Properties

Label 70.6.a.b.1.1
Level $70$
Weight $6$
Character 70.1
Self dual yes
Analytic conductor $11.227$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [70,6,Mod(1,70)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("70.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(70, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 70.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-4,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.2268673869\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 70.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -9.00000 q^{3} +16.0000 q^{4} +25.0000 q^{5} +36.0000 q^{6} -49.0000 q^{7} -64.0000 q^{8} -162.000 q^{9} -100.000 q^{10} -187.000 q^{11} -144.000 q^{12} +627.000 q^{13} +196.000 q^{14} -225.000 q^{15} +256.000 q^{16} +1813.00 q^{17} +648.000 q^{18} +258.000 q^{19} +400.000 q^{20} +441.000 q^{21} +748.000 q^{22} +2970.00 q^{23} +576.000 q^{24} +625.000 q^{25} -2508.00 q^{26} +3645.00 q^{27} -784.000 q^{28} +1299.00 q^{29} +900.000 q^{30} +1916.00 q^{31} -1024.00 q^{32} +1683.00 q^{33} -7252.00 q^{34} -1225.00 q^{35} -2592.00 q^{36} +6578.00 q^{37} -1032.00 q^{38} -5643.00 q^{39} -1600.00 q^{40} +6676.00 q^{41} -1764.00 q^{42} +3178.00 q^{43} -2992.00 q^{44} -4050.00 q^{45} -11880.0 q^{46} -22001.0 q^{47} -2304.00 q^{48} +2401.00 q^{49} -2500.00 q^{50} -16317.0 q^{51} +10032.0 q^{52} +26168.0 q^{53} -14580.0 q^{54} -4675.00 q^{55} +3136.00 q^{56} -2322.00 q^{57} -5196.00 q^{58} +3932.00 q^{59} -3600.00 q^{60} -48740.0 q^{61} -7664.00 q^{62} +7938.00 q^{63} +4096.00 q^{64} +15675.0 q^{65} -6732.00 q^{66} -44832.0 q^{67} +29008.0 q^{68} -26730.0 q^{69} +4900.00 q^{70} +63736.0 q^{71} +10368.0 q^{72} +60470.0 q^{73} -26312.0 q^{74} -5625.00 q^{75} +4128.00 q^{76} +9163.00 q^{77} +22572.0 q^{78} -43721.0 q^{79} +6400.00 q^{80} +6561.00 q^{81} -26704.0 q^{82} +97276.0 q^{83} +7056.00 q^{84} +45325.0 q^{85} -12712.0 q^{86} -11691.0 q^{87} +11968.0 q^{88} +45560.0 q^{89} +16200.0 q^{90} -30723.0 q^{91} +47520.0 q^{92} -17244.0 q^{93} +88004.0 q^{94} +6450.00 q^{95} +9216.00 q^{96} -57295.0 q^{97} -9604.00 q^{98} +30294.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) −9.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 16.0000 0.500000
\(5\) 25.0000 0.447214
\(6\) 36.0000 0.408248
\(7\) −49.0000 −0.377964
\(8\) −64.0000 −0.353553
\(9\) −162.000 −0.666667
\(10\) −100.000 −0.316228
\(11\) −187.000 −0.465972 −0.232986 0.972480i \(-0.574850\pi\)
−0.232986 + 0.972480i \(0.574850\pi\)
\(12\) −144.000 −0.288675
\(13\) 627.000 1.02899 0.514493 0.857495i \(-0.327980\pi\)
0.514493 + 0.857495i \(0.327980\pi\)
\(14\) 196.000 0.267261
\(15\) −225.000 −0.258199
\(16\) 256.000 0.250000
\(17\) 1813.00 1.52151 0.760756 0.649038i \(-0.224828\pi\)
0.760756 + 0.649038i \(0.224828\pi\)
\(18\) 648.000 0.471405
\(19\) 258.000 0.163959 0.0819796 0.996634i \(-0.473876\pi\)
0.0819796 + 0.996634i \(0.473876\pi\)
\(20\) 400.000 0.223607
\(21\) 441.000 0.218218
\(22\) 748.000 0.329492
\(23\) 2970.00 1.17068 0.585338 0.810789i \(-0.300962\pi\)
0.585338 + 0.810789i \(0.300962\pi\)
\(24\) 576.000 0.204124
\(25\) 625.000 0.200000
\(26\) −2508.00 −0.727602
\(27\) 3645.00 0.962250
\(28\) −784.000 −0.188982
\(29\) 1299.00 0.286823 0.143412 0.989663i \(-0.454193\pi\)
0.143412 + 0.989663i \(0.454193\pi\)
\(30\) 900.000 0.182574
\(31\) 1916.00 0.358089 0.179045 0.983841i \(-0.442699\pi\)
0.179045 + 0.983841i \(0.442699\pi\)
\(32\) −1024.00 −0.176777
\(33\) 1683.00 0.269029
\(34\) −7252.00 −1.07587
\(35\) −1225.00 −0.169031
\(36\) −2592.00 −0.333333
\(37\) 6578.00 0.789932 0.394966 0.918696i \(-0.370756\pi\)
0.394966 + 0.918696i \(0.370756\pi\)
\(38\) −1032.00 −0.115937
\(39\) −5643.00 −0.594085
\(40\) −1600.00 −0.158114
\(41\) 6676.00 0.620236 0.310118 0.950698i \(-0.399632\pi\)
0.310118 + 0.950698i \(0.399632\pi\)
\(42\) −1764.00 −0.154303
\(43\) 3178.00 0.262109 0.131055 0.991375i \(-0.458164\pi\)
0.131055 + 0.991375i \(0.458164\pi\)
\(44\) −2992.00 −0.232986
\(45\) −4050.00 −0.298142
\(46\) −11880.0 −0.827793
\(47\) −22001.0 −1.45277 −0.726387 0.687286i \(-0.758802\pi\)
−0.726387 + 0.687286i \(0.758802\pi\)
\(48\) −2304.00 −0.144338
\(49\) 2401.00 0.142857
\(50\) −2500.00 −0.141421
\(51\) −16317.0 −0.878446
\(52\) 10032.0 0.514493
\(53\) 26168.0 1.27962 0.639810 0.768533i \(-0.279013\pi\)
0.639810 + 0.768533i \(0.279013\pi\)
\(54\) −14580.0 −0.680414
\(55\) −4675.00 −0.208389
\(56\) 3136.00 0.133631
\(57\) −2322.00 −0.0946619
\(58\) −5196.00 −0.202815
\(59\) 3932.00 0.147056 0.0735281 0.997293i \(-0.476574\pi\)
0.0735281 + 0.997293i \(0.476574\pi\)
\(60\) −3600.00 −0.129099
\(61\) −48740.0 −1.67711 −0.838554 0.544819i \(-0.816598\pi\)
−0.838554 + 0.544819i \(0.816598\pi\)
\(62\) −7664.00 −0.253207
\(63\) 7938.00 0.251976
\(64\) 4096.00 0.125000
\(65\) 15675.0 0.460176
\(66\) −6732.00 −0.190232
\(67\) −44832.0 −1.22012 −0.610058 0.792357i \(-0.708854\pi\)
−0.610058 + 0.792357i \(0.708854\pi\)
\(68\) 29008.0 0.760756
\(69\) −26730.0 −0.675890
\(70\) 4900.00 0.119523
\(71\) 63736.0 1.50051 0.750255 0.661148i \(-0.229931\pi\)
0.750255 + 0.661148i \(0.229931\pi\)
\(72\) 10368.0 0.235702
\(73\) 60470.0 1.32811 0.664053 0.747685i \(-0.268835\pi\)
0.664053 + 0.747685i \(0.268835\pi\)
\(74\) −26312.0 −0.558566
