Properties

Label 70.6
Level 70
Weight 6
Dimension 210
Nonzero newspaces 6
Newform subspaces 21
Sturm bound 1728
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 21 \)
Sturm bound: \(1728\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(70))\).

Total New Old
Modular forms 768 210 558
Cusp forms 672 210 462
Eisenstein series 96 0 96

Trace form

\( 210 q + 8 q^{2} - 44 q^{3} + 32 q^{4} - 236 q^{5} - 272 q^{6} - 152 q^{7} + 128 q^{8} + 1130 q^{9} + 1104 q^{10} + 2368 q^{11} - 704 q^{12} - 7528 q^{13} - 1328 q^{14} + 928 q^{15} - 1536 q^{16} + 4620 q^{17}+ \cdots - 74800 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(70))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
70.6.a \(\chi_{70}(1, \cdot)\) 70.6.a.a 1 1
70.6.a.b 1
70.6.a.c 1
70.6.a.d 1
70.6.a.e 1
70.6.a.f 1
70.6.a.g 2
70.6.a.h 2
70.6.c \(\chi_{70}(29, \cdot)\) 70.6.c.a 2 1
70.6.c.b 2
70.6.c.c 2
70.6.c.d 10
70.6.e \(\chi_{70}(11, \cdot)\) 70.6.e.a 2 2
70.6.e.b 2
70.6.e.c 4
70.6.e.d 4
70.6.e.e 4
70.6.e.f 8
70.6.g \(\chi_{70}(13, \cdot)\) 70.6.g.a 40 2
70.6.i \(\chi_{70}(9, \cdot)\) 70.6.i.a 40 2
70.6.k \(\chi_{70}(3, \cdot)\) 70.6.k.a 80 4

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(70))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(70)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 2}\)