1.32373e6 −0.139421
\(619\) −7.93359e6 −0.832230 −0.416115 0.909312i \(-0.636609\pi\)
−0.416115 + 0.909312i \(0.636609\pi\)
\(620\) −1.60640e6 −0.167832
\(621\) 3.47733e6 0.361840
\(622\) −1.24791e7 −1.29332
\(623\) 6.63382e6 0.684768
\(624\) 300288. 0.0308728
\(625\) 390625. 0.0400000
\(626\) −3.32570e6 −0.339193
\(627\) −2.84553e6 −0.289064
\(628\) 5.82550e6 0.589433
\(629\) −7.03496e6 −0.708981
\(630\) −1.14660e6 −0.115096
\(631\) −1.31143e7 −1.31121 −0.655604 0.755105i \(-0.727586\pi\)
−0.655604 + 0.755105i \(0.727586\pi\)
\(632\) −3.76467e6 −0.374916
\(633\) 1.77225e6 0.175798
\(634\) 5.03402e6 0.497384
\(635\) 7.09960e6 0.698714
\(636\) −148032. −0.0145115
\(637\) −938791. −0.0916685
\(638\) −1.33796e7 −1.30134
\(639\) 6.68304e6 0.647473
\(640\) 409600. 0.0395285
\(641\) −1.27270e7 −1.22344 −0.611719 0.791075i \(-0.709522\pi\)
−0.611719 + 0.791075i \(0.709522\pi\)
\(642\) 424296. 0.0406286
\(643\) 1.88399e7 1.79701 0.898505 0.438964i \(-0.144655\pi\)
0.898505 + 0.438964i \(0.144655\pi\)
\(644\) 1.90512e6 0.181012
\(645\) −1.76385e6 −0.166941
\(646\) −9.35863e6 −0.882330
\(647\) −944688. −0.0887213 −0.0443606 0.999016i \(-0.514125\pi\)
−0.0443606 + 0.999016i \(0.514125\pi\)
\(648\) −3.36442e6 −0.314755
\(649\) −7.62048e6 −0.710184
\(650\) 977500. 0.0907472
\(651\) −590352. −0.0545957
\(652\) 10016.0 0.000922731 0
\(653\) 2.01024e7 1.84486 0.922432 0.386158i \(-0.126198\pi\)
0.922432 + 0.386158i \(0.126198\pi\)
\(654\) −1.81420e6 −0.165859
\(655\) −6.53595e6 −0.595258
\(656\) 854016. 0.0774830
\(657\) 1.64600e7 1.48771
\(658\) −2.02213e6 −0.182073
\(659\) −1.97097e7 −1.76793 −0.883967 0.467549i \(-0.845137\pi\)
−0.883967 + 0.467549i \(0.845137\pi\)
\(660\) 486000. 0.0434287
\(661\) −227080. −0.0202151 −0.0101075 0.999949i \(-0.503217\pi\)
−0.0101075 + 0.999949i \(0.503217\pi\)
\(662\) 9.21861e6 0.817561
\(663\) 1.17183e6 0.103533
\(664\) −48384.0 −0.00425874
\(665\) −2.86895e6 −0.251576
\(666\) −6.59131e6 −0.575819
\(667\) 2.00694e7 1.74670
\(668\) 7.12987e6 0.618216
\(669\) 1.18831e6 0.102651
\(670\) 5.21240e6 0.448591
\(671\) 8.77554e6 0.752433
\(672\) 150528. 0.0128586
\(673\) 1.93220e7 1.64443 0.822214 0.569178i \(-0.192739\pi\)
0.822214 + 0.569178i \(0.192739\pi\)
\(674\) −3.07666e6 −0.260874
\(675\) 894375. 0.0755545
\(676\) −3.49459e6 −0.294124
\(677\) 3.35334e6 0.281194 0.140597 0.990067i \(-0.455098\pi\)
0.140597 + 0.990067i \(0.455098\pi\)
\(678\) −1.60423e6 −0.134027
\(679\) 5.41132e6 0.450431
\(680\) 1.59840e6 0.132560
\(681\) −28611.0 −0.00236410
\(682\) −6.50592e6 −0.535609