\(75\) −5625.00 −0.115470
\(76\) 4128.00 0.0819796
\(77\) 9163.00 0.176121
\(78\) 22572.0 0.420081
\(79\) −43721.0 −0.788174 −0.394087 0.919073i \(-0.628939\pi\)
−0.394087 + 0.919073i \(0.628939\pi\)
\(80\) 6400.00 0.111803
\(81\) 6561.00 0.111111
\(82\) −26704.0 −0.438573
\(83\) 97276.0 1.54992 0.774962 0.632008i \(-0.217769\pi\)
0.774962 + 0.632008i \(0.217769\pi\)
\(84\) 7056.00 0.109109
\(85\) 45325.0 0.680441
\(86\) −12712.0 −0.185339
\(87\) −11691.0 −0.165597
\(88\) 11968.0 0.164746
\(89\) 45560.0 0.609689 0.304845 0.952402i \(-0.401395\pi\)
0.304845 + 0.952402i \(0.401395\pi\)
\(90\) 16200.0 0.210819
\(91\) −30723.0 −0.388920
\(92\) 47520.0 0.585338
\(93\) −17244.0 −0.206743
\(94\) 88004.0 1.02727
\(95\) 6450.00 0.0733248
\(96\) 9216.00 0.102062
\(97\) −57295.0 −0.618283 −0.309142 0.951016i \(-0.600042\pi\)
−0.309142 + 0.951016i \(0.600042\pi\)
\(98\) −9604.00 −0.101015
\(99\) 30294.0 0.310648
\(100\) 10000.0 0.100000
\(101\) −44970.0 −0.438651 −0.219326 0.975652i \(-0.570386\pi\)
−0.219326 + 0.975652i \(0.570386\pi\)
\(102\) 65268.0 0.621155
\(103\) −101405. −0.941817 −0.470908 0.882182i \(-0.656074\pi\)
−0.470908 + 0.882182i \(0.656074\pi\)
\(104\) −40128.0 −0.363801
\(105\) 11025.0 0.0975900
\(106\) −104672. −0.904828
\(107\) −166002. −1.40170 −0.700848 0.713311i \(-0.747195\pi\)
−0.700848 + 0.713311i \(0.747195\pi\)
\(108\) 58320.0 0.481125
\(109\) 8289.00 0.0668245 0.0334123 0.999442i \(-0.489363\pi\)
0.0334123 + 0.999442i \(0.489363\pi\)
\(110\) 18700.0 0.147353
\(111\) −59202.0 −0.456067
\(112\) −12544.0 −0.0944911
\(113\) 263206. 1.93910 0.969549 0.244898i \(-0.0787545\pi\)
0.969549 + 0.244898i \(0.0787545\pi\)
\(114\) 9288.00 0.0669360
\(115\) 74250.0 0.523542
\(116\) 20784.0 0.143412
\(117\) −101574. −0.685990
\(118\) −15728.0 −0.103984
\(119\) −88837.0 −0.575078
\(120\) 14400.0 0.0912871
\(121\) −126082. −0.782870
\(122\) 194960. 1.18589
\(123\) −60084.0 −0.358093
\(124\) 30656.0 0.179045
\(125\) 15625.0 0.0894427
\(126\) −31752.0 −0.178174
\(127\) 30052.0 0.165335 0.0826674 0.996577i \(-0.473656\pi\)
0.0826674 + 0.996577i \(0.473656\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −28602.0 −0.151329
\(130\) −62700.0 −0.325394
\(131\) −120050. −0.611201 −0.305600 0.952160i \(-0.598857\pi\)
−0.305600 + 0.952160i \(0.598857\pi\)
\(132\) 26928.0 0.134515
\(133\) −12642.0 −0.0619707
\(134\) 179328. 0.862752
\(135\) 91125.0 0.430331
\(136\) −116032. −0.537936
\(137\) 31776.0 0.144643 0.0723216 0.997381i \(-0.476959\pi\)
0.0723216 + 0.997381i \(0.476959\pi\)
\(138\) 106920. 0.477927
\(139\) −200162. −0.878708 −0.439354 0.898314i \(-0.644793\pi\)
−0.439354 + 0.898314i \(0.644793\pi\)
\(140\) −19600.0 −0.0845154
\(141\) 198009. 0.838759
\(142\) −254944. −1.06102
\(143\) −117249. −0.479478
\(144\) −41472.0 −0.166667
\(145\) 32475.0 0.128271
\(146\) −241880. −0.939113
\(147\) −21609.0 −0.0824786
\(148\) 105248. 0.394966
\(149\) 309642. 1.14260 0.571300 0.820741i \(-0.306439\pi\)
0.571300 + 0.820741i \(0.306439\pi\)
\(150\) 22500.0 0.0816497
\(151\) −208657. −0.744716 −0.372358 0.928089i \(-0.621451\pi\)
−0.372358 + 0.928089i \(0.621451\pi\)
\(152\) −16512.0 −0.0579683
\(153\) −293706. −1.01434
\(154\) −36652.0 −0.124536
\(155\) 47900.0 0.160142
\(156\) −90288.0 −0.297042
\(157\) 36010.0 0.116593 0.0582967 0.998299i \(-0.481433\pi\)
0.0582967 + 0.998299i \(0.481433\pi\)
\(158\) 174884. 0.557324
\(159\) −235512. −0.738789
\(160\) −25600.0 −0.0790569
\(161\) −145530. −0.442474
\(162\) −26244.0 −0.0785674
\(163\) 175670. 0.517879 0.258940 0.965893i \(-0.416627\pi\)
0.258940 + 0.965893i \(0.416627\pi\)
\(164\) 106816. 0.310118
\(165\) 42075.0 0.120313
\(166\) −389104. −1.09596
\(167\) −157413. −0.436767 −0.218383 0.975863i \(-0.570078\pi\)
−0.218383 + 0.975863i \(0.570078\pi\)
\(168\) −28224.0 −0.0771517
\(169\) 21836.0 0.0588107
\(170\) −181300. −0.481144
\(171\) −41796.0 −0.109306
\(172\) 50848.0 0.131055
\(173\) −23471.0 −0.0596233 −0.0298117 0.999556i \(-0.509491\pi\)
−0.0298117 + 0.999556i \(0.509491\pi\)
\(174\) 46764.0 0.117095
\(175\) −30625.0 −0.0755929
\(176\) −47872.0 −0.116493
\(177\) −35388.0 −0.0849030
\(178\) −182240. −0.431116
\(179\) 612228. 1.42817 0.714086 0.700058i \(-0.246842\pi\)
0.714086 + 0.700058i \(0.246842\pi\)
\(180\) −64800.0 −0.149071
\(181\) 528832. 1.19983 0.599917 0.800062i \(-0.295200\pi\)
0.599917 + 0.800062i \(0.295200\pi\)
\(182\) 122892. 0.275008
\(183\) 438660. 0.968279
\(184\) −190080. −0.413897
\(185\) 164450. 0.353268
\(186\) 68976.0 0.146189
\(187\) −339031. −0.708982
\(188\) −352016. −0.726387
\(189\) −178605. −0.363696
\(190\) −25800.0 −0.0518484
\(191\) 540369. 1.07178 0.535892 0.844287i \(-0.319976\pi\)
0.535892 + 0.844287i \(0.319976\pi\)
\(192\) −36864.0 −0.0721688
\(193\) 960320. 1.85576 0.927882 0.372874i \(-0.121628\pi\)
0.927882 + 0.372874i \(0.121628\pi\)
\(194\) 229180. 0.437192
\(195\) −141075. −0.265683
\(196\) 38416.0 0.0714286
\(197\) 761944. 1.39881 0.699403 0.714728i \(-0.253449\pi\)
0.699403 + 0.714728i \(0.253449\pi\)
\(198\) −121176. −0.219661
\(199\) 125084. 0.223908 0.111954 0.993713i \(-0.464289\pi\)
0.111954 + 0.993713i \(0.464289\pi\)
\(200\) −40000.0 −0.0707107
\(201\) 403488. 0.704434
\(202\) 179880. 0.310173
\(203\) −63651.0 −0.108409
