Properties

Label 70.3.l.b.37.1
Level $70$
Weight $3$
Character 70.37
Analytic conductor $1.907$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [70,3,Mod(23,70)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("70.23"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(70, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 4])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 70.l (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.90736185052\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.303595776.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.1
Root \(1.26217 + 1.18614i\) of defining polynomial
Character \(\chi\) \(=\) 70.37
Dual form 70.3.l.b.53.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36603 - 0.366025i) q^{2} +(-1.58228 - 0.423972i) q^{3} +(1.73205 - 1.00000i) q^{4} +(4.94253 + 0.755913i) q^{5} -2.31662 q^{6} +(6.42096 - 2.78771i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-5.47036 - 3.15831i) q^{9} +(7.02830 - 0.776495i) q^{10} +(-0.341688 - 0.591820i) q^{11} +(-3.16457 + 0.847944i) q^{12} +(-11.9499 + 11.9499i) q^{13} +(7.75082 - 6.15831i) q^{14} +(-7.50000 - 3.29156i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-8.70832 + 32.4999i) q^{17} +(-8.62867 - 2.31205i) q^{18} +(-8.34264 - 4.81662i) q^{19} +(9.31662 - 3.63325i) q^{20} +(-11.3417 + 1.68864i) q^{21} +(-0.683375 - 0.683375i) q^{22} +(-6.26203 - 23.3702i) q^{23} +(-4.01251 + 2.31662i) q^{24} +(23.8572 + 7.47224i) q^{25} +(-11.9499 + 20.6978i) q^{26} +(17.7414 + 17.7414i) q^{27} +(8.33372 - 11.2494i) q^{28} -16.5330i q^{29} +(-11.4500 - 1.75117i) q^{30} +(-11.9248 - 20.6544i) q^{31} +(1.46410 - 5.46410i) q^{32} +(0.289732 + 1.08129i) q^{33} +47.5831i q^{34} +(33.8430 - 8.92464i) q^{35} -12.6332 q^{36} +(-25.3742 + 6.79899i) q^{37} +(-13.1593 - 3.52601i) q^{38} +(23.9745 - 13.8417i) q^{39} +(11.3969 - 8.37323i) q^{40} +0.200503 q^{41} +(-14.8749 + 6.45807i) q^{42} +(-41.1161 + 41.1161i) q^{43} +(-1.18364 - 0.683375i) q^{44} +(-24.6500 - 19.7452i) q^{45} +(-17.1082 - 29.6322i) q^{46} +(46.1601 - 12.3686i) q^{47} +(-4.63325 + 4.63325i) q^{48} +(33.4574 - 35.7995i) q^{49} +(35.3246 + 1.47494i) q^{50} +(27.5581 - 47.7320i) q^{51} +(-8.74792 + 32.6477i) q^{52} +(90.1000 + 24.1422i) q^{53} +(30.7291 + 17.7414i) q^{54} +(-1.24144 - 3.18338i) q^{55} +(7.26650 - 18.4173i) q^{56} +(11.1583 + 11.1583i) q^{57} +(-6.05150 - 22.5845i) q^{58} +(20.0054 - 11.5501i) q^{59} +(-16.2819 + 1.79885i) q^{60} +(6.08312 - 10.5363i) q^{61} +(-23.8496 - 23.8496i) q^{62} +(-43.9294 - 5.02963i) q^{63} -8.00000i q^{64} +(-68.0957 + 50.0295i) q^{65} +(0.791562 + 1.37103i) q^{66} +(0.363121 - 1.35519i) q^{67} +(17.4166 + 64.9998i) q^{68} +39.6332i q^{69} +(42.9638 - 24.5787i) q^{70} +63.2665 q^{71} +(-17.2573 + 4.62409i) q^{72} +(-45.5005 - 12.1918i) q^{73} +(-32.1732 + 18.5752i) q^{74} +(-34.5808 - 21.9380i) q^{75} -19.2665 q^{76} +(-3.84378 - 2.84753i) q^{77} +(27.6834 - 27.6834i) q^{78} +(-97.2256 - 56.1332i) q^{79} +(12.5036 - 15.6096i) q^{80} +(7.87469 + 13.6394i) q^{81} +(0.273892 - 0.0733890i) q^{82} +(23.1161 - 23.1161i) q^{83} +(-17.9557 + 14.2665i) q^{84} +(-67.6082 + 154.049i) q^{85} +(-41.1161 + 71.2152i) q^{86} +(-7.00952 + 26.1599i) q^{87} +(-1.86702 - 0.500265i) q^{88} +(-69.1518 - 39.9248i) q^{89} +(-40.8997 - 17.9499i) q^{90} +(-43.4169 + 110.042i) q^{91} +(-34.2164 - 34.2164i) q^{92} +(10.1116 + 37.7369i) q^{93} +(58.5287 - 33.7916i) q^{94} +(-37.5928 - 30.1126i) q^{95} +(-4.63325 + 8.02502i) q^{96} +(-50.6834 - 50.6834i) q^{97} +(32.6001 - 61.1493i) q^{98} +4.31662i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 2 q^{3} - 6 q^{5} + 8 q^{6} - 12 q^{7} + 16 q^{8} + 18 q^{10} - 16 q^{11} + 4 q^{12} - 16 q^{13} - 60 q^{15} + 16 q^{16} + 62 q^{17} - 12 q^{18} + 48 q^{20} - 104 q^{21} - 32 q^{22} + 22 q^{23}+ \cdots + 176 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/70\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(57\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 0.366025i 0.683013 0.183013i
\(3\) −1.58228 0.423972i −0.527428 0.141324i −0.0147277 0.999892i \(-0.504688\pi\)
−0.512700 + 0.858568i \(0.671355\pi\)
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) 4.94253 + 0.755913i 0.988506 + 0.151183i
\(6\) −2.31662 −0.386104
\(7\) 6.42096 2.78771i 0.917280 0.398244i
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) −5.47036 3.15831i −0.607818 0.350924i
\(10\) 7.02830 0.776495i 0.702830 0.0776495i
\(11\) −0.341688 0.591820i −0.0310625 0.0538018i 0.850076 0.526660i \(-0.176556\pi\)
−0.881139 + 0.472858i \(0.843222\pi\)
\(12\) −3.16457 + 0.847944i −0.263714 + 0.0706620i
\(13\) −11.9499 + 11.9499i −0.919221 + 0.919221i −0.996973 0.0777517i \(-0.975226\pi\)
0.0777517 + 0.996973i \(0.475226\pi\)
\(14\) 7.75082 6.15831i 0.553630 0.439879i
\(15\) −7.50000 3.29156i −0.500000 0.219437i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −8.70832 + 32.4999i −0.512254 + 1.91176i −0.117172 + 0.993112i \(0.537383\pi\)
−0.395082 + 0.918646i \(0.629284\pi\)
\(18\) −8.62867 2.31205i −0.479371 0.128447i
\(19\) −8.34264 4.81662i −0.439086 0.253507i 0.264124 0.964489i \(-0.414917\pi\)
−0.703210 + 0.710982i \(0.748251\pi\)
\(20\) 9.31662 3.63325i 0.465831 0.181662i
\(21\) −11.3417 + 1.68864i −0.540080 + 0.0804115i
\(22\) −0.683375 0.683375i −0.0310625 0.0310625i
\(23\) −6.26203 23.3702i −0.272262 1.01610i −0.957654 0.287922i \(-0.907036\pi\)
0.685392 0.728175i \(-0.259631\pi\)
\(24\) −4.01251 + 2.31662i −0.167188 + 0.0965260i
\(25\) 23.8572 + 7.47224i 0.954288 + 0.298890i
\(26\) −11.9499 + 20.6978i −0.459611 + 0.796069i
\(27\) 17.7414 + 17.7414i 0.657090 + 0.657090i
\(28\) 8.33372 11.2494i 0.297633 0.401765i
\(29\) 16.5330i 0.570103i −0.958512 0.285052i \(-0.907989\pi\)
0.958512 0.285052i \(-0.0920108\pi\)
\(30\) −11.4500 1.75117i −0.381666 0.0583722i
\(31\) −11.9248 20.6544i −0.384671 0.666270i 0.607052 0.794662i \(-0.292352\pi\)
−0.991724 + 0.128392i \(0.959019\pi\)
\(32\) 1.46410 5.46410i 0.0457532 0.170753i
\(33\) 0.289732 + 1.08129i 0.00877975 + 0.0327665i
\(34\) 47.5831i 1.39950i
\(35\) 33.8430 8.92464i 0.966944 0.254990i
\(36\) −12.6332 −0.350924
\(37\) −25.3742 + 6.79899i −0.685789 + 0.183757i −0.584856 0.811137i \(-0.698849\pi\)
−0.100932 + 0.994893i \(0.532183\pi\)
\(38\) −13.1593 3.52601i −0.346296 0.0927898i
\(39\) 23.9745 13.8417i 0.614731 0.354915i
\(40\) 11.3969 8.37323i 0.284922 0.209331i
\(41\) 0.200503 0.00489031 0.00244515 0.999997i \(-0.499222\pi\)
0.00244515 + 0.999997i \(0.499222\pi\)
\(42\) −14.8749 + 6.45807i −0.354165 + 0.153764i