\(683\) 1.60555e7 1.31696 0.658481 0.752598i \(-0.271199\pi\)
0.658481 + 0.752598i \(0.271199\pi\)
\(684\) −8.76845e6 −0.716609
\(685\) −991800. −0.0807603
\(686\) −470596. −0.0381802
\(687\) −2.11517e6 −0.170983
\(688\) −6.02061e6 −0.484919
\(689\) −1.20584e6 −0.0967705
\(690\) −729000. −0.0582914
\(691\) 1.35824e7 1.08213 0.541066 0.840980i \(-0.318021\pi\)
0.541066 + 0.840980i \(0.318021\pi\)
\(692\) 1.02955e7 0.817299
\(693\) −4.64373e6 −0.367311
\(694\) −1.52830e6 −0.120451
\(695\) 4.56565e6 0.358542
\(696\) 1.58573e6 0.124081
\(697\) 3.33266e6 0.259842
\(698\) 1.55484e7 1.20794
\(699\) −1.60265e6 −0.124064
\(700\) 490000. 0.0377964
\(701\) 2.05454e7 1.57913 0.789567 0.613664i \(-0.210305\pi\)
0.789567 + 0.613664i \(0.210305\pi\)
\(702\) 2.23808e6 0.171409
\(703\) −1.64924e7 −1.25862
\(704\) 1.65888e6 0.126149
\(705\) 773775. 0.0586330
\(706\) 1.46581e6 0.110679
\(707\) 1.63905e6 0.123323
\(708\) 903168. 0.0677151
\(709\) 2.57278e7 1.92215 0.961075 0.276287i \(-0.0891040\pi\)
0.961075 + 0.276287i \(0.0891040\pi\)
\(710\) −2.85600e6 −0.212624
\(711\) −1.37646e7 −1.02115
\(712\) −8.66458e6 −0.640542
\(713\) 9.75888e6 0.718913
\(714\) 587412. 0.0431218
\(715\) 3.95888e6 0.289605
\(716\) 3.92237e6 0.285934
\(717\) 2.70366e6 0.196406
\(718\) 1.25943e7 0.911726
\(719\) 7.04806e6 0.508449 0.254225 0.967145i \(-0.418180\pi\)
0.254225 + 0.967145i \(0.418180\pi\)
\(720\) 1.49760e6 0.107663
\(721\) −5.40524e6 −0.387237
\(722\) −1.20355e7 −0.859250
\(723\) 2.85717e6 0.203278
\(724\) 1.09789e7 0.778416
\(725\) 5.16187e6 0.364722
\(726\) 35688.0 0.00251293
\(727\) −1.90997e7 −1.34027 −0.670134 0.742240i \(-0.733763\pi\)
−0.670134 + 0.742240i \(0.733763\pi\)
\(728\) 1.22618e6 0.0857481
\(729\) −1.12579e7 −0.784586
\(730\) −7.03420e6 −0.488548
\(731\) −2.34945e7 −1.62619
\(732\) −1.04006e6 −0.0717435
\(733\) −2.30424e6 −0.158404 −0.0792021 0.996859i \(-0.525237\pi\)
−0.0792021 + 0.996859i \(0.525237\pi\)
\(734\) −8.54959e6 −0.585740
\(735\) 180075. 0.0122952
\(736\) −2.48832e6 −0.169321
\(737\) 2.11102e7 1.43161
\(738\) 3.12250e6 0.211038
\(739\) 3.62955e6 0.244479 0.122240 0.992501i \(-0.460992\pi\)
0.122240 + 0.992501i \(0.460992\pi\)
\(740\) 2.81680e6 0.189094
\(741\) 2.74717e6 0.183797
\(742\) −604464. −0.0403052
\(743\) −9.73856e6 −0.647177 −0.323588 0.946198i \(-0.604889\pi\)
−0.323588 + 0.946198i \(0.604889\pi\)
\(744\) 771072. 0.0510696
\(745\) 301950. 0.0199317
\(746\) 822496. 0.0541111
\(747\) −176904. −0.0115994
\(748\) 6.47352e6 0.423045
\(749\) 1.73254e6 0.112844