\(204\) −261072. −0.439223
\(205\) 166900. 0.277378
\(206\) 405620. 0.665965
\(207\) −481140. −0.780451
\(208\) 160512. 0.257246
\(209\) −48246.0 −0.0764004
\(210\) −44100.0 −0.0690066
\(211\) 627547. 0.970376 0.485188 0.874410i \(-0.338751\pi\)
0.485188 + 0.874410i \(0.338751\pi\)
\(212\) 418688. 0.639810
\(213\) −573624. −0.866320
\(214\) 664008. 0.991149
\(215\) 79450.0 0.117219
\(216\) −233280. −0.340207
\(217\) −93884.0 −0.135345
\(218\) −33156.0 −0.0472521
\(219\) −544230. −0.766782
\(220\) −74800.0 −0.104195
\(221\) 1.13675e6 1.56561
\(222\) 236808. 0.322488
\(223\) −1.22110e6 −1.64433 −0.822166 0.569248i \(-0.807234\pi\)
−0.822166 + 0.569248i \(0.807234\pi\)
\(224\) 50176.0 0.0668153
\(225\) −101250. −0.133333
\(226\) −1.05282e6 −1.37115
\(227\) 390547. 0.503047 0.251524 0.967851i \(-0.419068\pi\)
0.251524 + 0.967851i \(0.419068\pi\)
\(228\) −37152.0 −0.0473309
\(229\) −712124. −0.897360 −0.448680 0.893692i \(-0.648106\pi\)
−0.448680 + 0.893692i \(0.648106\pi\)
\(230\) −297000. −0.370200
\(231\) −82467.0 −0.101683
\(232\) −83136.0 −0.101407
\(233\) 561576. 0.677671 0.338835 0.940846i \(-0.389967\pi\)
0.338835 + 0.940846i \(0.389967\pi\)
\(234\) 406296. 0.485068
\(235\) −550025. −0.649700
\(236\) 62912.0 0.0735281
\(237\) 393489. 0.455053
\(238\) 355348. 0.406641
\(239\) −1.36084e6 −1.54103 −0.770515 0.637421i \(-0.780001\pi\)
−0.770515 + 0.637421i \(0.780001\pi\)
\(240\) −57600.0 −0.0645497
\(241\) 530050. 0.587860 0.293930 0.955827i \(-0.405037\pi\)
0.293930 + 0.955827i \(0.405037\pi\)
\(242\) 504328. 0.553573
\(243\) −944784. −1.02640
\(244\) −779840. −0.838554
\(245\) 60025.0 0.0638877
\(246\) 240336. 0.253210
\(247\) 161766. 0.168712
\(248\) −122624. −0.126604
\(249\) −875484. −0.894849
\(250\) −62500.0 −0.0632456
\(251\) 990330. 0.992192 0.496096 0.868268i \(-0.334766\pi\)
0.496096 + 0.868268i \(0.334766\pi\)
\(252\) 127008. 0.125988
\(253\) −555390. −0.545503
\(254\) −120208. −0.116909
\(255\) −407925. −0.392853
\(256\) 65536.0 0.0625000
\(257\) −1.81643e6 −1.71548 −0.857740 0.514083i \(-0.828132\pi\)
−0.857740 + 0.514083i \(0.828132\pi\)
\(258\) 114408. 0.107006
\(259\) −322322. −0.298566
\(260\) 250800. 0.230088
\(261\) −210438. −0.191215
\(262\) 480200. 0.432184
\(263\) −1.95847e6 −1.74594 −0.872968 0.487777i \(-0.837808\pi\)
−0.872968 + 0.487777i \(0.837808\pi\)
\(264\) −107712. −0.0951162
\(265\) 654200. 0.572263
\(266\) 50568.0 0.0438199
\(267\) −410040. −0.352004
\(268\) −717312. −0.610058
\(269\) 218034. 0.183715 0.0918573 0.995772i \(-0.470720\pi\)
0.0918573 + 0.995772i \(0.470720\pi\)
\(270\) −364500. −0.304290
\(271\) 1.26265e6 1.04438 0.522192 0.852828i \(-0.325114\pi\)
0.522192 + 0.852828i \(0.325114\pi\)
\(272\) 464128. 0.380378
\(273\) 276507. 0.224543
\(274\) −127104. −0.102278
\(275\) −116875. −0.0931944
\(276\) −427680. −0.337945
\(277\) −1.10264e6 −0.863443 −0.431721 0.902007i \(-0.642094\pi\)
−0.431721 + 0.902007i \(0.642094\pi\)
\(278\) 800648. 0.621340
\(279\) −310392. −0.238726
\(280\) 78400.0 0.0597614
\(281\) −998213. −0.754149 −0.377075 0.926183i \(-0.623070\pi\)
−0.377075 + 0.926183i \(0.623070\pi\)
\(282\) −792036. −0.593092
\(283\) −386371. −0.286773 −0.143387 0.989667i \(-0.545799\pi\)
−0.143387 + 0.989667i \(0.545799\pi\)
\(284\) 1.01978e6 0.750255
\(285\) −58050.0 −0.0423341
\(286\) 468996. 0.339042
\(287\) −327124. −0.234427
\(288\) 165888. 0.117851
\(289\) 1.86711e6 1.31500
\(290\) −129900. −0.0907014
\(291\) 515655. 0.356966
\(292\) 967520. 0.664053
\(293\) −783571. −0.533224 −0.266612 0.963804i \(-0.585904\pi\)
−0.266612 + 0.963804i \(0.585904\pi\)
\(294\) 86436.0 0.0583212
\(295\) 98300.0 0.0657656
\(296\) −420992. −0.279283
\(297\) −681615. −0.448382
\(298\) −1.23857e6 −0.807940
\(299\) 1.86219e6 1.20461
\(300\) −90000.0 −0.0577350
\(301\) −155722. −0.0990681
\(302\) 834628. 0.526594
\(303\) 404730. 0.253255
\(304\) 66048.0 0.0409898
\(305\) −1.21850e6 −0.750025
\(306\) 1.17482e6 0.717248
\(307\) 2.81773e6 1.70629 0.853147 0.521670i \(-0.174691\pi\)
0.853147 + 0.521670i \(0.174691\pi\)
\(308\) 146608. 0.0880604
\(309\) 912645. 0.543758
\(310\) −191600. −0.113238
\(311\) −847398. −0.496806 −0.248403 0.968657i \(-0.579906\pi\)
−0.248403 + 0.968657i \(0.579906\pi\)
\(312\) 361152. 0.210041
\(313\) 364955. 0.210561 0.105281 0.994443i \(-0.466426\pi\)
0.105281 + 0.994443i \(0.466426\pi\)
\(314\) −144040. −0.0824440
\(315\) 198450. 0.112687
\(316\) −699536. −0.394087
\(317\) 1.93744e6 1.08288 0.541439 0.840740i \(-0.317880\pi\)
0.541439 + 0.840740i \(0.317880\pi\)
\(318\) 942048. 0.522402
\(319\) −242913. −0.133652
\(320\) 102400. 0.0559017
\(321\) 1.49402e6 0.809270
\(322\) 582120. 0.312876
\(323\) 467754. 0.249466
\(324\) 104976. 0.0555556
\(325\) 391875. 0.205797
\(326\) −702680. −0.366196
\(327\) −74601.0 −0.0385812
\(328\) −427264. −0.219286
\(329\) 1.07805e6 0.549097
\(330\) −168300. −0.0850745
\(331\) −61460.0 −0.0308335 −0.0154167 0.999881i \(-0.504907\pi\)
−0.0154167 + 0.999881i \(0.504907\pi\)
\(332\) 1.55642e6 0.774962
\(333\) −1.06564e6 −0.526621
\(334\) 629652. 0.308841
\(335\) −1.12080e6 −0.545652
\(336\) 112896. 0.0545545
\(337\) −3.74116e6 −1.79445 −0.897225 0.441574i \(-0.854420\pi\)
−0.897225 + 0.441574i \(0.854420\pi\)
\(338\) −87344.0 −0.0415854
\(339\) −2.36885e6 −1.11954