\(43\) −41.1161 + 41.1161i −0.956189 + 0.956189i −0.999080 0.0428909i \(-0.986343\pi\)
0.0428909 + 0.999080i \(0.486343\pi\)
\(44\) −1.18364 0.683375i −0.0269009 0.0155313i
\(45\) −24.6500 19.7452i −0.547778 0.438781i
\(46\) −17.1082 29.6322i −0.371917 0.644179i
\(47\) 46.1601 12.3686i 0.982130 0.263161i 0.268189 0.963366i \(-0.413575\pi\)
0.713942 + 0.700205i \(0.246908\pi\)
\(48\) −4.63325 + 4.63325i −0.0965260 + 0.0965260i
\(49\) 33.4574 35.7995i 0.682804 0.730602i
\(50\) 35.3246 + 1.47494i 0.706491 + 0.0294987i
\(51\) 27.5581 47.7320i 0.540354 0.935921i
\(52\) −8.74792 + 32.6477i −0.168229 + 0.627840i
\(53\) 90.1000 + 24.1422i 1.70000 + 0.455514i 0.972940 0.231059i \(-0.0742190\pi\)
0.727061 + 0.686573i \(0.240886\pi\)
\(54\) 30.7291 + 17.7414i 0.569057 + 0.328545i
\(55\) −1.24144 3.18338i −0.0225716 0.0578795i
\(56\) 7.26650 18.4173i 0.129759 0.328881i
\(57\) 11.1583 + 11.1583i 0.195760 + 0.195760i
\(58\) −6.05150 22.5845i −0.104336 0.389388i
\(59\) 20.0054 11.5501i 0.339075 0.195765i −0.320788 0.947151i \(-0.603948\pi\)
0.659863 + 0.751386i \(0.270614\pi\)
\(60\) −16.2819 + 1.79885i −0.271366 + 0.0299808i
\(61\) 6.08312 10.5363i 0.0997233 0.172726i −0.811847 0.583871i \(-0.801538\pi\)
0.911570 + 0.411145i \(0.134871\pi\)
\(62\) −23.8496 23.8496i −0.384671 0.384671i
\(63\) −43.9294 5.02963i −0.697292 0.0798354i
\(64\) 8.00000i 0.125000i
\(65\) −68.0957 + 50.0295i −1.04763 + 0.769685i
\(66\) 0.791562 + 1.37103i 0.0119934 + 0.0207731i
\(67\) 0.363121 1.35519i 0.00541971 0.0202266i −0.963163 0.268918i \(-0.913334\pi\)
0.968583 + 0.248692i \(0.0800005\pi\)
\(68\) 17.4166 + 64.9998i 0.256127 + 0.955879i
\(69\) 39.6332i 0.574395i
\(70\) 42.9638 24.5787i 0.613769 0.351124i
\(71\) 63.2665 0.891077 0.445539 0.895263i \(-0.353012\pi\)
0.445539 + 0.895263i \(0.353012\pi\)
\(72\) −17.2573 + 4.62409i −0.239685 + 0.0642235i
\(73\) −45.5005 12.1918i −0.623295 0.167011i −0.0666696 0.997775i \(-0.521237\pi\)
−0.556625 + 0.830764i \(0.687904\pi\)
\(74\) −32.1732 + 18.5752i −0.434773 + 0.251016i
\(75\) −34.5808 21.9380i −0.461078 0.292507i
\(76\) −19.2665 −0.253507
\(77\) −3.84378 2.84753i −0.0499193 0.0369809i
\(78\) 27.6834 27.6834i 0.354915 0.354915i
\(79\) −97.2256 56.1332i −1.23070 0.710547i −0.263528 0.964652i \(-0.584886\pi\)
−0.967177 + 0.254104i \(0.918219\pi\)
\(80\) 12.5036 15.6096i 0.156295 0.195120i
\(81\) 7.87469 + 13.6394i 0.0972183 + 0.168387i
\(82\) 0.273892 0.0733890i 0.00334014 0.000894988i
\(83\) 23.1161 23.1161i 0.278507 0.278507i −0.554006 0.832513i \(-0.686901\pi\)
0.832513 + 0.554006i \(0.186901\pi\)
\(84\) −17.9557 + 14.2665i −0.213759 + 0.169839i
\(85\) −67.6082 + 154.049i −0.795390 + 1.81234i
\(86\) −41.1161 + 71.2152i −0.478094 + 0.828084i
\(87\) −7.00952 + 26.1599i −0.0805692 + 0.300689i
\(88\) −1.86702 0.500265i −0.0212161 0.00568483i
\(89\) −69.1518 39.9248i −0.776987 0.448593i 0.0583747 0.998295i \(-0.481408\pi\)
−0.835361 + 0.549701i \(0.814742\pi\)
\(90\) −40.8997 17.9499i −0.454442 0.199443i
\(91\) −43.4169 + 110.042i −0.477109 + 1.20926i
\(92\) −34.2164 34.2164i −0.371917 0.371917i
\(93\) 10.1116 + 37.7369i 0.108727 + 0.405773i
\(94\) 58.5287 33.7916i 0.622646 0.359485i
\(95\) −37.5928 30.1126i −0.395714 0.316975i
\(96\) −4.63325 + 8.02502i −0.0482630 + 0.0835940i
\(97\) −50.6834 50.6834i −0.522509 0.522509i 0.395819 0.918328i \(-0.370461\pi\)
−0.918328 + 0.395819i \(0.870461\pi\)
\(98\) 32.6001 61.1493i 0.332654 0.623972i
\(99\) 4.31662i 0.0436023i
\(100\) 48.7941 10.9149i 0.487941 0.109149i
\(101\) 27.5000 + 47.6314i 0.272277 + 0.471598i 0.969445 0.245310i \(-0.0788899\pi\)
−0.697167 + 0.716908i \(0.745557\pi\)
\(102\) 20.1739 75.2900i 0.197783 0.738137i
\(103\) 0.0579464 + 0.216259i 0.000562586 + 0.00209960i 0.966207 0.257769i \(-0.0829874\pi\)
−0.965644 + 0.259869i \(0.916321\pi\)
\(104\) 47.7995i 0.459611i
\(105\) −57.3331 0.227173i −0.546029 0.00216355i
\(106\) 131.916 1.24449
\(107\) 129.989 34.8304i 1.21485 0.325517i 0.406185 0.913791i \(-0.366859\pi\)
0.808662 + 0.588273i \(0.200192\pi\)
\(108\) 48.4705 + 12.9876i 0.448801 + 0.120256i
\(109\) −44.2679 + 25.5581i −0.406127 + 0.234478i −0.689124 0.724643i \(-0.742005\pi\)
0.282997 + 0.959121i \(0.408671\pi\)
\(110\) −2.86103 3.89417i −0.0260094 0.0354016i
\(111\) 43.0317 0.387673
\(112\) 3.18501 27.8183i 0.0284376 0.248377i
\(113\) 63.8496 63.8496i 0.565041 0.565041i −0.365694 0.930735i \(-0.619168\pi\)
0.930735 + 0.365694i \(0.119168\pi\)
\(114\) 19.3268 + 11.1583i 0.169533 + 0.0978799i
\(115\) −13.2844 120.242i −0.115517 1.04558i
\(116\) −16.5330 28.6360i −0.142526 0.246862i
\(117\) 103.112 27.6286i 0.881295 0.236142i
\(118\) 23.1003 23.1003i 0.195765 0.195765i
\(119\) 34.6844 + 232.957i 0.291466 + 1.95762i
\(120\) −21.5831 + 8.41688i −0.179859 + 0.0701406i
\(121\) 60.2665 104.385i 0.498070 0.862683i
\(122\) 4.45316 16.6194i 0.0365013 0.136225i
\(123\) −0.317252 0.0850074i −0.00257928 0.000691117i
\(124\) −41.3088 23.8496i −0.333135 0.192336i
\(125\) 112.266 + 54.9657i 0.898132 + 0.439726i
\(126\) −61.8496 + 9.20866i −0.490870 + 0.0730846i
\(127\) −108.082 108.082i −0.851038 0.851038i 0.139223 0.990261i \(-0.455540\pi\)
−0.990261 + 0.139223i \(0.955540\pi\)
\(128\) −2.92820 10.9282i −0.0228766 0.0853766i
\(129\) 82.4895 47.6253i 0.639453 0.369188i
\(130\) −74.7083 + 93.2664i −0.574679 + 0.717434i
\(131\) −29.4419 + 50.9949i −0.224748 + 0.389274i −0.956244 0.292571i \(-0.905489\pi\)
0.731496 + 0.681846i \(0.238822\pi\)
\(132\) 1.58312 + 1.58312i 0.0119934 + 0.0119934i
\(133\) −66.9951 7.67050i −0.503722 0.0576730i
\(134\) 1.98413i 0.0148069i
\(135\) 74.2766 + 101.099i 0.550197 + 0.748878i
\(136\) 47.5831 + 82.4164i 0.349876 + 0.606003i
\(137\) 34.1041 127.278i 0.248935 0.929039i −0.722429 0.691445i \(-0.756975\pi\)
0.971365 0.237594i \(-0.0763588\pi\)
\(138\) 14.5068 + 54.1400i 0.105122 + 0.392319i
\(139\) 68.2322i 0.490879i −0.969412 0.245440i \(-0.921068\pi\)
0.969412 0.245440i \(-0.0789323\pi\)
\(140\) 49.6932 49.3010i 0.354951 0.352150i
\(141\) −78.2824 −0.555194
\(142\) 86.4236 23.1571i 0.608617 0.163078i
\(143\) 11.1553 + 2.98905i 0.0780091 + 0.0209025i
\(144\) −21.8814 + 12.6332i −0.151954 + 0.0877309i
\(145\) 12.4975 81.7148i 0.0861897 0.563551i
\(146\) −66.6174 −0.456283
\(147\) −68.1171 + 42.4600i −0.463381 + 0.288844i
\(148\) −37.1504 + 37.1504i −0.251016 + 0.251016i
\(149\) 75.7327 + 43.7243i 0.508273 + 0.293452i 0.732124 0.681172i \(-0.238529\pi\)
−0.223850 + 0.974624i \(0.571863\pi\)
\(150\) −55.2682 17.3104i −0.368454 0.115403i
\(151\) 117.991 + 204.366i 0.781396 + 1.35342i 0.931129 + 0.364691i \(0.118825\pi\)
−0.149732 + 0.988727i \(0.547841\pi\)