\(750\) −187500. −0.0121716
\(751\) −2.48272e7 −1.60630 −0.803152 0.595774i \(-0.796845\pi\)
−0.803152 + 0.595774i \(0.796845\pi\)
\(752\) 2.64115e6 0.170313
\(753\) 3.30071e6 0.212139
\(754\) 1.29171e7 0.827439
\(755\) 5.21043e6 0.332664
\(756\) 1.12190e6 0.0713923
\(757\) −1.28400e7 −0.814376 −0.407188 0.913344i \(-0.633491\pi\)
−0.407188 + 0.913344i \(0.633491\pi\)
\(758\) −1.40215e7 −0.886380
\(759\) −2.95245e6 −0.186028
\(760\) 3.74720e6 0.235328
\(761\) 2.89560e7 1.81250 0.906249 0.422744i \(-0.138933\pi\)
0.906249 + 0.422744i \(0.138933\pi\)
\(762\) −3.40781e6 −0.212612
\(763\) −7.40797e6 −0.460668
\(764\) −8.43250e6 −0.522664
\(765\) 5.84415e6 0.361050
\(766\) −4.51618e6 −0.278099
\(767\) 7.35706e6 0.451560
\(768\) −196608. −0.0120281
\(769\) −1.78116e7 −1.08614 −0.543071 0.839687i \(-0.682739\pi\)
−0.543071 + 0.839687i \(0.682739\pi\)
\(770\) 1.98450e6 0.120621
\(771\) 3.24689e6 0.196713
\(772\) 2.29146e6 0.138378
\(773\) 1.73536e7 1.04458 0.522290 0.852768i \(-0.325078\pi\)
0.522290 + 0.852768i \(0.325078\pi\)
\(774\) −2.20128e7 −1.32076
\(775\) 2.51000e6 0.150113
\(776\) −7.06784e6 −0.421340
\(777\) 1.03517e6 0.0615121
\(778\) 4.80011e6 0.284316
\(779\) 7.81291e6 0.461285
\(780\) −469200. −0.0276135
\(781\) −1.15668e7 −0.678556
\(782\) −9.71028e6 −0.567825
\(783\) 1.18186e7 0.688910
\(784\) 614656. 0.0357143
\(785\) −9.10235e6 −0.527205
\(786\) 3.13726e6 0.181131
\(787\) 812177. 0.0467427 0.0233714 0.999727i \(-0.492560\pi\)
0.0233714 + 0.999727i \(0.492560\pi\)
\(788\) 5.57549e6 0.319865
\(789\) −248850. −0.0142313
\(790\) 5.88230e6 0.335335
\(791\) −6.55061e6 −0.372255
\(792\) 6.06528e6 0.343588
\(793\) −8.47219e6 −0.478424
\(794\) 1.76735e7 0.994879
\(795\) 231300. 0.0129795
\(796\) 1.20723e7 0.675318
\(797\) −8.58201e6 −0.478568 −0.239284 0.970950i \(-0.576913\pi\)
−0.239284 + 0.970950i \(0.576913\pi\)
\(798\) 1.37710e6 0.0765521
\(799\) 1.03067e7 0.571152
\(800\) −640000. −0.0353553
\(801\) −3.16799e7 −1.74462
\(802\) 1.25311e7 0.687946
\(803\) −2.84885e7 −1.55912
\(804\) −2.50195e6 −0.136502
\(805\) −2.97675e6 −0.161902
\(806\) 6.28102e6 0.340559
\(807\) 1.90147e6 0.102779
\(808\) −2.14080e6 −0.115358
\(809\) −2.83000e6 −0.152025 −0.0760125 0.997107i \(-0.524219\pi\)
−0.0760125 + 0.997107i \(0.524219\pi\)
\(810\) 5.25690e6 0.281525
\(811\) −1.06484e7 −0.568504 −0.284252 0.958750i \(-0.591745\pi\)
−0.284252 + 0.958750i \(0.591745\pi\)
\(812\) 6.47506e6 0.344630
\(813\) 836868. 0.0444049
\(814\) 1.14080e7 0.603462
\(815\) −15650.0 −0.000825316 0
\(816\) −767232. −0.0403368