\(340\) 725200. 0.340221
\(341\) −358292. −0.166860
\(342\) 167184. 0.0772911
\(343\) −117649. −0.0539949
\(344\) −203392. −0.0926697
\(345\) −668250. −0.302267
\(346\) 93884.0 0.0421601
\(347\) 211334. 0.0942206 0.0471103 0.998890i \(-0.484999\pi\)
0.0471103 + 0.998890i \(0.484999\pi\)
\(348\) −187056. −0.0827987
\(349\) 3.39558e6 1.49228 0.746140 0.665789i \(-0.231905\pi\)
0.746140 + 0.665789i \(0.231905\pi\)
\(350\) 122500. 0.0534522
\(351\) 2.28542e6 0.990142
\(352\) 191488. 0.0823730
\(353\) −3.88094e6 −1.65768 −0.828838 0.559489i \(-0.810997\pi\)
−0.828838 + 0.559489i \(0.810997\pi\)
\(354\) 141552. 0.0600355
\(355\) 1.59340e6 0.671049
\(356\) 728960. 0.304845
\(357\) 799533. 0.332021
\(358\) −2.44891e6 −1.00987
\(359\) 3.24210e6 1.32767 0.663836 0.747878i \(-0.268927\pi\)
0.663836 + 0.747878i \(0.268927\pi\)
\(360\) 259200. 0.105409
\(361\) −2.40954e6 −0.973117
\(362\) −2.11533e6 −0.848411
\(363\) 1.13474e6 0.451990
\(364\) −491568. −0.194460
\(365\) 1.51175e6 0.593947
\(366\) −1.75464e6 −0.684676
\(367\) 1.44430e6 0.559749 0.279874 0.960037i \(-0.409707\pi\)
0.279874 + 0.960037i \(0.409707\pi\)
\(368\) 760320. 0.292669
\(369\) −1.08151e6 −0.413490
\(370\) −657800. −0.249798
\(371\) −1.28223e6 −0.483651
\(372\) −275904. −0.103371
\(373\) 3.43542e6 1.27852 0.639260 0.768991i \(-0.279241\pi\)
0.639260 + 0.768991i \(0.279241\pi\)
\(374\) 1.35612e6 0.501326
\(375\) −140625. −0.0516398
\(376\) 1.40806e6 0.513633
\(377\) 814473. 0.295137
\(378\) 714420. 0.257172
\(379\) −1.68635e6 −0.603044 −0.301522 0.953459i \(-0.597495\pi\)
−0.301522 + 0.953459i \(0.597495\pi\)
\(380\) 103200. 0.0366624
\(381\) −270468. −0.0954560
\(382\) −2.16148e6 −0.757865
\(383\) 2.64354e6 0.920850 0.460425 0.887699i \(-0.347697\pi\)
0.460425 + 0.887699i \(0.347697\pi\)
\(384\) 147456. 0.0510310
\(385\) 229075. 0.0787637
\(386\) −3.84128e6 −1.31222
\(387\) −514836. −0.174740
\(388\) −916720. −0.309142
\(389\) −452099. −0.151481 −0.0757407 0.997128i \(-0.524132\pi\)
−0.0757407 + 0.997128i \(0.524132\pi\)
\(390\) 564300. 0.187866
\(391\) 5.38461e6 1.78120
\(392\) −153664. −0.0505076
\(393\) 1.08045e6 0.352877
\(394\) −3.04778e6 −0.989105
\(395\) −1.09302e6 −0.352482
\(396\) 484704. 0.155324
\(397\) −1.95530e6 −0.622641 −0.311321 0.950305i \(-0.600771\pi\)
−0.311321 + 0.950305i \(0.600771\pi\)
\(398\) −500336. −0.158327
\(399\) 113778. 0.0357788
\(400\) 160000. 0.0500000
\(401\) −4.76737e6 −1.48053 −0.740266 0.672314i \(-0.765300\pi\)
−0.740266 + 0.672314i \(0.765300\pi\)
\(402\) −1.61395e6 −0.498110
\(403\) 1.20133e6 0.368469
\(404\) −719520. −0.219326
\(405\) 164025. 0.0496904
\(406\) 254604. 0.0766567
\(407\) −1.23009e6 −0.368086
\(408\) 1.04429e6 0.310577
\(409\) −4.13199e6 −1.22138 −0.610690 0.791870i \(-0.709108\pi\)
−0.610690 + 0.791870i \(0.709108\pi\)
\(410\) −667600. −0.196136
\(411\) −285984. −0.0835097
\(412\) −1.62248e6 −0.470908
\(413\) −192668. −0.0555820
\(414\) 1.92456e6 0.551862
\(415\) 2.43190e6 0.693147
\(416\) −642048. −0.181901
\(417\) 1.80146e6 0.507322
\(418\) 192984. 0.0540232
\(419\) 190512. 0.0530136 0.0265068 0.999649i \(-0.491562\pi\)
0.0265068 + 0.999649i \(0.491562\pi\)
\(420\) 176400. 0.0487950
\(421\) −5.19186e6 −1.42764 −0.713818 0.700332i \(-0.753035\pi\)
−0.713818 + 0.700332i \(0.753035\pi\)
\(422\) −2.51019e6 −0.686160
\(423\) 3.56416e6 0.968515
\(424\) −1.67475e6 −0.452414
\(425\) 1.13312e6 0.304302
\(426\) 2.29450e6 0.612581
\(427\) 2.38826e6 0.633887
\(428\) −2.65603e6 −0.700848
\(429\) 1.05524e6 0.276827
\(430\) −317800. −0.0828863
\(431\) −4.21781e6 −1.09369 −0.546845 0.837234i \(-0.684171\pi\)
−0.546845 + 0.837234i \(0.684171\pi\)
\(432\) 933120. 0.240563
\(433\) −4.86027e6 −1.24578 −0.622890 0.782310i \(-0.714041\pi\)
−0.622890 + 0.782310i \(0.714041\pi\)
\(434\) 375536. 0.0957034
\(435\) −292275. −0.0740574
\(436\) 132624. 0.0334123
\(437\) 766260. 0.191943
\(438\) 2.17692e6 0.542197
\(439\) −2.03113e6 −0.503011 −0.251505 0.967856i \(-0.580926\pi\)
−0.251505 + 0.967856i \(0.580926\pi\)
\(440\) 299200. 0.0736767
\(441\) −388962. −0.0952381
\(442\) −4.54700e6 −1.10706
\(443\) 2.84199e6 0.688038 0.344019 0.938963i \(-0.388211\pi\)
0.344019 + 0.938963i \(0.388211\pi\)
\(444\) −947232. −0.228034
\(445\) 1.13900e6 0.272661
\(446\) 4.88440e6 1.16272
\(447\) −2.78678e6 −0.659680
\(448\) −200704. −0.0472456
\(449\) −4.59682e6 −1.07607 −0.538037 0.842921i \(-0.680834\pi\)
−0.538037 + 0.842921i \(0.680834\pi\)
\(450\) 405000. 0.0942809
\(451\) −1.24841e6 −0.289012
\(452\) 4.21130e6 0.969549
\(453\) 1.87791e6 0.429962
\(454\) −1.56219e6 −0.355708
\(455\) −768075. −0.173930
\(456\) 148608. 0.0334680
\(457\) 4.93367e6 1.10504 0.552522 0.833498i \(-0.313665\pi\)
0.552522 + 0.833498i \(0.313665\pi\)
\(458\) 2.84850e6 0.634530
\(459\) 6.60838e6 1.46408
\(460\) 1.18800e6 0.261771
\(461\) −4.75667e6 −1.04244 −0.521220 0.853422i \(-0.674523\pi\)
−0.521220 + 0.853422i \(0.674523\pi\)
\(462\) 329868. 0.0719011
\(463\) 4.08619e6 0.885862 0.442931 0.896556i \(-0.353939\pi\)
0.442931 + 0.896556i \(0.353939\pi\)
\(464\) 332544. 0.0717058
\(465\) −431100. −0.0924582
\(466\) −2.24630e6 −0.479186
\(467\) −4.15932e6 −0.882531 −0.441266 0.897377i \(-0.645470\pi\)
−0.441266 + 0.897377i \(0.645470\pi\)
\(468\) −1.62518e6 −0.342995