\(152\) −26.3185 + 7.05203i −0.173148 + 0.0463949i
\(153\) 150.282 150.282i 0.982238 0.982238i
\(154\) −6.29297 2.48287i −0.0408635 0.0161225i
\(155\) −43.3258 111.099i −0.279521 0.716768i
\(156\) 27.6834 47.9490i 0.177458 0.307365i
\(157\) −41.2295 + 153.871i −0.262609 + 0.980068i 0.701089 + 0.713073i \(0.252697\pi\)
−0.963698 + 0.266995i \(0.913969\pi\)
\(158\) −153.359 41.0924i −0.970626 0.260078i
\(159\) −132.328 76.3997i −0.832253 0.480502i
\(160\) 11.3668 25.8997i 0.0710422 0.161873i
\(161\) −105.358 132.602i −0.654395 0.823618i
\(162\) 15.7494 + 15.7494i 0.0972183 + 0.0972183i
\(163\) 64.6117 + 241.134i 0.396391 + 1.47935i 0.819398 + 0.573225i \(0.194308\pi\)
−0.423007 + 0.906126i \(0.639025\pi\)
\(164\) 0.347281 0.200503i 0.00211756 0.00122258i
\(165\) 0.614644 + 5.56334i 0.00372511 + 0.0337172i
\(166\) 23.1161 40.0383i 0.139254 0.241195i
\(167\) −202.799 202.799i −1.21437 1.21437i −0.969575 0.244793i \(-0.921280\pi\)
−0.244793 0.969575i \(-0.578720\pi\)
\(168\) −19.3061 + 26.0607i −0.114917 + 0.155123i
\(169\) 116.599i 0.689935i
\(170\) −35.9687 + 235.181i −0.211581 + 1.38342i
\(171\) 30.4248 + 52.6973i 0.177923 + 0.308171i
\(172\) −30.0991 + 112.331i −0.174995 + 0.653089i
\(173\) −4.05334 15.1273i −0.0234297 0.0874409i 0.953221 0.302274i \(-0.0977458\pi\)
−0.976651 + 0.214833i \(0.931079\pi\)
\(174\) 38.3008i 0.220119i
\(175\) 174.016 18.5279i 0.994380 0.105874i
\(176\) −2.73350 −0.0155313
\(177\) −36.5512 + 9.79385i −0.206504 + 0.0553325i
\(178\) −109.077 29.2270i −0.612790 0.164197i
\(179\) −296.960 + 171.450i −1.65899 + 0.957821i −0.685813 + 0.727777i \(0.740553\pi\)
−0.973180 + 0.230043i \(0.926113\pi\)
\(180\) −62.4402 9.54964i −0.346890 0.0530535i
\(181\) −88.1320 −0.486917 −0.243459 0.969911i \(-0.578282\pi\)
−0.243459 + 0.969911i \(0.578282\pi\)
\(182\) −19.0302 + 166.212i −0.104562 + 0.913255i
\(183\) −14.0923 + 14.0923i −0.0770072 + 0.0770072i
\(184\) −59.2645 34.2164i −0.322090 0.185959i
\(185\) −130.552 + 14.4235i −0.705687 + 0.0779651i
\(186\) 27.6253 + 47.8484i 0.148523 + 0.257250i
\(187\) 22.2096 5.95105i 0.118768 0.0318238i
\(188\) 67.5831 67.5831i 0.359485 0.359485i
\(189\) 163.375 + 64.4591i 0.864418 + 0.341053i
\(190\) −62.3747 27.3747i −0.328288 0.144077i
\(191\) 23.5422 40.7763i 0.123258 0.213488i −0.797793 0.602932i \(-0.793999\pi\)
0.921050 + 0.389443i \(0.127333\pi\)
\(192\) −3.39177 + 12.6583i −0.0176655 + 0.0659285i
\(193\) 98.8657 + 26.4910i 0.512257 + 0.137259i 0.505683 0.862719i \(-0.331241\pi\)
0.00657446 + 0.999978i \(0.497907\pi\)
\(194\) −87.7862 50.6834i −0.452506 0.261255i
\(195\) 128.958 50.2903i 0.661322 0.257899i
\(196\) 22.1504 95.4639i 0.113012 0.487061i
\(197\) 163.148 + 163.148i 0.828162 + 0.828162i 0.987262 0.159101i \(-0.0508594\pi\)
−0.159101 + 0.987262i \(0.550859\pi\)
\(198\) 1.57999 + 5.89662i 0.00797977 + 0.0297809i
\(199\) 295.082 170.365i 1.48282 0.856108i 0.483013 0.875613i \(-0.339542\pi\)
0.999810 + 0.0195053i \(0.00620911\pi\)
\(200\) 62.6589 32.7699i 0.313294 0.163849i
\(201\) −1.14912 + 1.99034i −0.00571702 + 0.00990217i
\(202\) 55.0000 + 55.0000i 0.272277 + 0.272277i
\(203\) −46.0892 106.158i −0.227040 0.522944i
\(204\) 110.232i 0.540354i
\(205\) 0.990990 + 0.151562i 0.00483410 + 0.000739329i
\(206\) 0.158312 + 0.274205i 0.000768507 + 0.00133109i
\(207\) −39.5549 + 147.621i −0.191086 + 0.713144i
\(208\) 17.4958 + 65.2953i 0.0841146 + 0.313920i
\(209\) 6.58312i 0.0314982i
\(210\) −78.4016 + 20.6750i −0.373341 + 0.0984526i
\(211\) 113.799 0.539334 0.269667 0.962954i \(-0.413086\pi\)
0.269667 + 0.962954i \(0.413086\pi\)
\(212\) 180.200 48.2845i 0.850000 0.227757i
\(213\) −100.106 26.8232i −0.469979 0.125931i
\(214\) 164.819 95.1583i 0.770182 0.444665i
\(215\) −234.298 + 172.137i −1.08976 + 0.800639i
\(216\) 70.9657 0.328545
\(217\) −134.147 99.3780i −0.618189 0.457963i
\(218\) −51.1161 + 51.1161i −0.234478 + 0.234478i
\(219\) 66.8258 + 38.5819i 0.305140 + 0.176173i
\(220\) −5.33361 4.27233i −0.0242437 0.0194197i
\(221\) −284.306 492.433i −1.28645 2.22820i
\(222\) 58.7825 15.7507i 0.264786 0.0709491i
\(223\) −158.916 + 158.916i −0.712626 + 0.712626i −0.967084 0.254458i \(-0.918103\pi\)
0.254458 + 0.967084i \(0.418103\pi\)
\(224\) −5.83138 39.1662i −0.0260330 0.174849i
\(225\) −106.908 116.224i −0.475145 0.516552i
\(226\) 63.8496 110.591i 0.282520 0.489340i
\(227\) −73.8850 + 275.743i −0.325485 + 1.21472i 0.588339 + 0.808614i \(0.299782\pi\)
−0.913824 + 0.406111i \(0.866885\pi\)
\(228\) 30.4851 + 8.16845i 0.133706 + 0.0358265i
\(229\) 271.368 + 156.674i 1.18501 + 0.684167i 0.957169 0.289531i \(-0.0934994\pi\)
0.227843 + 0.973698i \(0.426833\pi\)
\(230\) −62.1583 159.391i −0.270254 0.693002i
\(231\) 4.87469 + 6.13525i 0.0211025 + 0.0265595i
\(232\) −33.0660 33.0660i −0.142526 0.142526i
\(233\) 13.0948 + 48.8705i 0.0562009 + 0.209745i 0.988316 0.152417i \(-0.0487056\pi\)
−0.932115 + 0.362161i \(0.882039\pi\)
\(234\) 130.740 75.4829i 0.558719 0.322576i
\(235\) 237.497 26.2390i 1.01063 0.111655i
\(236\) 23.1003 40.0108i 0.0978824 0.169537i
\(237\) 130.040 + 130.040i 0.548691 + 0.548691i
\(238\) 132.648 + 305.529i 0.557344 + 1.28374i
\(239\) 195.330i 0.817280i 0.912696 + 0.408640i \(0.133997\pi\)
−0.912696 + 0.408640i \(0.866003\pi\)
\(240\) −26.4023 + 19.3976i −0.110010 + 0.0808235i
\(241\) −46.4657 80.4810i −0.192804 0.333946i 0.753374 0.657592i \(-0.228425\pi\)
−0.946178 + 0.323646i \(0.895091\pi\)
\(242\) 44.1181 164.651i 0.182306 0.680377i
\(243\) −65.1216 243.037i −0.267990 1.00015i
\(244\) 24.3325i 0.0997233i
\(245\) 192.425 151.649i 0.785410 0.618976i
\(246\) −0.464489 −0.00188817
\(247\) 157.252 42.1354i 0.636646 0.170589i
\(248\) −65.1584 17.4591i −0.262735 0.0703997i
\(249\) −46.3769 + 26.7757i −0.186252 + 0.107533i
\(250\) 173.478 + 33.9922i 0.693911 + 0.135969i
\(251\) −332.665 −1.32536 −0.662679 0.748903i \(-0.730581\pi\)
−0.662679 + 0.748903i \(0.730581\pi\)
\(252\) −81.1176 + 35.2178i −0.321895 + 0.139753i
\(253\) −11.6913 + 11.6913i −0.0462107 + 0.0462107i
\(254\) −187.203 108.082i −0.737021 0.425519i
\(255\) 172.288 215.085i 0.675638 0.843471i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −98.8873 + 26.4968i −0.384776 + 0.103100i −0.446021 0.895022i \(-0.647159\pi\)
0.0612455 + 0.998123i \(0.480493\pi\)
\(258\) 95.2506 95.2506i 0.369188 0.369188i
\(259\) −143.973 + 114.392i −0.555880 + 0.441667i
\(260\) −67.9156 + 154.749i −0.261214 + 0.595190i
\(261\) −52.2164 + 90.4414i −0.200063 + 0.346519i
\(262\) −21.5530 + 80.4369i −0.0822633 + 0.307011i
\(263\) −193.143 51.7525i −0.734384 0.196778i −0.127804 0.991800i \(-0.540793\pi\)