\(817\) −5.50792e7 −2.88690
\(818\) −3.44598e6 −0.180065
\(819\) 4.48321e6 0.233549
\(820\) −1.33440e6 −0.0693029
\(821\) −2.59970e7 −1.34606 −0.673032 0.739613i \(-0.735008\pi\)
−0.673032 + 0.739613i \(0.735008\pi\)
\(822\) 476064. 0.0245746
\(823\) −2.03099e7 −1.04522 −0.522611 0.852571i \(-0.675042\pi\)
−0.522611 + 0.852571i \(0.675042\pi\)
\(824\) 7.05990e6 0.362227
\(825\) −759375. −0.0388438
\(826\) 3.68794e6 0.188076
\(827\) 1.68001e6 0.0854175 0.0427088 0.999088i \(-0.486401\pi\)
0.0427088 + 0.999088i \(0.486401\pi\)
\(828\) −9.09792e6 −0.461176
\(829\) −6.71070e6 −0.339142 −0.169571 0.985518i \(-0.554238\pi\)
−0.169571 + 0.985518i \(0.554238\pi\)
\(830\) 75600.0 0.00380914
\(831\) −6.52569e6 −0.327811
\(832\) −1.60154e6 −0.0802100
\(833\) 2.39860e6 0.119769
\(834\) −2.19151e6 −0.109101
\(835\) −1.11404e7 −0.552950
\(836\) 1.51762e7 0.751011
\(837\) 5.74690e6 0.283543
\(838\) −1.86318e7 −0.916527
\(839\) 2.60856e7 1.27937 0.639686 0.768637i \(-0.279065\pi\)
0.639686 + 0.768637i \(0.279065\pi\)
\(840\) −235200. −0.0115011
\(841\) 4.76999e7 2.32556
\(842\) −2.79958e7 −1.36086
\(843\) 2.07870e6 0.100745
\(844\) −9.45198e6 −0.456738
\(845\) 5.46030e6 0.263072
\(846\) 9.65671e6 0.463878
\(847\) 145726. 0.00697957
\(848\) 789504. 0.0377020
\(849\) −3.12062e6 −0.148584
\(850\) −2.49750e6 −0.118565
\(851\) −1.71121e7 −0.809988
\(852\) 1.37088e6 0.0646994
\(853\) 9.54873e6 0.449338 0.224669 0.974435i \(-0.427870\pi\)
0.224669 + 0.974435i \(0.427870\pi\)
\(854\) −4.24693e6 −0.199265
\(855\) 1.37007e7 0.640955
\(856\) −2.26291e6 −0.105556
\(857\) 3.51377e7 1.63426 0.817130 0.576453i \(-0.195564\pi\)
0.817130 + 0.576453i \(0.195564\pi\)
\(858\) −1.90026e6 −0.0881241
\(859\) −1.60428e7 −0.741816 −0.370908 0.928670i \(-0.620953\pi\)
−0.370908 + 0.928670i \(0.620953\pi\)
\(860\) 9.40720e6 0.433725
\(861\) −490392. −0.0225442
\(862\) 908364. 0.0416382
\(863\) −2.77776e7 −1.26960 −0.634802 0.772675i \(-0.718918\pi\)
−0.634802 + 0.772675i \(0.718918\pi\)
\(864\) −1.46534e6 −0.0667814
\(865\) −1.60867e7 −0.731015
\(866\) 2.83845e7 1.28614
\(867\) 1.26557e6 0.0571792
\(868\) 3.14854e6 0.141844
\(869\) 2.38233e7 1.07017
\(870\) −2.47770e6 −0.110981
\(871\) −2.03805e7 −0.910268
\(872\) 9.67571e6 0.430915
\(873\) −2.58418e7 −1.14759
\(874\) −2.27642e7 −1.00803
\(875\) −765625. −0.0338062
\(876\) 3.37642e6 0.148661
\(877\) 2.46748e7 1.08332 0.541658 0.840599i \(-0.317797\pi\)
0.541658 + 0.840599i \(0.317797\pi\)
\(878\) −2.37303e6 −0.103888
\(879\) 3.25695e6 0.142180
\(880\) −2.59200e6 −0.112831