\(469\) 2.19677e6 0.461160
\(470\) 2.20010e6 0.459407
\(471\) −324090. −0.0673152
\(472\) −251648. −0.0519922
\(473\) −594286. −0.122136
\(474\) −1.57396e6 −0.321771
\(475\) 161250. 0.0327918
\(476\) −1.42139e6 −0.287539
\(477\) −4.23922e6 −0.853080
\(478\) 5.44335e6 1.08967
\(479\) −3.36040e6 −0.669195 −0.334597 0.942361i \(-0.608600\pi\)
−0.334597 + 0.942361i \(0.608600\pi\)
\(480\) 230400. 0.0456435
\(481\) 4.12441e6 0.812828
\(482\) −2.12020e6 −0.415680
\(483\) 1.30977e6 0.255463
\(484\) −2.01731e6 −0.391435
\(485\) −1.43238e6 −0.276505
\(486\) 3.77914e6 0.725775
\(487\) 7.05243e6 1.34746 0.673730 0.738977i \(-0.264691\pi\)
0.673730 + 0.738977i \(0.264691\pi\)
\(488\) 3.11936e6 0.592947
\(489\) −1.58103e6 −0.298998
\(490\) −240100. −0.0451754
\(491\) −83937.0 −0.0157127 −0.00785633 0.999969i \(-0.502501\pi\)
−0.00785633 + 0.999969i \(0.502501\pi\)
\(492\) −961344. −0.179047
\(493\) 2.35509e6 0.436405
\(494\) −647064. −0.119297
\(495\) 757350. 0.138926
\(496\) 490496. 0.0895223
\(497\) −3.12306e6 −0.567140
\(498\) 3.50194e6 0.632754
\(499\) −7.10526e6 −1.27741 −0.638703 0.769454i \(-0.720529\pi\)
−0.638703 + 0.769454i \(0.720529\pi\)
\(500\) 250000. 0.0447214
\(501\) 1.41672e6 0.252167
\(502\) −3.96132e6 −0.701586
\(503\) 2.89147e6 0.509564 0.254782 0.966999i \(-0.417996\pi\)
0.254782 + 0.966999i \(0.417996\pi\)
\(504\) −508032. −0.0890871
\(505\) −1.12425e6 −0.196171
\(506\) 2.22156e6 0.385729
\(507\) −196524. −0.0339544
\(508\) 480832. 0.0826674
\(509\) 1.03548e6 0.177153 0.0885764 0.996069i \(-0.471768\pi\)
0.0885764 + 0.996069i \(0.471768\pi\)
\(510\) 1.63170e6 0.277789
\(511\) −2.96303e6 −0.501977
\(512\) −262144. −0.0441942
\(513\) 940410. 0.157770
\(514\) 7.26572e6 1.21303
\(515\) −2.53513e6 −0.421193
\(516\) −457632. −0.0756645
\(517\) 4.11419e6 0.676952
\(518\) 1.28929e6 0.211118
\(519\) 211239. 0.0344236
\(520\) −1.00320e6 −0.162697
\(521\) −7.49715e6 −1.21005 −0.605023 0.796208i \(-0.706836\pi\)
−0.605023 + 0.796208i \(0.706836\pi\)
\(522\) 841752. 0.135210
\(523\) 3.53223e6 0.564670 0.282335 0.959316i \(-0.408891\pi\)
0.282335 + 0.959316i \(0.408891\pi\)
\(524\) −1.92080e6 −0.305600
\(525\) 275625. 0.0436436
\(526\) 7.83390e6 1.23456
\(527\) 3.47371e6 0.544837
\(528\) 430848. 0.0672573
\(529\) 2.38456e6 0.370483
\(530\) −2.61680e6 −0.404651
\(531\) −636984. −0.0980375
\(532\) −202272. −0.0309854
\(533\) 4.18585e6 0.638213
\(534\) 1.64016e6 0.248905
\(535\) −4.15005e6 −0.626858
\(536\) 2.86925e6 0.431376
\(537\) −5.51005e6 −0.824556
\(538\) −872136. −0.129906
\(539\) −448987. −0.0665674
\(540\) 1.45800e6 0.215166
\(541\) −4.99188e6 −0.733281 −0.366641 0.930363i \(-0.619492\pi\)
−0.366641 + 0.930363i \(0.619492\pi\)
\(542\) −5.05061e6 −0.738491
\(543\) −4.75949e6 −0.692725
\(544\) −1.85651e6 −0.268968
\(545\) 207225. 0.0298848
\(546\) −1.10603e6 −0.158776
\(547\) 5.12634e6 0.732553 0.366277 0.930506i \(-0.380632\pi\)
0.366277 + 0.930506i \(0.380632\pi\)
\(548\) 508416. 0.0723216
\(549\) 7.89588e6 1.11807
\(550\) 467500. 0.0658984
\(551\) 335142. 0.0470273
\(552\) 1.71072e6 0.238963
\(553\) 2.14233e6 0.297902
\(554\) 4.41055e6 0.610546
\(555\) −1.48005e6 −0.203959
\(556\) −3.20259e6 −0.439354
\(557\) 8.86866e6 1.21121 0.605606 0.795765i \(-0.292931\pi\)
0.605606 + 0.795765i \(0.292931\pi\)
\(558\) 1.24157e6 0.168805
\(559\) 1.99261e6 0.269707
\(560\) −313600. −0.0422577
\(561\) 3.05128e6 0.409331
\(562\) 3.99285e6 0.533264
\(563\) 9.07277e6 1.20634 0.603169 0.797613i \(-0.293904\pi\)
0.603169 + 0.797613i \(0.293904\pi\)
\(564\) 3.16814e6 0.419379
\(565\) 6.58015e6 0.867191
\(566\) 1.54548e6 0.202779
\(567\) −321489. −0.0419961
\(568\) −4.07910e6 −0.530510
\(569\) 2.08310e6 0.269730 0.134865 0.990864i \(-0.456940\pi\)
0.134865 + 0.990864i \(0.456940\pi\)
\(570\) 232200. 0.0299347
\(571\) −5.46368e6 −0.701286 −0.350643 0.936509i \(-0.614037\pi\)
−0.350643 + 0.936509i \(0.614037\pi\)
\(572\) −1.87598e6 −0.239739
\(573\) −4.86332e6 −0.618794
\(574\) 1.30850e6 0.165765
\(575\) 1.85625e6 0.234135
\(576\) −663552. −0.0833333
\(577\) 7.66246e6 0.958140 0.479070 0.877777i \(-0.340974\pi\)
0.479070 + 0.877777i \(0.340974\pi\)
\(578\) −7.46845e6 −0.929845
\(579\) −8.64288e6 −1.07143
\(580\) 519600. 0.0641356
\(581\) −4.76652e6 −0.585816
\(582\) −2.06262e6 −0.252413
\(583\) −4.89342e6 −0.596267
\(584\) −3.87008e6 −0.469556
\(585\) −2.53935e6 −0.306784
\(586\) 3.13428e6 0.377046
\(587\) −1.57465e7 −1.88620 −0.943100 0.332510i \(-0.892104\pi\)
−0.943100 + 0.332510i \(0.892104\pi\)
\(588\) −345744. −0.0412393
\(589\) 494328. 0.0587120
\(590\) −393200. −0.0465033
\(591\) −6.85750e6 −0.807601
\(592\) 1.68397e6 0.197483
\(593\) −1.62409e7 −1.89658 −0.948292 0.317398i \(-0.897191\pi\)
−0.948292 + 0.317398i \(0.897191\pi\)
\(594\) 2.72646e6 0.317054
\(595\) −2.22093e6 −0.257183
\(596\) 4.95427e6 0.571300
\(597\) −1.12576e6 −0.129273
\(598\) −7.44876e6 −0.851787
\(599\) −1.90793e6 −0.217268 −0.108634 0.994082i \(-0.534648\pi\)
−0.108634 + 0.994082i \(0.534648\pi\)
\(600\) 360000. 0.0408248
\(601\) 3.52970e6 0.398613 0.199306 0.979937i \(-0.436131\pi\)
0.199306 + 0.979937i \(0.436131\pi\)
\(602\) 622888. 0.0700517
\(603\) 7.26278e6 0.813411
\(604\) −3.33851e6 −0.372358
\(605\) −3.15205e6 −0.350110
\(606\) −1.61892e6 −0.179079