−0.606581 + 0.795022i \(0.707459\pi\)
\(264\) 2.74205 + 1.58312i 0.0103866 + 0.00599668i
\(265\) 427.073 + 187.431i 1.61160 + 0.707289i
\(266\) −94.3246 + 14.0438i −0.354604 + 0.0527962i
\(267\) 92.4908 + 92.4908i 0.346408 + 0.346408i
\(268\) −0.726242 2.71037i −0.00270986 0.0101133i
\(269\) 198.535 114.624i 0.738047 0.426112i −0.0833117 0.996524i \(-0.526550\pi\)
0.821359 + 0.570412i \(0.193216\pi\)
\(270\) 138.468 + 110.916i 0.512846 + 0.410800i
\(271\) −28.0911 + 48.6551i −0.103657 + 0.179539i −0.913189 0.407537i \(-0.866388\pi\)
0.809532 + 0.587076i \(0.199721\pi\)
\(272\) 95.1662 + 95.1662i 0.349876 + 0.349876i
\(273\) 115.353 155.711i 0.422537 0.570369i
\(274\) 186.348i 0.680104i
\(275\) −3.72948 16.6723i −0.0135617 0.0606267i
\(276\) 39.6332 + 68.6468i 0.143599 + 0.248720i
\(277\) −21.9644 + 81.9724i −0.0792940 + 0.295929i −0.994173 0.107800i \(-0.965619\pi\)
0.914879 + 0.403729i \(0.132286\pi\)
\(278\) −24.9747 93.2070i −0.0898372 0.335277i
\(279\) 150.649i 0.539961i
\(280\) 49.8368 85.5353i 0.177989 0.305483i
\(281\) 136.201 0.484699 0.242350 0.970189i \(-0.422082\pi\)
0.242350 + 0.970189i \(0.422082\pi\)
\(282\) −106.936 + 28.6533i −0.379205 + 0.101608i
\(283\) −303.860 81.4189i −1.07371 0.287699i −0.321693 0.946844i \(-0.604252\pi\)
−0.752016 + 0.659145i \(0.770918\pi\)
\(284\) 109.581 63.2665i 0.385848 0.222769i
\(285\) 46.7156 + 63.5850i 0.163914 + 0.223105i
\(286\) 16.3325 0.0571066
\(287\) 1.28742 0.558942i 0.00448578 0.00194753i
\(288\) −25.2665 + 25.2665i −0.0877309 + 0.0877309i
\(289\) −730.126 421.538i −2.52639 1.45861i
\(290\) −12.8378 116.199i −0.0442682 0.400686i
\(291\) 58.7072 + 101.684i 0.201743 + 0.349429i
\(292\) −91.0010 + 24.3837i −0.311647 + 0.0835057i
\(293\) −184.699 + 184.699i −0.630373 + 0.630373i −0.948162 0.317789i \(-0.897060\pi\)
0.317789 + 0.948162i \(0.397060\pi\)
\(294\) −77.5082 + 82.9340i −0.263633 + 0.282088i
\(295\) 107.608 41.9645i 0.364774 0.142253i
\(296\) −37.1504 + 64.3463i −0.125508 + 0.217386i
\(297\) 4.43771 16.5618i 0.0149418 0.0557635i
\(298\) 119.457 + 32.0084i 0.400863 + 0.107411i
\(299\) 354.102 + 204.441i 1.18429 + 0.683748i
\(300\) −81.8338 3.41688i −0.272779 0.0113896i
\(301\) −149.385 + 378.625i −0.496296 + 1.25789i
\(302\) 235.982 + 235.982i 0.781396 + 0.781396i
\(303\) −23.3184 87.0256i −0.0769586 0.287213i
\(304\) −33.3706 + 19.2665i −0.109772 + 0.0633766i
\(305\) 38.0305 47.4776i 0.124690 0.155664i
\(306\) 150.282 260.297i 0.491119 0.850643i
\(307\) −370.647 370.647i −1.20732 1.20732i −0.971892 0.235426i \(-0.924352\pi\)
−0.235426 0.971892i \(-0.575648\pi\)
\(308\) −9.50516 1.08828i −0.0308609 0.00353337i
\(309\) 0.366750i 0.00118689i
\(310\) −99.8492 135.906i −0.322094 0.438405i
\(311\) 219.540 + 380.254i 0.705915 + 1.22268i 0.966360 + 0.257193i \(0.0827975\pi\)
−0.260445 + 0.965489i \(0.583869\pi\)
\(312\) 20.2656 75.6324i 0.0649540 0.242411i
\(313\) 53.8502 + 200.972i 0.172045 + 0.642082i 0.997036 + 0.0769359i \(0.0245137\pi\)
−0.824991 + 0.565146i \(0.808820\pi\)
\(314\) 225.282i 0.717460i
\(315\) −213.320 58.0659i −0.677207 0.184336i
\(316\) −224.533 −0.710547
\(317\) −398.433 + 106.760i −1.25689 + 0.336781i −0.824993 0.565144i \(-0.808821\pi\)
−0.431893 + 0.901925i \(0.642154\pi\)
\(318\) −208.728 55.9285i −0.656377 0.175876i
\(319\) −9.78456 + 5.64912i −0.0306726 + 0.0177088i
\(320\) 6.04730 39.5402i 0.0188978 0.123563i
\(321\) −220.446 −0.686748
\(322\) −192.457 142.575i −0.597692 0.442779i
\(323\) 229.190 229.190i 0.709567 0.709567i
\(324\) 27.2787 + 15.7494i 0.0841936 + 0.0486092i
\(325\) −374.383 + 195.798i −1.15195 + 0.602456i
\(326\) 176.523 + 305.746i 0.541480 + 0.937871i
\(327\) 80.8802 21.6718i 0.247340 0.0662746i
\(328\) 0.401005 0.401005i 0.00122258 0.00122258i
\(329\) 261.912 208.099i 0.796086 0.632520i
\(330\) 2.87594 + 7.37469i 0.00871498 + 0.0223475i
\(331\) 186.690 323.357i 0.564018 0.976908i −0.433122 0.901335i \(-0.642588\pi\)
0.997140 0.0755730i \(-0.0240786\pi\)
\(332\) 16.9222 63.1544i 0.0509704 0.190224i
\(333\) 160.279 + 42.9467i 0.481319 + 0.128969i
\(334\) −351.259 202.799i −1.05167 0.607184i
\(335\) 2.81914 6.42356i 0.00841534 0.0191748i
\(336\) −16.8338 + 42.6660i −0.0501005 + 0.126982i
\(337\) 259.016 + 259.016i 0.768593 + 0.768593i 0.977859 0.209266i \(-0.0671074\pi\)
−0.209266 + 0.977859i \(0.567107\pi\)
\(338\) −42.6782 159.277i −0.126267 0.471234i
\(339\) −128.099 + 73.9578i −0.377872 + 0.218165i
\(340\) 36.9481 + 334.429i 0.108671 + 0.983614i
\(341\) −8.14912 + 14.1147i −0.0238977 + 0.0413921i
\(342\) 60.8496 + 60.8496i 0.177923 + 0.177923i
\(343\) 115.030 323.136i 0.335364 0.942089i
\(344\) 164.464i 0.478094i
\(345\) −29.9593 + 195.888i −0.0868385 + 0.567793i
\(346\) −11.0739 19.1806i −0.0320056 0.0554353i
\(347\) 85.7311 319.953i 0.247064 0.922055i −0.725271 0.688463i \(-0.758286\pi\)
0.972335 0.233591i \(-0.0750477\pi\)
\(348\) 14.0190 + 52.3198i 0.0402846 + 0.150344i
\(349\) 383.298i 1.09828i 0.835732 + 0.549138i \(0.185044\pi\)
−0.835732 + 0.549138i \(0.814956\pi\)
\(350\) 230.929 89.0040i 0.659798 0.254297i
\(351\) −424.016 −1.20802
\(352\) −3.73403 + 1.00053i −0.0106080 + 0.00284242i
\(353\) 538.726 + 144.351i 1.52614 + 0.408927i 0.921756 0.387770i \(-0.126754\pi\)
0.604379 + 0.796697i \(0.293421\pi\)
\(354\) −46.3450 + 26.7573i −0.130918 + 0.0755856i
\(355\) 312.697 + 47.8240i 0.880835 + 0.134715i
\(356\) −159.699 −0.448593
\(357\) 43.8864 383.309i 0.122931 1.07369i
\(358\) −342.900 + 342.900i −0.957821 + 0.957821i
\(359\) −190.670 110.083i −0.531113 0.306638i 0.210357 0.977625i \(-0.432538\pi\)
−0.741470 + 0.670987i \(0.765871\pi\)
\(360\) −88.7903 + 9.80965i −0.246640 + 0.0272490i
\(361\) −134.100 232.268i −0.371469 0.643403i
\(362\) −120.391 + 32.2585i −0.332571 + 0.0891120i
\(363\) −139.615 + 139.615i −0.384614 + 0.384614i
\(364\) 34.8421 + 234.016i 0.0957202 + 0.642901i
\(365\) −215.672 94.6529i −0.590881 0.259323i
\(366\) −14.0923 + 24.4086i −0.0385036 + 0.0666902i
\(367\) 126.983 473.906i 0.346002 1.29130i −0.545435 0.838153i \(-0.683635\pi\)
0.891437 0.453145i \(-0.149698\pi\)
\(368\) −93.4809 25.0481i −0.254024 0.0680656i
\(369\) −1.09682 0.633250i −0.00297241 0.00171612i
\(370\) −173.058 + 67.4883i −0.467724 + 0.182401i
\(371\) 645.830 96.1563i 1.74078 0.259181i
\(372\) 55.2506 + 55.2506i 0.148523 + 0.148523i
\(373\) 11.3448 + 42.3394i 0.0304150 + 0.113510i 0.979465 0.201617i \(-0.0646195\pi\)
−0.949049 + 0.315127i \(0.897953\pi\)
\(374\) 28.1607 16.2586i 0.0752959 0.0434721i
\(375\) −154.334 134.569i −0.411556 0.358851i
\(376\) 67.5831 117.057i 0.179742 0.311323i