\(881\) −1.27792e7 −0.554707 −0.277353 0.960768i \(-0.589457\pi\)
−0.277353 + 0.960768i \(0.589457\pi\)
\(882\) 2.24734e6 0.0972739
\(883\) −2.63417e7 −1.13695 −0.568476 0.822700i \(-0.692467\pi\)
−0.568476 + 0.822700i \(0.692467\pi\)
\(884\) −6.24974e6 −0.268987
\(885\) −1.41120e6 −0.0605662
\(886\) 1.31077e7 0.560972
\(887\) 2.60037e7 1.10975 0.554877 0.831932i \(-0.312765\pi\)
0.554877 + 0.831932i \(0.312765\pi\)
\(888\) −1.35206e6 −0.0575393
\(889\) −1.39152e7 −0.590521
\(890\) 1.35384e7 0.572918
\(891\) 2.12904e7 0.898443
\(892\) −6.33765e6 −0.266696
\(893\) 2.41624e7 1.01394
\(894\) −144936. −0.00606502
\(895\) −6.12870e6 −0.255747
\(896\) −802816. −0.0334077
\(897\) 2.85039e6 0.118283
\(898\) 1.73172e7 0.716616
\(899\) 3.31681e7 1.36874
\(900\) −2.34000e6 −0.0962963
\(901\) 3.08092e6 0.126435
\(902\) −5.40432e6 −0.221169
\(903\) 3.45715e6 0.141091
\(904\) 8.55590e6 0.348213
\(905\) −1.71545e7 −0.696236
\(906\) −2.50100e6 −0.101226
\(907\) −4.11852e7 −1.66235 −0.831177 0.556008i \(-0.812332\pi\)
−0.831177 + 0.556008i \(0.812332\pi\)
\(908\) 152592. 0.00614210
\(909\) −7.82730e6 −0.314197
\(910\) −1.91590e6 −0.0766954
\(911\) −7.92211e6 −0.316261 −0.158130 0.987418i \(-0.550547\pi\)
−0.158130 + 0.987418i \(0.550547\pi\)
\(912\) −1.79866e6 −0.0716079
\(913\) 306180. 0.0121563
\(914\) 1.96655e7 0.778646
\(915\) 1.62510e6 0.0641693
\(916\) 1.12809e7 0.444227
\(917\) 1.28105e7 0.503085
\(918\) −5.71828e6 −0.223954
\(919\) 1.59154e7 0.621624 0.310812 0.950471i \(-0.399399\pi\)
0.310812 + 0.950471i \(0.399399\pi\)
\(920\) 3.88800e6 0.151446
\(921\) −4389.00 −0.000170497 0
\(922\) −2.81168e7 −1.08928
\(923\) 1.11670e7 0.431450
\(924\) −952560. −0.0367039
\(925\) −4.40125e6 −0.169130
\(926\) −1.15424e7 −0.442351
\(927\) 2.58128e7 0.986587
\(928\) −8.45722e6 −0.322372
\(929\) −3.37148e7 −1.28169 −0.640843 0.767672i \(-0.721415\pi\)
−0.640843 + 0.767672i \(0.721415\pi\)
\(930\) −1.20480e6 −0.0456781
\(931\) 5.62314e6 0.212620
\(932\) 8.54746e6 0.322327
\(933\) −9.35930e6 −0.351997
\(934\) 2.40233e7 0.901085
\(935\) −1.01149e7 −0.378383
\(936\) −5.85562e6 −0.218466
\(937\) −4.04362e7 −1.50460 −0.752300 0.658820i \(-0.771056\pi\)
−0.752300 + 0.658820i \(0.771056\pi\)
\(938\) −1.02163e7 −0.379129
\(939\) −2.49428e6 −0.0923167
\(940\) −4.12680e6 −0.152333
\(941\) 3.62378e7 1.33410 0.667048 0.745015i \(-0.267557\pi\)
0.667048 + 0.745015i \(0.267557\pi\)
\(942\) 4.36913e6 0.160423
\(943\) 8.10648e6 0.296861
\(944\) −4.81690e6 −0.175929
\(945\) −1.75298e6 −0.0638552
\(946\) 3.80992e7 1.38416