\(607\) 3.37799e6 0.372123 0.186061 0.982538i \(-0.440428\pi\)
0.186061 + 0.982538i \(0.440428\pi\)
\(608\) −264192. −0.0289842
\(609\) 572859. 0.0625899
\(610\) 4.87400e6 0.530348
\(611\) −1.37946e7 −1.49488
\(612\) −4.69930e6 −0.507171
\(613\) 1.20412e6 0.129425 0.0647127 0.997904i \(-0.479387\pi\)
0.0647127 + 0.997904i \(0.479387\pi\)
\(614\) −1.12709e7 −1.20653
\(615\) −1.50210e6 −0.160144
\(616\) −586432. −0.0622681
\(617\) −5.47330e6 −0.578810 −0.289405 0.957207i \(-0.593457\pi\)
−0.289405 + 0.957207i \(0.593457\pi\)
\(618\) −3.65058e6 −0.384495
\(619\) 3.22662e6 0.338471 0.169236 0.985576i \(-0.445870\pi\)
0.169236 + 0.985576i \(0.445870\pi\)
\(620\) 766400. 0.0800712
\(621\) 1.08256e7 1.12648
\(622\) 3.38959e6 0.351295
\(623\) −2.23244e6 −0.230441
\(624\) −1.44461e6 −0.148521
\(625\) 390625. 0.0400000
\(626\) −1.45982e6 −0.148889
\(627\) 434214. 0.0441098
\(628\) 576160. 0.0582967
\(629\) 1.19259e7 1.20189
\(630\) −793800. −0.0796819
\(631\) 1.36282e7 1.36259 0.681297 0.732007i \(-0.261416\pi\)
0.681297 + 0.732007i \(0.261416\pi\)
\(632\) 2.79814e6 0.278662
\(633\) −5.64792e6 −0.560247
\(634\) −7.74975e6 −0.765711
\(635\) 751300. 0.0739399
\(636\) −3.76819e6 −0.369394
\(637\) 1.50543e6 0.146998
\(638\) 971652. 0.0945059
\(639\) −1.03252e7 −1.00034
\(640\) −409600. −0.0395285
\(641\) −1.92472e7 −1.85021 −0.925106 0.379710i \(-0.876024\pi\)
−0.925106 + 0.379710i \(0.876024\pi\)
\(642\) −5.97607e6 −0.572240
\(643\) −1.28399e7 −1.22472 −0.612358 0.790580i \(-0.709779\pi\)
−0.612358 + 0.790580i \(0.709779\pi\)
\(644\) −2.32848e6 −0.221237
\(645\) −715050. −0.0676764
\(646\) −1.87102e6 −0.176399
\(647\) 2.00233e7 1.88050 0.940251 0.340481i \(-0.110590\pi\)
0.940251 + 0.340481i \(0.110590\pi\)
\(648\) −419904. −0.0392837
\(649\) −735284. −0.0685241
\(650\) −1.56750e6 −0.145520
\(651\) 844956. 0.0781415
\(652\) 2.81072e6 0.258940
\(653\) −7.23655e6 −0.664124 −0.332062 0.943258i \(-0.607744\pi\)
−0.332062 + 0.943258i \(0.607744\pi\)
\(654\) 298404. 0.0272810
\(655\) −3.00125e6 −0.273337
\(656\) 1.70906e6 0.155059
\(657\) −9.79614e6 −0.885404
\(658\) −4.31220e6 −0.388270
\(659\) 1.42474e7 1.27798 0.638989 0.769216i \(-0.279353\pi\)
0.638989 + 0.769216i \(0.279353\pi\)
\(660\) 673200. 0.0601567
\(661\) 1.49265e7 1.32878 0.664391 0.747385i \(-0.268691\pi\)
0.664391 + 0.747385i \(0.268691\pi\)
\(662\) 245840. 0.0218026
\(663\) −1.02308e7 −0.903908
\(664\) −6.22566e6 −0.547981
\(665\) −316050. −0.0277142
\(666\) 4.26254e6 0.372377
\(667\) 3.85803e6 0.335777
\(668\) −2.51861e6 −0.218383
\(669\) 1.09899e7 0.949355
\(670\) 4.48320e6 0.385835
\(671\) 9.11438e6 0.781485
\(672\) −451584. −0.0385758
\(673\) −1.55062e7 −1.31967 −0.659837 0.751409i \(-0.729375\pi\)
−0.659837 + 0.751409i \(0.729375\pi\)
\(674\) 1.49646e7 1.26887
\(675\) 2.27812e6 0.192450
\(676\) 349376. 0.0294053
\(677\) −7.80065e6 −0.654122 −0.327061 0.945003i \(-0.606058\pi\)
−0.327061 + 0.945003i \(0.606058\pi\)
\(678\) 9.47542e6 0.791633
\(679\) 2.80745e6 0.233689
\(680\) −2.90080e6 −0.240572
\(681\) −3.51492e6 −0.290434
\(682\) 1.43317e6 0.117988
\(683\) 1.58547e7 1.30049 0.650243 0.759727i \(-0.274667\pi\)
0.650243 + 0.759727i \(0.274667\pi\)
\(684\) −668736. −0.0546531
\(685\) 794400. 0.0646864
\(686\) 470596. 0.0381802
\(687\) 6.40912e6 0.518091
\(688\) 813568. 0.0655274
\(689\) 1.64073e7 1.31671
\(690\) 2.67300e6 0.213735
\(691\) 2.03656e7 1.62257 0.811284 0.584652i \(-0.198769\pi\)
0.811284 + 0.584652i \(0.198769\pi\)
\(692\) −375536. −0.0298117
\(693\) −1.48441e6 −0.117414
\(694\) −845336. −0.0666240
\(695\) −5.00405e6 −0.392970
\(696\) 748224. 0.0585475
\(697\) 1.21036e7 0.943696
\(698\) −1.35823e7 −1.05520
\(699\) −5.05418e6 −0.391253
\(700\) −490000. −0.0377964
\(701\) 2.48036e7 1.90643 0.953213 0.302300i \(-0.0977543\pi\)
0.953213 + 0.302300i \(0.0977543\pi\)
\(702\) −9.14166e6 −0.700136
\(703\) 1.69712e6 0.129517
\(704\) −765952. −0.0582465
\(705\) 4.95022e6 0.375104
\(706\) 1.55237e7 1.17215
\(707\) 2.20353e6 0.165795
\(708\) −566208. −0.0424515
\(709\) 1.81917e7 1.35912 0.679560 0.733620i \(-0.262171\pi\)
0.679560 + 0.733620i \(0.262171\pi\)
\(710\) −6.37360e6 −0.474503
\(711\) 7.08280e6 0.525450
\(712\) −2.91584e6 −0.215558
\(713\) 5.69052e6 0.419207
\(714\) −3.19813e6 −0.234774
\(715\) −2.93122e6 −0.214429
\(716\) 9.79565e6 0.714086
\(717\) 1.22475e7 0.889715
\(718\) −1.29684e7 −0.938806
\(719\) −1.66202e7 −1.19899 −0.599493 0.800380i \(-0.704631\pi\)
−0.599493 + 0.800380i \(0.704631\pi\)
\(720\) −1.03680e6 −0.0745356
\(721\) 4.96884e6 0.355973
\(722\) 9.63814e6 0.688098
\(723\) −4.77045e6 −0.339401
\(724\) 8.46131e6 0.599917
\(725\) 811875. 0.0573646
\(726\) −4.53895e6 −0.319605
\(727\) −1.57591e7 −1.10585 −0.552925 0.833231i \(-0.686489\pi\)
−0.552925 + 0.833231i \(0.686489\pi\)
\(728\) 1.96627e6 0.137504
\(729\) 6.90873e6 0.481481
\(730\) −6.04700e6 −0.419984
\(731\) 5.76171e6 0.398803
\(732\) 7.01856e6 0.484139
\(733\) −2.15238e6 −0.147965 −0.0739827 0.997260i \(-0.523571\pi\)
−0.0739827 + 0.997260i \(0.523571\pi\)
\(734\) −5.77721e6 −0.395802
\(735\) −540225. −0.0368856
\(736\) −3.04128e6 −0.206948
\(737\) 8.38358e6 0.568540
\(738\) 4.32605e6 0.292382
\(739\) −2.27267e7 −1.53083 −0.765413 0.643540i \(-0.777465\pi\)
−0.765413 + 0.643540i \(0.777465\pi\)