\(377\) 197.567 + 197.567i 0.524051 + 0.524051i
\(378\) 246.768 + 28.2533i 0.652825 + 0.0747443i
\(379\) 393.135i 1.03729i −0.854988 0.518647i \(-0.826436\pi\)
0.854988 0.518647i \(-0.173564\pi\)
\(380\) −95.2252 14.5638i −0.250593 0.0383258i
\(381\) 125.193 + 216.840i 0.328589 + 0.569134i
\(382\) 17.2341 64.3185i 0.0451154 0.168373i
\(383\) 30.8833 + 115.258i 0.0806352 + 0.300935i 0.994452 0.105192i \(-0.0335458\pi\)
−0.913817 + 0.406127i \(0.866879\pi\)
\(384\) 18.5330i 0.0482630i
\(385\) −16.8455 16.9796i −0.0437546 0.0441027i
\(386\) 144.749 0.374998
\(387\) 354.777 95.0623i 0.916738 0.245639i
\(388\) −138.470 37.1028i −0.356880 0.0956258i
\(389\) 369.542 213.355i 0.949979 0.548471i 0.0569045 0.998380i \(-0.481877\pi\)
0.893074 + 0.449909i \(0.148544\pi\)
\(390\) 157.752 115.900i 0.404493 0.297179i
\(391\) 814.061 2.08200
\(392\) −4.68424 138.514i −0.0119496 0.353351i
\(393\) 68.2059 68.2059i 0.173552 0.173552i
\(394\) 282.580 + 163.148i 0.717209 + 0.414081i
\(395\) −438.109 350.934i −1.10914 0.888441i
\(396\) 4.31662 + 7.47661i 0.0109006 + 0.0188803i
\(397\) 106.060 28.4186i 0.267153 0.0715835i −0.122756 0.992437i \(-0.539173\pi\)
0.389909 + 0.920853i \(0.372506\pi\)
\(398\) 340.731 340.731i 0.856108 0.856108i
\(399\) 102.753 + 40.5409i 0.257527 + 0.101606i
\(400\) 73.5990 67.6992i 0.183997 0.169248i
\(401\) −39.4499 + 68.3292i −0.0983787 + 0.170397i −0.911014 0.412376i \(-0.864699\pi\)
0.812635 + 0.582773i \(0.198032\pi\)
\(402\) −0.841215 + 3.13946i −0.00209257 + 0.00780959i
\(403\) 389.317 + 104.317i 0.966048 + 0.258852i
\(404\) 95.2628 + 55.0000i 0.235799 + 0.136139i
\(405\) 28.6107 + 73.3655i 0.0706437 + 0.181149i
\(406\) −101.815 128.144i −0.250777 0.315626i
\(407\) 12.6938 + 12.6938i 0.0311888 + 0.0311888i
\(408\) −40.3478 150.580i −0.0988917 0.369069i
\(409\) −340.819 + 196.772i −0.833298 + 0.481105i −0.854981 0.518660i \(-0.826431\pi\)
0.0216824 + 0.999765i \(0.493098\pi\)
\(410\) 1.40919 0.155689i 0.00343706 0.000379730i
\(411\) −107.925 + 186.931i −0.262591 + 0.454821i
\(412\) 0.316625 + 0.316625i 0.000768507 + 0.000768507i
\(413\) 96.2555 129.932i 0.233064 0.314606i
\(414\) 216.132i 0.522058i
\(415\) 131.726 96.7783i 0.317412 0.233201i
\(416\) 47.7995 + 82.7912i 0.114903 + 0.199017i
\(417\) −28.9285 + 107.963i −0.0693730 + 0.258904i
\(418\) 2.40959 + 8.99271i 0.00576457 + 0.0215137i
\(419\) 165.330i 0.394582i −0.980345 0.197291i \(-0.936786\pi\)
0.980345 0.197291i \(-0.0632144\pi\)
\(420\) −99.5310 + 56.9396i −0.236979 + 0.135571i
\(421\) 163.631 0.388672 0.194336 0.980935i \(-0.437745\pi\)
0.194336 + 0.980935i \(0.437745\pi\)
\(422\) 155.453 41.6535i 0.368372 0.0987050i
\(423\) −291.576 78.1276i −0.689306 0.184699i
\(424\) 228.485 131.916i 0.538879 0.311122i
\(425\) −450.603 + 710.285i −1.06024 + 1.67126i
\(426\) −146.565 −0.344049
\(427\) 9.68741 84.6110i 0.0226871 0.198152i
\(428\) 190.317 190.317i 0.444665 0.444665i
\(429\) −16.3836 9.45907i −0.0381902 0.0220491i
\(430\) −257.050 + 320.903i −0.597791 + 0.746286i
\(431\) −209.872 363.509i −0.486942 0.843409i 0.512945 0.858422i \(-0.328555\pi\)
−0.999887 + 0.0150126i \(0.995221\pi\)
\(432\) 96.9410 25.9753i 0.224400 0.0601279i
\(433\) −355.950 + 355.950i −0.822055 + 0.822055i −0.986403 0.164347i \(-0.947448\pi\)
0.164347 + 0.986403i \(0.447448\pi\)
\(434\) −219.623 86.6516i −0.506044 0.199658i
\(435\) −54.4194 + 123.997i −0.125102 + 0.285052i
\(436\) −51.1161 + 88.5357i −0.117239 + 0.203064i
\(437\) −60.3237 + 225.131i −0.138041 + 0.515174i
\(438\) 105.408 + 28.2439i 0.240657 + 0.0644838i
\(439\) −162.609 93.8826i −0.370409 0.213856i 0.303228 0.952918i \(-0.401936\pi\)
−0.673637 + 0.739062i \(0.735269\pi\)
\(440\) −8.84962 3.88388i −0.0201128 0.00882699i
\(441\) −296.090 + 90.1672i −0.671405 + 0.204461i
\(442\) −568.612 568.612i −1.28645 1.28645i
\(443\) 154.855 + 577.926i 0.349560 + 1.30457i 0.887194 + 0.461396i \(0.152651\pi\)
−0.537635 + 0.843178i \(0.680682\pi\)
\(444\) 74.5332 43.0317i 0.167867 0.0969183i
\(445\) −311.605 249.602i −0.700236 0.560904i
\(446\) −158.916 + 275.250i −0.356313 + 0.617152i
\(447\) −101.293 101.293i −0.226606 0.226606i
\(448\) −22.3017 51.3677i −0.0497805 0.114660i
\(449\) 93.8630i 0.209049i −0.994522 0.104524i \(-0.966668\pi\)
0.994522 0.104524i \(-0.0333321\pi\)
\(450\) −188.580 119.634i −0.419066 0.265854i
\(451\) −0.0685092 0.118661i −0.000151905 0.000263107i
\(452\) 46.7412 174.440i 0.103410 0.385930i
\(453\) −100.050 373.390i −0.220860 0.824260i
\(454\) 403.715i 0.889240i
\(455\) −297.772 + 511.068i −0.654443 + 1.12323i
\(456\) 44.6332 0.0978799
\(457\) −204.824 + 54.8826i −0.448194 + 0.120093i −0.475854 0.879524i \(-0.657861\pi\)
0.0276604 + 0.999617i \(0.491194\pi\)
\(458\) 428.042 + 114.693i 0.934589 + 0.250422i
\(459\) −731.093 + 422.096i −1.59279 + 0.919600i
\(460\) −143.251 194.980i −0.311415 0.423870i
\(461\) 350.396 0.760078 0.380039 0.924970i \(-0.375911\pi\)
0.380039 + 0.924970i \(0.375911\pi\)
\(462\) 8.90460 + 6.59665i 0.0192740 + 0.0142785i
\(463\) −327.380 + 327.380i −0.707084 + 0.707084i −0.965921 0.258837i \(-0.916661\pi\)
0.258837 + 0.965921i \(0.416661\pi\)
\(464\) −57.2720 33.0660i −0.123431 0.0712629i
\(465\) 21.4509 + 194.159i 0.0461310 + 0.417546i
\(466\) 35.7757 + 61.9653i 0.0767719 + 0.132973i
\(467\) −525.495 + 140.806i −1.12526 + 0.301512i −0.773009 0.634395i \(-0.781249\pi\)
−0.352248 + 0.935907i \(0.614582\pi\)
\(468\) 150.966 150.966i 0.322576 0.322576i
\(469\) −1.44628 9.71386i −0.00308375 0.0207119i
\(470\) 314.823 122.773i 0.669837 0.261220i
\(471\) 130.474 225.987i 0.277014 0.479803i
\(472\) 16.9106 63.1111i 0.0358275 0.133710i
\(473\) 38.3822 + 10.2845i 0.0811464 + 0.0217431i
\(474\) 225.235 + 130.040i 0.475180 + 0.274345i
\(475\) −163.041 177.249i −0.343244 0.373157i
\(476\) 293.032 + 368.808i 0.615613 + 0.774807i
\(477\) −416.631 416.631i −0.873440 0.873440i
\(478\) 71.4957 + 266.826i 0.149573 + 0.558213i
\(479\) −58.5721 + 33.8166i −0.122280 + 0.0705984i −0.559892 0.828565i \(-0.689158\pi\)
0.437612 + 0.899164i \(0.355824\pi\)
\(480\) −28.9662 + 36.1616i −0.0603462 + 0.0753366i
\(481\) 221.971 384.465i 0.461479 0.799304i
\(482\) −92.9315 92.9315i −0.192804 0.192804i
\(483\) 110.486 + 254.483i 0.228749 + 0.526881i
\(484\) 241.066i 0.498070i
\(485\) −212.192 288.816i −0.437509 0.595497i
\(486\) −177.916 308.159i −0.366082 0.634072i
\(487\) −192.958 + 720.130i −0.396218 + 1.47871i 0.423477 + 0.905907i \(0.360809\pi\)
−0.819696 + 0.572799i \(0.805857\pi\)
\(488\) −8.90631 33.2388i −0.0182506 0.0681123i
\(489\) 408.937i 0.836271i
\(490\) 207.350 277.589i 0.423164 0.566509i