\(947\) 2.94238e7 1.06616 0.533082 0.846064i \(-0.321034\pi\)
0.533082 + 0.846064i \(0.321034\pi\)
\(948\) −2.82350e6 −0.102039
\(949\) 2.75037e7 0.991348
\(950\) −5.85500e6 −0.210483
\(951\) 3.77552e6 0.135371
\(952\) −3.13286e6 −0.112034
\(953\) 3.59497e7 1.28222 0.641110 0.767449i \(-0.278474\pi\)
0.641110 + 0.767449i \(0.278474\pi\)
\(954\) 2.88662e6 0.102688
\(955\) 1.31758e7 0.467485
\(956\) −1.44195e7 −0.510278
\(957\) −1.00347e7 −0.354180
\(958\) −3.76438e6 −0.132519
\(959\) 1.94393e6 0.0682549
\(960\) 307200. 0.0107583
\(961\) −1.25009e7 −0.436649
\(962\) −1.10137e7 −0.383703
\(963\) −8.27377e6 −0.287500
\(964\) −1.52382e7 −0.528132
\(965\) −3.58040e6 −0.123769
\(966\) 1.42884e6 0.0492653
\(967\) 1.19506e6 0.0410982 0.0205491 0.999789i \(-0.493459\pi\)
0.0205491 + 0.999789i \(0.493459\pi\)
\(968\) −190336. −0.00652879
\(969\) −7.01897e6 −0.240140
\(970\) 1.10435e7 0.376858
\(971\) 3.26221e7 1.11036 0.555180 0.831730i \(-0.312649\pi\)
0.555180 + 0.831730i \(0.312649\pi\)
\(972\) −8.08704e6 −0.274552
\(973\) −8.94867e6 −0.303024
\(974\) −7.64482e6 −0.258208
\(975\) 733125. 0.0246983
\(976\) 5.54701e6 0.186395
\(977\) 5.36858e7 1.79938 0.899690 0.436529i \(-0.143792\pi\)
0.899690 + 0.436529i \(0.143792\pi\)
\(978\) 7512.00 0.000251136 0
\(979\) 5.48305e7 1.82838
\(980\) −960400. −0.0319438
\(981\) 3.53768e7 1.17367
\(982\) −1.58196e7 −0.523501
\(983\) −3.31124e7 −1.09297 −0.546484 0.837469i \(-0.684034\pi\)
−0.546484 + 0.837469i \(0.684034\pi\)
\(984\) 640512. 0.0210882
\(985\) −8.71170e6 −0.286096
\(986\) −3.30030e7 −1.08109
\(987\) −1.51660e6 −0.0495539
\(988\) −1.46516e7 −0.477520
\(989\) −5.71487e7 −1.85787
\(990\) −9.47700e6 −0.307314
\(991\) −1.97082e7 −0.637475 −0.318738 0.947843i \(-0.603259\pi\)
−0.318738 + 0.947843i \(0.603259\pi\)
\(992\) −4.11238e6 −0.132683
\(993\) 6.91396e6 0.222512
\(994\) 5.59776e6 0.179700
\(995\) −1.88630e7 −0.604022
\(996\) −36288.0 −0.00115908
\(997\) 3.31940e7 1.05760 0.528800 0.848747i \(-0.322642\pi\)
0.528800 + 0.848747i \(0.322642\pi\)
\(998\) −2.83883e7 −0.902222
\(999\) −1.00771e7 −0.319464
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 70.6.a.c.1.1 1
3.2 odd 2 630.6.a.n.1.1 1
4.3 odd 2 560.6.a.d.1.1 1
5.2 odd 4 350.6.c.e.99.1 2
5.3 odd 4 350.6.c.e.99.2 2
5.4 even 2 350.6.a.k.1.1 1
7.6 odd 2 490.6.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.c.1.1 1 1.1 even 1 trivial
350.6.a.k.1.1 1 5.4 even 2
350.6.c.e.99.1 2 5.2 odd 4
350.6.c.e.99.2 2 5.3 odd 4
490.6.a.e.1.1 1 7.6 odd 2
560.6.a.d.1.1 1 4.3 odd 2
630.6.a.n.1.1 1 3.2 odd 2