Defining parameters
| Level: | \( N \) | = | \( 70 = 2 \cdot 5 \cdot 7 \) |
| Weight: | \( k \) | = | \( 6 \) |
| Nonzero newspaces: | \( 6 \) | ||
| Newform subspaces: | \( 21 \) | ||
| Sturm bound: | \(1728\) | ||
| Trace bound: | \(4\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(70))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 768 | 210 | 558 |
| Cusp forms | 672 | 210 | 462 |
| Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(70))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(70))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(70)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 2}\)