\(491\) 199.061 0.405419 0.202710 0.979239i \(-0.435025\pi\)
0.202710 + 0.979239i \(0.435025\pi\)
\(492\) −0.634504 + 0.170015i −0.00128964 + 0.000345559i
\(493\) 537.320 + 143.975i 1.08990 + 0.292038i
\(494\) 199.387 115.116i 0.403617 0.233029i
\(495\) −3.26299 + 21.3350i −0.00659190 + 0.0431011i
\(496\) −95.3985 −0.192336
\(497\) 406.231 176.368i 0.817367 0.354866i
\(498\) −53.5514 + 53.5514i −0.107533 + 0.107533i
\(499\) 471.810 + 272.400i 0.945511 + 0.545891i 0.891684 0.452659i \(-0.149524\pi\)
0.0538277 + 0.998550i \(0.482858\pi\)
\(500\) 249.417 17.0630i 0.498834 0.0341261i
\(501\) 234.905 + 406.868i 0.468873 + 0.812111i
\(502\) −454.429 + 121.764i −0.905237 + 0.242557i
\(503\) −38.0869 + 38.0869i −0.0757195 + 0.0757195i −0.743952 0.668233i \(-0.767051\pi\)
0.668233 + 0.743952i \(0.267051\pi\)
\(504\) −97.9180 + 77.7995i −0.194282 + 0.154364i
\(505\) 99.9144 + 256.207i 0.197850 + 0.507341i
\(506\) −11.6913 + 20.2499i −0.0231054 + 0.0400197i
\(507\) −49.4347 + 184.493i −0.0975043 + 0.363891i
\(508\) −295.285 79.1214i −0.581270 0.155751i
\(509\) −149.946 86.5714i −0.294590 0.170081i 0.345420 0.938448i \(-0.387736\pi\)
−0.640010 + 0.768367i \(0.721070\pi\)
\(510\) 156.623 356.873i 0.307104 0.699752i
\(511\) −326.144 + 48.5589i −0.638247 + 0.0950273i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) −62.5566 233.464i −0.121943 0.455096i
\(514\) −125.384 + 72.3906i −0.243938 + 0.140838i
\(515\) 0.122929 + 1.11267i 0.000238697 + 0.00216052i
\(516\) 95.2506 164.979i 0.184594 0.319727i
\(517\) −23.0923 23.0923i −0.0446660 0.0446660i
\(518\) −154.800 + 208.960i −0.298842 + 0.403397i
\(519\) 25.6541i 0.0494300i
\(520\) −36.1323 + 236.250i −0.0694851 + 0.454328i
\(521\) −121.347 210.179i −0.232912 0.403415i 0.725752 0.687957i \(-0.241492\pi\)
−0.958664 + 0.284541i \(0.908159\pi\)
\(522\) −38.2250 + 142.658i −0.0732280 + 0.273291i
\(523\) −206.313 769.970i −0.394480 1.47222i −0.822665 0.568527i \(-0.807514\pi\)
0.428185 0.903691i \(-0.359153\pi\)
\(524\) 117.768i 0.224748i
\(525\) −283.199 44.4616i −0.539426 0.0846888i
\(526\) −282.781 −0.537607
\(527\) 775.110 207.690i 1.47080 0.394099i
\(528\) 4.32518 + 1.15893i 0.00819162 + 0.00219494i
\(529\) −48.8266 + 28.1901i −0.0922998 + 0.0532893i
\(530\) 651.997 + 99.7167i 1.23018 + 0.188145i
\(531\) −145.916 −0.274794
\(532\) −123.709 + 53.7094i −0.232536 + 0.100957i
\(533\) −2.39598 + 2.39598i −0.00449527 + 0.00449527i
\(534\) 160.199 + 92.4908i 0.299998 + 0.173204i
\(535\) 668.802 73.8899i 1.25010 0.138112i
\(536\) −1.98413 3.43661i −0.00370173 0.00641159i
\(537\) 542.565 145.380i 1.01036 0.270726i
\(538\) 229.248 229.248i 0.426112 0.426112i
\(539\) −32.6188 7.56851i −0.0605173 0.0140418i
\(540\) 229.749 + 100.831i 0.425462 + 0.186725i
\(541\) −274.812 + 475.988i −0.507970 + 0.879829i 0.491988 + 0.870602i \(0.336270\pi\)
−0.999957 + 0.00922718i \(0.997063\pi\)
\(542\) −20.5641 + 76.7462i −0.0379411 + 0.141598i
\(543\) 139.450 + 37.3655i 0.256814 + 0.0688130i
\(544\) 164.833 + 95.1662i 0.303001 + 0.174938i
\(545\) −238.115 + 92.8588i −0.436908 + 0.170383i
\(546\) 100.581 254.927i 0.184214 0.466899i
\(547\) 469.765 + 469.765i 0.858803 + 0.858803i 0.991197 0.132394i \(-0.0422665\pi\)
−0.132394 + 0.991197i \(0.542266\pi\)
\(548\) −68.2082 254.557i −0.124468 0.464519i
\(549\) −66.5537 + 38.4248i −0.121227 + 0.0699905i
\(550\) −11.1971 21.4098i −0.0203583 0.0389268i
\(551\) −79.6332 + 137.929i −0.144525 + 0.250325i
\(552\) 79.2665 + 79.2665i 0.143599 + 0.143599i
\(553\) −780.765 89.3925i −1.41187 0.161650i
\(554\) 120.016i 0.216635i
\(555\) 212.686 + 32.5283i 0.383217 + 0.0586095i
\(556\) −68.2322 118.182i −0.122720 0.212557i
\(557\) −98.7738 + 368.629i −0.177332 + 0.661811i 0.818811 + 0.574063i \(0.194634\pi\)
−0.996143 + 0.0877479i \(0.972033\pi\)
\(558\) 55.1414 + 205.791i 0.0988197 + 0.368800i
\(559\) 982.665i 1.75790i
\(560\) 36.7702 135.085i 0.0656611 0.241223i
\(561\) −37.6650 −0.0671390
\(562\) 186.053 49.8528i 0.331056 0.0887061i
\(563\) 176.181 + 47.2076i 0.312933 + 0.0838502i 0.411867 0.911244i \(-0.364877\pi\)
−0.0989343 + 0.995094i \(0.531543\pi\)
\(564\) −135.589 + 78.2824i −0.240406 + 0.138799i
\(565\) 363.843 267.314i 0.643971 0.473122i
\(566\) −444.881 −0.786009
\(567\) 88.5856 + 65.6254i 0.156236 + 0.115741i
\(568\) 126.533 126.533i 0.222769 0.222769i
\(569\) 647.396 + 373.774i 1.13778 + 0.656897i 0.945880 0.324518i \(-0.105202\pi\)
0.191899 + 0.981415i \(0.438535\pi\)
\(570\) 87.0884 + 69.7596i 0.152787 + 0.122385i
\(571\) −92.0727 159.475i −0.161248 0.279290i 0.774068 0.633102i \(-0.218219\pi\)
−0.935317 + 0.353812i \(0.884885\pi\)
\(572\) 22.3106 5.97811i 0.0390046 0.0104512i
\(573\) −54.5384 + 54.5384i −0.0951805 + 0.0951805i
\(574\) 1.55406 1.23476i 0.00270742 0.00215114i
\(575\) 25.2335 604.339i 0.0438843 1.05102i
\(576\) −25.2665 + 43.7629i −0.0438654 + 0.0759772i
\(577\) 256.665 957.887i 0.444827 1.66012i −0.271567 0.962420i \(-0.587542\pi\)
0.716394 0.697696i \(-0.245791\pi\)
\(578\) −1151.66 308.588i −1.99250 0.533888i
\(579\) −145.202 83.8325i −0.250781 0.144788i
\(580\) −60.0685 154.032i −0.103566 0.265572i
\(581\) 83.9866 212.869i 0.144555 0.366383i
\(582\) 117.414 + 117.414i 0.201743 + 0.201743i
\(583\) −16.4982 61.5721i −0.0282988 0.105613i
\(584\) −115.385 + 66.6174i −0.197577 + 0.114071i
\(585\) 530.517 58.6121i 0.906866 0.100192i
\(586\) −184.699 + 319.908i −0.315186 + 0.545919i
\(587\) −103.786 103.786i −0.176808 0.176808i 0.613155 0.789963i \(-0.289900\pi\)
−0.789963 + 0.613155i \(0.789900\pi\)
\(588\) −75.5222 + 141.660i −0.128439 + 0.240918i
\(589\) 229.749i 0.390067i
\(590\) 131.635 96.7119i 0.223111 0.163918i
\(591\) −188.976 327.316i −0.319757 0.553835i
\(592\) −27.1960 + 101.497i −0.0459391 + 0.171447i
\(593\) 24.0988 + 89.9380i 0.0406388 + 0.151666i 0.983264 0.182187i \(-0.0583177\pi\)
−0.942625 + 0.333853i \(0.891651\pi\)
\(594\) 24.2481i 0.0408217i
\(595\) −4.66609 + 1177.61i −0.00784217 + 1.97918i
\(596\) 174.897 0.293452
\(597\) −539.133 + 144.460i −0.903071 + 0.241977i
\(598\) 558.542 + 149.661i 0.934017 + 0.250269i
\(599\) 469.928 271.313i 0.784520 0.452943i −0.0535096 0.998567i \(-0.517041\pi\)
0.838030 + 0.545624i \(0.183707\pi\)
\(600\) −113.038 + 25.2857i −0.188396 + 0.0421428i
\(601\) 422.829 0.703542 0.351771 0.936086i \(-0.385580\pi\)
0.351771 + 0.936086i \(0.385580\pi\)
\(602\) −65.4777 + 571.890i −0.108767 + 0.949983i
\(603\) −6.26650 + 6.26650i −0.0103922 + 0.0103922i
\(604\) 408.732 + 235.982i 0.676709 + 0.390698i
\(605\) 376.775 470.368i 0.622768 0.777468i
\(606\) −63.7072 110.344i −0.105127 0.182086i