\(740\) 2.63120e6 0.176634
\(741\) −1.45589e6 −0.0974057
\(742\) 5.12893e6 0.341993
\(743\) 1.21153e7 0.805123 0.402561 0.915393i \(-0.368120\pi\)
0.402561 + 0.915393i \(0.368120\pi\)
\(744\) 1.10362e6 0.0730947
\(745\) 7.74105e6 0.510986
\(746\) −1.37417e7 −0.904050
\(747\) −1.57587e7 −1.03328
\(748\) −5.42450e6 −0.354491
\(749\) 8.13410e6 0.529791
\(750\) 562500. 0.0365148
\(751\) −2.07590e7 −1.34310 −0.671549 0.740961i \(-0.734371\pi\)
−0.671549 + 0.740961i \(0.734371\pi\)
\(752\) −5.63226e6 −0.363193
\(753\) −8.91297e6 −0.572842
\(754\) −3.25789e6 −0.208693
\(755\) −5.21642e6 −0.333047
\(756\) −2.85768e6 −0.181848
\(757\) −1.86222e7 −1.18111 −0.590556 0.806997i \(-0.701091\pi\)
−0.590556 + 0.806997i \(0.701091\pi\)
\(758\) 6.74539e6 0.426417
\(759\) 4.99851e6 0.314946
\(760\) −412800. −0.0259242
\(761\) 2.65336e7 1.66087 0.830434 0.557117i \(-0.188093\pi\)
0.830434 + 0.557117i \(0.188093\pi\)
\(762\) 1.08187e6 0.0674976
\(763\) −406161. −0.0252573
\(764\) 8.64590e6 0.535892
\(765\) −7.34265e6 −0.453627
\(766\) −1.05742e7 −0.651139
\(767\) 2.46536e6 0.151319
\(768\) −589824. −0.0360844
\(769\) −2.01595e7 −1.22931 −0.614657 0.788794i \(-0.710706\pi\)
−0.614657 + 0.788794i \(0.710706\pi\)
\(770\) −916300. −0.0556943
\(771\) 1.63479e7 0.990433
\(772\) 1.53651e7 0.927882
\(773\) −5.86488e6 −0.353029 −0.176514 0.984298i \(-0.556482\pi\)
−0.176514 + 0.984298i \(0.556482\pi\)
\(774\) 2.05934e6 0.123560
\(775\) 1.19750e6 0.0716178
\(776\) 3.66688e6 0.218596
\(777\) 2.90090e6 0.172377
\(778\) 1.80840e6 0.107114
\(779\) 1.72241e6 0.101693
\(780\) −2.25720e6 −0.132841
\(781\) −1.19186e7 −0.699196
\(782\) −2.15384e7 −1.25950
\(783\) 4.73486e6 0.275996
\(784\) 614656. 0.0357143
\(785\) 900250. 0.0521422
\(786\) −4.32180e6 −0.249522
\(787\) −1.63347e6 −0.0940100 −0.0470050 0.998895i \(-0.514968\pi\)
−0.0470050 + 0.998895i \(0.514968\pi\)
\(788\) 1.21911e7 0.699403
\(789\) 1.76263e7 1.00802
\(790\) 4.37210e6 0.249243
\(791\) −1.28971e7 −0.732910
\(792\) −1.93882e6 −0.109831
\(793\) −3.05600e7 −1.72572
\(794\) 7.82121e6 0.440274
\(795\) −5.88780e6 −0.330396
\(796\) 2.00134e6 0.111954
\(797\) 2.07673e7 1.15807 0.579034 0.815303i \(-0.303430\pi\)
0.579034 + 0.815303i \(0.303430\pi\)
\(798\) −455112. −0.0252994
\(799\) −3.98878e7 −2.21041
\(800\) −640000. −0.0353553
\(801\) −7.38072e6 −0.406460
\(802\) 1.90695e7 1.04689
\(803\) −1.13079e7 −0.618860
\(804\) 6.45581e6 0.352217
\(805\) −3.63825e6 −0.197880
\(806\) −4.80533e6 −0.260547
\(807\) −1.96231e6 −0.106068
\(808\) 2.87808e6 0.155087
\(809\) 3.53936e6 0.190131 0.0950656 0.995471i \(-0.469694\pi\)
0.0950656 + 0.995471i \(0.469694\pi\)
\(810\) −656100. −0.0351364
\(811\) −2.11480e7 −1.12906 −0.564530 0.825412i \(-0.690943\pi\)
−0.564530 + 0.825412i \(0.690943\pi\)
\(812\) −1.01842e6 −0.0542045
\(813\) −1.13639e7 −0.602976
\(814\) 4.92034e6 0.260276
\(815\) 4.39175e6 0.231603
\(816\) −4.17715e6 −0.219611
\(817\) 819924. 0.0429753
\(818\) 1.65280e7 0.863646
\(819\) 4.97713e6 0.259280
\(820\) 2.67040e6 0.138689
\(821\) 265389. 0.0137412 0.00687061 0.999976i \(-0.497813\pi\)
0.00687061 + 0.999976i \(0.497813\pi\)
\(822\) 1.14394e6 0.0590503
\(823\) 3.09261e7 1.59157 0.795785 0.605579i \(-0.207058\pi\)
0.795785 + 0.605579i \(0.207058\pi\)
\(824\) 6.48992e6 0.332982
\(825\) 1.05188e6 0.0538058
\(826\) 770672. 0.0393024
\(827\) −2.84152e7 −1.44473 −0.722367 0.691510i \(-0.756946\pi\)
−0.722367 + 0.691510i \(0.756946\pi\)
\(828\) −7.69824e6 −0.390225
\(829\) −3.33547e7 −1.68566 −0.842832 0.538177i \(-0.819113\pi\)
−0.842832 + 0.538177i \(0.819113\pi\)
\(830\) −9.72760e6 −0.490129
\(831\) 9.92374e6 0.498509
\(832\) 2.56819e6 0.128623
\(833\) 4.35301e6 0.217359
\(834\) −7.20583e6 −0.358731
\(835\) −3.93532e6 −0.195328
\(836\) −771936. −0.0382002
\(837\) 6.98382e6 0.344572
\(838\) −762048. −0.0374863
\(839\) −5.66205e6 −0.277695 −0.138848 0.990314i \(-0.544340\pi\)
−0.138848 + 0.990314i \(0.544340\pi\)
\(840\) −705600. −0.0345033
\(841\) −1.88237e7 −0.917732
\(842\) 2.07674e7 1.00949
\(843\) 8.98392e6 0.435408
\(844\) 1.00408e7 0.485188
\(845\) 545900. 0.0263009
\(846\) −1.42566e7 −0.684844
\(847\) 6.17802e6 0.295897
\(848\) 6.69901e6 0.319905
\(849\) 3.47734e6 0.165569
\(850\) −4.53250e6 −0.215174
\(851\) 1.95367e7 0.924754
\(852\) −9.17798e6 −0.433160
\(853\) 2.19983e7 1.03518 0.517592 0.855628i \(-0.326829\pi\)
0.517592 + 0.855628i \(0.326829\pi\)
\(854\) −9.55304e6 −0.448226
\(855\) −1.04490e6 −0.0488832
\(856\) 1.06241e7 0.495574
\(857\) −2.17568e7 −1.01191 −0.505956 0.862559i \(-0.668860\pi\)
−0.505956 + 0.862559i \(0.668860\pi\)
\(858\) −4.22096e6 −0.195746
\(859\) −4.09384e7 −1.89299 −0.946494 0.322721i \(-0.895402\pi\)
−0.946494 + 0.322721i \(0.895402\pi\)
\(860\) 1.27120e6 0.0586095
\(861\) 2.94412e6 0.135347
\(862\) 1.68712e7 0.773355
\(863\) 5.65597e6 0.258512 0.129256 0.991611i \(-0.458741\pi\)
0.129256 + 0.991611i \(0.458741\pi\)
\(864\) −3.73248e6 −0.170103
\(865\) −586775. −0.0266644
\(866\) 1.94411e7 0.880899
\(867\) −1.68040e7 −0.759216
\(868\) −1.50214e6 −0.0676725
\(869\) 8.17583e6 0.367267
\(870\) 1.16910e6 0.0523665
\(871\) −2.81097e7 −1.25548
\(872\) −530496. −0.0236260
\(873\) 9.28179e6 0.412189
\(874\) −3.06504e6 −0.135724
\(875\) −765625. −0.0338062
\(876\) −8.70768e6 −0.383391