\(607\) 198.564 53.2050i 0.327123 0.0876524i −0.0915198 0.995803i \(-0.529172\pi\)
0.418643 + 0.908151i \(0.362506\pi\)
\(608\) −38.5330 + 38.5330i −0.0633766 + 0.0633766i
\(609\) 27.9183 + 187.512i 0.0458428 + 0.307902i
\(610\) 34.5727 78.7757i 0.0566765 0.129140i
\(611\) −403.805 + 699.411i −0.660892 + 1.14470i
\(612\) 110.014 410.579i 0.179762 0.670881i
\(613\) −242.590 65.0019i −0.395743 0.106039i 0.0554588 0.998461i \(-0.482338\pi\)
−0.451202 + 0.892422i \(0.649005\pi\)
\(614\) −641.979 370.647i −1.04557 0.603659i
\(615\) −1.50377 0.659966i −0.00244515 0.00107312i
\(616\) −13.3826 + 1.99251i −0.0217250 + 0.00323460i
\(617\) 206.947 + 206.947i 0.335409 + 0.335409i 0.854636 0.519227i \(-0.173780\pi\)
−0.519227 + 0.854636i \(0.673780\pi\)
\(618\) −0.134240 0.500990i −0.000217217 0.000810664i
\(619\) 408.698 235.962i 0.660255 0.381199i −0.132119 0.991234i \(-0.542178\pi\)
0.792374 + 0.610035i \(0.208845\pi\)
\(620\) −186.142 149.103i −0.300228 0.240489i
\(621\) 303.524 525.719i 0.488766 0.846568i
\(622\) 439.079 + 439.079i 0.705915 + 0.705915i
\(623\) −555.319 63.5805i −0.891363 0.102055i
\(624\) 110.734i 0.177458i
\(625\) 513.331 + 356.534i 0.821330 + 0.570454i
\(626\) 147.122 + 254.822i 0.235018 + 0.407064i
\(627\) 2.79106 10.4164i 0.00445145 0.0166130i
\(628\) 82.4591 + 307.741i 0.131304 + 0.490034i
\(629\) 883.865i 1.40519i
\(630\) −312.655 1.23884i −0.496277 0.00196641i
\(631\) −675.457 −1.07045 −0.535227 0.844708i \(-0.679774\pi\)
−0.535227 + 0.844708i \(0.679774\pi\)
\(632\) −306.718 + 82.1848i −0.485313 + 0.130039i
\(633\) −180.063 48.2478i −0.284460 0.0762208i
\(634\) −505.192 + 291.673i −0.796833 + 0.460052i
\(635\) −452.497 615.898i −0.712594 0.969919i
\(636\) −305.599 −0.480502
\(637\) 27.9881 + 827.611i 0.0439373 + 1.29923i
\(638\) −11.2982 + 11.2982i −0.0177088 + 0.0177088i
\(639\) −346.090 199.815i −0.541612 0.312700i
\(640\) −6.21196 56.2264i −0.00970619 0.0878538i
\(641\) −21.7481 37.6688i −0.0339284 0.0587657i 0.848563 0.529095i \(-0.177468\pi\)
−0.882491 + 0.470329i \(0.844135\pi\)
\(642\) −301.135 + 80.6889i −0.469058 + 0.125684i
\(643\) 344.145 344.145i 0.535218 0.535218i −0.386902 0.922121i \(-0.626455\pi\)
0.922121 + 0.386902i \(0.126455\pi\)
\(644\) −315.087 124.317i −0.489266 0.193038i
\(645\) 443.707 173.035i 0.687918 0.268271i
\(646\) 229.190 396.969i 0.354783 0.614503i
\(647\) −240.882 + 898.982i −0.372305 + 1.38946i 0.484937 + 0.874549i \(0.338843\pi\)
−0.857242 + 0.514913i \(0.827824\pi\)
\(648\) 43.0281 + 11.5293i 0.0664014 + 0.0177922i
\(649\) −13.6712 7.89307i −0.0210650 0.0121619i
\(650\) −439.749 + 404.499i −0.676537 + 0.622306i
\(651\) 170.125 + 214.119i 0.261329 + 0.328908i
\(652\) 353.045 + 353.045i 0.541480 + 0.541480i
\(653\) −150.489 561.631i −0.230457 0.860078i −0.980144 0.198286i \(-0.936463\pi\)
0.749687 0.661793i \(-0.230204\pi\)
\(654\) 102.552 59.2084i 0.156807 0.0905328i
\(655\) −184.065 + 229.788i −0.281016 + 0.350822i
\(656\) 0.401005 0.694561i 0.000611288 0.00105878i
\(657\) 210.398 + 210.398i 0.320241 + 0.320241i
\(658\) 281.609 380.135i 0.427978 0.577713i
\(659\) 217.266i 0.329691i 0.986319 + 0.164846i \(0.0527126\pi\)
−0.986319 + 0.164846i \(0.947287\pi\)
\(660\) 6.62793 + 9.02134i 0.0100423 + 0.0136687i
\(661\) −61.8693 107.161i −0.0935995 0.162119i 0.815424 0.578865i \(-0.196504\pi\)
−0.909023 + 0.416745i \(0.863171\pi\)
\(662\) 136.667 510.047i 0.206445 0.770463i
\(663\) 241.076 + 899.706i 0.363613 + 1.35702i
\(664\) 92.4645i 0.139254i
\(665\) −325.327 88.5541i −0.489213 0.133164i
\(666\) 234.665 0.352350
\(667\) −386.380 + 103.530i −0.579280 + 0.155218i
\(668\) −554.059 148.460i −0.829429 0.222245i
\(669\) 318.825 184.074i 0.476570 0.275148i
\(670\) 1.49983 9.80662i 0.00223855 0.0146367i
\(671\) −8.31411 −0.0123906
\(672\) −7.37848 + 64.4445i −0.0109799 + 0.0958995i
\(673\) −129.111 + 129.111i −0.191844 + 0.191844i −0.796493 0.604648i \(-0.793314\pi\)
0.604648 + 0.796493i \(0.293314\pi\)
\(674\) 448.629 + 259.016i 0.665621 + 0.384297i
\(675\) 290.692 + 555.829i 0.430656 + 0.823451i
\(676\) −116.599 201.955i −0.172484 0.298751i
\(677\) −425.912 + 114.123i −0.629116 + 0.168571i −0.559269 0.828986i \(-0.688918\pi\)
−0.0698477 + 0.997558i \(0.522251\pi\)
\(678\) −147.916 + 147.916i −0.218165 + 0.218165i
\(679\) −466.726 184.145i −0.687373 0.271201i
\(680\) 172.881 + 443.314i 0.254237 + 0.651933i
\(681\) 233.814 404.978i 0.343339 0.594681i
\(682\) −5.96557 + 22.2638i −0.00874717 + 0.0326449i
\(683\) 48.1139 + 12.8921i 0.0704449 + 0.0188757i 0.293869 0.955846i \(-0.405057\pi\)
−0.223424 + 0.974721i \(0.571724\pi\)
\(684\) 105.395 + 60.8496i 0.154086 + 0.0889614i
\(685\) 264.772 603.297i 0.386528 0.880726i
\(686\) 38.8576 483.516i 0.0566437 0.704834i
\(687\) −362.955 362.955i −0.528319 0.528319i
\(688\) 60.1982 + 224.663i 0.0874974 + 0.326545i
\(689\) −1365.18 + 788.188i −1.98139 + 1.14396i
\(690\) 30.7750 + 278.555i 0.0446015 + 0.403702i
\(691\) −163.975 + 284.013i −0.237301 + 0.411017i −0.959939 0.280209i \(-0.909596\pi\)
0.722638 + 0.691227i \(0.242929\pi\)
\(692\) −22.1479 22.1479i −0.0320056 0.0320056i
\(693\) 12.0335 + 27.7169i 0.0173643 + 0.0399955i
\(694\) 468.444i 0.674991i
\(695\) 51.5776 337.240i 0.0742124 0.485237i
\(696\) 38.3008 + 66.3389i 0.0550298 + 0.0953144i
\(697\) −1.74604 + 6.51631i −0.00250508 + 0.00934908i
\(698\) 140.297 + 523.595i 0.200998 + 0.750136i
\(699\) 82.8789i 0.118568i
\(700\) 282.877 206.108i 0.404111 0.294440i
\(701\) −85.2715 −0.121643 −0.0608213 0.998149i \(-0.519372\pi\)
−0.0608213 + 0.998149i \(0.519372\pi\)
\(702\) −579.216 + 155.201i −0.825095 + 0.221083i
\(703\) 244.436 + 65.4964i 0.347704 + 0.0931670i
\(704\) −4.73456 + 2.73350i −0.00672523 + 0.00388281i
\(705\) −386.913 59.1747i −0.548813 0.0839357i
\(706\) 788.749 1.11721
\(707\) 309.359 + 229.177i 0.437565 + 0.324154i
\(708\) −53.5146 + 53.5146i −0.0755856 + 0.0755856i
\(709\) 185.775 + 107.257i 0.262024 + 0.151280i 0.625258 0.780418i \(-0.284994\pi\)
−0.363233 + 0.931698i \(0.618327\pi\)
\(710\) 444.656 49.1261i 0.626276 0.0691917i
\(711\) 354.573 + 614.138i 0.498696 + 0.863766i
\(712\) −218.153 + 58.4540i −0.306395 + 0.0820983i
\(713\) −408.024 + 408.024i −0.572263 + 0.572263i
\(714\) −80.3508 539.673i −0.112536 0.755844i
\(715\) 52.8759 + 23.2059i 0.0739524 + 0.0324558i
\(716\) −342.900 + 593.920i −0.478910 + 0.829497i
\(717\) 82.8144 309.068i 0.115501 0.431057i
\(718\) −300.753 80.5864i −0.418876 0.112237i
\(719\) 849.937 + 490.711i 1.18211 + 0.682491i 0.956502 0.291727i \(-0.0942298\pi\)
0.225608 + 0.974218i \(0.427563\pi\)