\(877\) 2.61067e7 1.14618 0.573089 0.819493i \(-0.305745\pi\)
0.573089 + 0.819493i \(0.305745\pi\)
\(878\) 8.12454e6 0.355682
\(879\) 7.05214e6 0.307857
\(880\) −1.19680e6 −0.0520973
\(881\) 1.44294e6 0.0626339 0.0313170 0.999510i \(-0.490030\pi\)
0.0313170 + 0.999510i \(0.490030\pi\)
\(882\) 1.55585e6 0.0673435
\(883\) −1.52432e7 −0.657921 −0.328960 0.944344i \(-0.606698\pi\)
−0.328960 + 0.944344i \(0.606698\pi\)
\(884\) 1.81880e7 0.782807
\(885\) −884700. −0.0379698
\(886\) −1.13679e7 −0.486517
\(887\) −3.31500e7 −1.41473 −0.707366 0.706847i \(-0.750117\pi\)
−0.707366 + 0.706847i \(0.750117\pi\)
\(888\) 3.78893e6 0.161244
\(889\) −1.47255e6 −0.0624907
\(890\) −4.55600e6 −0.192801
\(891\) −1.22691e6 −0.0517747
\(892\) −1.95376e7 −0.822166
\(893\) −5.67626e6 −0.238195
\(894\) 1.11471e7 0.466464
\(895\) 1.53057e7 0.638698
\(896\) 802816. 0.0334077
\(897\) −1.67597e7 −0.695481
\(898\) 1.83873e7 0.760899
\(899\) 2.48888e6 0.102708
\(900\) −1.62000e6 −0.0666667
\(901\) 4.74426e7 1.94696
\(902\) 4.99365e6 0.204363
\(903\) 1.40150e6 0.0571970
\(904\) −1.68452e7 −0.685575
\(905\) 1.32208e7 0.536582
\(906\) −7.51165e6 −0.304029
\(907\) 1.16963e7 0.472096 0.236048 0.971741i \(-0.424148\pi\)
0.236048 + 0.971741i \(0.424148\pi\)
\(908\) 6.24875e6 0.251524
\(909\) 7.28514e6 0.292434
\(910\) 3.07230e6 0.122987
\(911\) 2.89321e7 1.15501 0.577503 0.816389i \(-0.304027\pi\)
0.577503 + 0.816389i \(0.304027\pi\)
\(912\) −594432. −0.0236655
\(913\) −1.81906e7 −0.722221
\(914\) −1.97347e7 −0.781384
\(915\) 1.09665e7 0.433027
\(916\) −1.13940e7 −0.448680
\(917\) 5.88245e6 0.231012
\(918\) −2.64335e7 −1.03526
\(919\) −4.57838e7 −1.78823 −0.894115 0.447838i \(-0.852194\pi\)
−0.894115 + 0.447838i \(0.852194\pi\)
\(920\) −4.75200e6 −0.185100
\(921\) −2.53596e7 −0.985129
\(922\) 1.90267e7 0.737116
\(923\) 3.99625e7 1.54400
\(924\) −1.31947e6 −0.0508417
\(925\) 4.11125e6 0.157986
\(926\) −1.63448e7 −0.626399
\(927\) 1.64276e7 0.627878
\(928\) −1.33018e6 −0.0507036
\(929\) 2.46947e7 0.938782 0.469391 0.882990i \(-0.344474\pi\)
0.469391 + 0.882990i \(0.344474\pi\)
\(930\) 1.72440e6 0.0653779
\(931\) 619458. 0.0234227
\(932\) 8.98522e6 0.338835
\(933\) 7.62658e6 0.286831
\(934\) 1.66373e7 0.624044
\(935\) −8.47578e6 −0.317067
\(936\) 6.50074e6 0.242534
\(937\) −1.98926e7 −0.740187 −0.370094 0.928994i \(-0.620674\pi\)
−0.370094 + 0.928994i \(0.620674\pi\)
\(938\) −8.78707e6 −0.326090
\(939\) −3.28460e6 −0.121568
\(940\) −8.80040e6 −0.324850
\(941\) −3.73454e7 −1.37488 −0.687438 0.726243i \(-0.741265\pi\)
−0.687438 + 0.726243i \(0.741265\pi\)
\(942\) 1.29636e6 0.0475991
\(943\) 1.98277e7 0.726095
\(944\) 1.00659e6 0.0367641
\(945\) −4.46512e6 −0.162650
\(946\) 2.37714e6 0.0863630
\(947\) 5.10396e7 1.84941 0.924703 0.380689i \(-0.124313\pi\)
0.924703 + 0.380689i \(0.124313\pi\)
\(948\) 6.29582e6 0.227526
\(949\) 3.79147e7 1.36660
\(950\) −645000. −0.0231873
\(951\) −1.74369e7 −0.625200
\(952\) 5.68557e6 0.203321
\(953\) 254832. 0.00908912 0.00454456 0.999990i \(-0.498553\pi\)
0.00454456 + 0.999990i \(0.498553\pi\)
\(954\) 1.69569e7 0.603218
\(955\) 1.35092e7 0.479316
\(956\) −2.17734e7 −0.770515
\(957\) 2.18622e6 0.0771638
\(958\) 1.34416e7 0.473192
\(959\) −1.55702e6 −0.0546700
\(960\) −921600. −0.0322749
\(961\) −2.49581e7 −0.871772
\(962\) −1.64976e7 −0.574756
\(963\) 2.68923e7 0.934464
\(964\) 8.48080e6 0.293930
\(965\) 2.40080e7 0.829923
\(966\) −5.23908e6 −0.180639
\(967\) 1.17012e7 0.402405 0.201203 0.979550i \(-0.435515\pi\)
0.201203 + 0.979550i \(0.435515\pi\)
\(968\) 8.06925e6 0.276786
\(969\) −4.20979e6 −0.144029
\(970\) 5.72950e6 0.195518
\(971\) 3.59080e7 1.22220 0.611101 0.791553i \(-0.290727\pi\)
0.611101 + 0.791553i \(0.290727\pi\)
\(972\) −1.51165e7 −0.513200
\(973\) 9.80794e6 0.332120
\(974\) −2.82097e7 −0.952799
\(975\) −3.52688e6 −0.118817
\(976\) −1.24774e7 −0.419277
\(977\) −5.50592e7 −1.84541 −0.922706 0.385504i \(-0.874028\pi\)
−0.922706 + 0.385504i \(0.874028\pi\)
\(978\) 6.32412e6 0.211423
\(979\) −8.51972e6 −0.284098
\(980\) 960400. 0.0319438
\(981\) −1.34282e6 −0.0445497
\(982\) 335748. 0.0111105
\(983\) −1.81317e7 −0.598488 −0.299244 0.954177i \(-0.596734\pi\)
−0.299244 + 0.954177i \(0.596734\pi\)
\(984\) 3.84538e6 0.126605
\(985\) 1.90486e7 0.625565
\(986\) −9.42035e6 −0.308585
\(987\) −9.70244e6 −0.317021
\(988\) 2.58826e6 0.0843558
\(989\) 9.43866e6 0.306845
\(990\) −3.02940e6 −0.0982355
\(991\) −2.02908e7 −0.656318 −0.328159 0.944623i \(-0.606428\pi\)
−0.328159 + 0.944623i \(0.606428\pi\)
\(992\) −1.96198e6 −0.0633018
\(993\) 553140. 0.0178017
\(994\) 1.24923e7 0.401028
\(995\) 3.12710e6 0.100135
\(996\) −1.40077e7 −0.447425
\(997\) 4.75390e7 1.51465 0.757325 0.653038i \(-0.226506\pi\)
0.757325 + 0.653038i \(0.226506\pi\)
\(998\) 2.84211e7 0.903262
\(999\) 2.39768e7 0.760112
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 70.6.a.b.1.1 1
3.2 odd 2 630.6.a.i.1.1 1
4.3 odd 2 560.6.a.e.1.1 1
5.2 odd 4 350.6.c.g.99.1 2
5.3 odd 4 350.6.c.g.99.2 2
5.4 even 2 350.6.a.l.1.1 1
7.6 odd 2 490.6.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.b.1.1 1 1.1 even 1 trivial
350.6.a.l.1.1 1 5.4 even 2
350.6.c.g.99.1 2 5.2 odd 4
350.6.c.g.99.2 2 5.3 odd 4
490.6.a.g.1.1 1 7.6 odd 2
560.6.a.e.1.1 1 4.3 odd 2
630.6.a.i.1.1 1 3.2 odd 2