\(720\) −117.699 + 45.8997i −0.163471 + 0.0637497i
\(721\) 0.974937 + 1.22705i 0.00135220 + 0.00170187i
\(722\) −268.201 268.201i −0.371469 0.371469i
\(723\) 39.4003 + 147.044i 0.0544956 + 0.203380i
\(724\) −152.649 + 88.1320i −0.210841 + 0.121729i
\(725\) 123.539 394.431i 0.170398 0.544043i
\(726\) −139.615 + 241.820i −0.192307 + 0.333085i
\(727\) 10.5831 + 10.5831i 0.0145573 + 0.0145573i 0.714348 0.699791i \(-0.246723\pi\)
−0.699791 + 0.714348i \(0.746723\pi\)
\(728\) 133.251 + 306.919i 0.183037 + 0.421591i
\(729\) 270.419i 0.370946i
\(730\) −329.258 50.3569i −0.451039 0.0689821i
\(731\) −978.217 1694.32i −1.33819 2.31781i
\(732\) −10.3163 + 38.5009i −0.0140933 + 0.0525969i
\(733\) −281.561 1050.80i −0.384121 1.43356i −0.839548 0.543285i \(-0.817180\pi\)
0.455427 0.890273i \(-0.349486\pi\)
\(734\) 693.847i 0.945296i
\(735\) −368.767 + 158.369i −0.501723 + 0.215468i
\(736\) −136.865 −0.185959
\(737\) −0.926100 + 0.248148i −0.00125658 + 0.000336700i
\(738\) −1.73007 0.463571i −0.00234427 0.000628145i
\(739\) 319.303 184.350i 0.432074 0.249458i −0.268156 0.963376i \(-0.586414\pi\)
0.700230 + 0.713917i \(0.253081\pi\)
\(740\) −211.699 + 155.534i −0.286080 + 0.210182i
\(741\) −266.681 −0.359893
\(742\) 847.025 367.742i 1.14154 0.495609i
\(743\) −45.4536 + 45.4536i −0.0611758 + 0.0611758i −0.737033 0.675857i \(-0.763774\pi\)
0.675857 + 0.737033i \(0.263774\pi\)
\(744\) 95.6969 + 55.2506i 0.128625 + 0.0742616i
\(745\) 341.259 + 273.356i 0.458066 + 0.366921i
\(746\) 30.9946 + 53.6842i 0.0415477 + 0.0719627i
\(747\) −199.461 + 53.4455i −0.267017 + 0.0715469i
\(748\) 32.5171 32.5171i 0.0434721 0.0434721i
\(749\) 737.555 586.015i 0.984719 0.782396i
\(750\) −260.079 127.335i −0.346772 0.169780i
\(751\) −392.273 + 679.437i −0.522334 + 0.904710i 0.477328 + 0.878725i \(0.341605\pi\)
−0.999662 + 0.0259846i \(0.991728\pi\)
\(752\) 49.4743 184.641i 0.0657903 0.245533i
\(753\) 526.371 + 141.041i 0.699031 + 0.187305i
\(754\) 342.197 + 197.567i 0.453842 + 0.262026i
\(755\) 428.690 + 1099.28i 0.567801 + 1.45599i
\(756\) 347.433 51.7286i 0.459567 0.0684240i
\(757\) −535.185 535.185i −0.706981 0.706981i 0.258918 0.965899i \(-0.416634\pi\)
−0.965899 + 0.258918i \(0.916634\pi\)
\(758\) −143.897 537.032i −0.189838 0.708485i
\(759\) 23.4558 13.5422i 0.0309035 0.0178421i
\(760\) −135.411 + 14.9603i −0.178172 + 0.0196847i
\(761\) 44.4816 77.0444i 0.0584515 0.101241i −0.835319 0.549766i \(-0.814717\pi\)
0.893770 + 0.448525i \(0.148050\pi\)
\(762\) 250.385 + 250.385i 0.328589 + 0.328589i
\(763\) −212.994 + 287.513i −0.279153 + 0.376819i
\(764\) 94.1688i 0.123258i
\(765\) 856.375 629.175i 1.11944 0.822450i
\(766\) 84.3747 + 146.141i 0.110150 + 0.190785i
\(767\) −101.040 + 377.085i −0.131733 + 0.491636i
\(768\) 6.78355 + 25.3165i 0.00883275 + 0.0329643i
\(769\) 999.457i 1.29968i 0.760069 + 0.649842i \(0.225165\pi\)
−0.760069 + 0.649842i \(0.774835\pi\)
\(770\) −29.2264 17.0286i −0.0379563 0.0221151i
\(771\) 167.702 0.217512
\(772\) 197.731 52.9819i 0.256129 0.0686295i
\(773\) −347.180 93.0266i −0.449133 0.120345i 0.0271607 0.999631i \(-0.491353\pi\)
−0.476294 + 0.879286i \(0.658020\pi\)
\(774\) 449.840 259.715i 0.581188 0.335549i
\(775\) −130.158 581.861i −0.167946 0.750788i
\(776\) −202.734 −0.261255
\(777\) 276.305 119.960i 0.355605 0.154389i
\(778\) 426.710 426.710i 0.548471 0.548471i
\(779\) −1.67272 0.965745i −0.00214727 0.00123972i
\(780\) 173.071 216.063i 0.221886 0.277004i
\(781\) −21.6174 37.4424i −0.0276791 0.0479416i
\(782\) 1112.03 297.967i 1.42203 0.381032i
\(783\) 293.319 293.319i 0.374609 0.374609i
\(784\) −57.0983 187.499i −0.0728295 0.239157i
\(785\) −320.091 + 729.345i −0.407759 + 0.929101i
\(786\) 68.2059 118.136i 0.0867760 0.150300i
\(787\) −20.5997 + 76.8792i −0.0261750 + 0.0976864i −0.977778 0.209645i \(-0.932769\pi\)
0.951603 + 0.307331i \(0.0994359\pi\)
\(788\) 445.728 + 119.433i 0.565645 + 0.151564i
\(789\) 283.666 + 163.774i 0.359526 + 0.207572i
\(790\) −726.919 319.026i −0.920150 0.403831i
\(791\) 231.982 587.970i 0.293276 0.743325i
\(792\) 8.63325 + 8.63325i 0.0109006 + 0.0109006i
\(793\) 53.2147 + 198.600i 0.0671055 + 0.250441i
\(794\) 134.478 77.6412i 0.169368 0.0977849i
\(795\) −596.285 477.637i −0.750044 0.600801i
\(796\) 340.731 590.163i 0.428054 0.741411i
\(797\) −320.109 320.109i −0.401642 0.401642i 0.477169 0.878811i \(-0.341663\pi\)
−0.878811 + 0.477169i \(0.841663\pi\)
\(798\) 155.202 + 17.7697i 0.194489 + 0.0222678i
\(799\) 1607.91i 2.01240i
\(800\) 75.7585 119.418i 0.0946981 0.149272i
\(801\) 252.190 + 436.806i 0.314844 + 0.545326i
\(802\) −28.8793 + 107.779i −0.0360091 + 0.134388i
\(803\) 8.33159 + 31.0939i 0.0103756 + 0.0387222i
\(804\) 4.59648i 0.00571702i
\(805\) −420.497 735.033i −0.522356 0.913084i
\(806\) 570.000 0.707196
\(807\) −362.736 + 97.1947i −0.449487 + 0.120440i
\(808\) 150.263 + 40.2628i 0.185969 + 0.0498302i
\(809\) −1001.47 + 578.200i −1.23791 + 0.714709i −0.968667 0.248363i \(-0.920108\pi\)
−0.269245 + 0.963072i \(0.586774\pi\)
\(810\) 65.9366 + 89.7469i 0.0814032 + 0.110799i
\(811\) −143.794 −0.177305 −0.0886526 0.996063i \(-0.528256\pi\)
−0.0886526 + 0.996063i \(0.528256\pi\)
\(812\) −185.986 137.781i −0.229047 0.169681i
\(813\) 65.0764 65.0764i 0.0800448 0.0800448i
\(814\) 21.9863 + 12.6938i 0.0270103 + 0.0155944i
\(815\) 137.069 + 1240.65i 0.168183 + 1.52228i
\(816\) −110.232 190.928i −0.135089 0.233980i
\(817\) 541.058 144.976i 0.662250 0.177449i
\(818\) −393.544 + 393.544i −0.481105 + 0.481105i
\(819\) 585.054 464.847i 0.714352 0.567579i
\(820\) 1.86801 0.728476i 0.00227806 0.000888385i
\(821\) 254.012 439.962i 0.309394 0.535885i −0.668836 0.743410i \(-0.733207\pi\)
0.978230 + 0.207524i \(0.0665406\pi\)
\(822\) −79.0064 + 294.856i −0.0961149 + 0.358706i
\(823\) 1406.28 + 376.812i 1.70873 + 0.457852i 0.975112 0.221714i \(-0.0711650\pi\)
0.733615 + 0.679566i \(0.237832\pi\)
\(824\) 0.548410 + 0.316625i 0.000665546 + 0.000384253i
\(825\) −1.16750 + 27.9616i −0.00141516 + 0.0338928i
\(826\) 83.9290 212.722i 0.101609 0.257533i
\(827\) −969.412 969.412i −1.17220 1.17220i −0.981683 0.190520i \(-0.938983\pi\)
−0.190520 0.981683i \(-0.561017\pi\)
\(828\) 79.1098 + 295.242i 0.0955432 + 0.356572i
\(829\) −747.599 + 431.627i −0.901808 + 0.520659i −0.877786 0.479052i \(-0.840980\pi\)
−0.0240219 + 0.999711i \(0.507647\pi\)
\(830\) 144.518 180.417i 0.174118 0.217369i
\(831\) 69.5079 120.391i 0.0836437 0.144875i
\(832\) 95.5990 + 95.5990i 0.114903 + 0.114903i
\(833\) 872.122 + 1399.11i 1.04697 + 1.67961i
\(834\) 158.069i 0.189531i
\(835\) −849.044 1155.64i −1.01682 1.38400i
\(836\) 6.58312 + 11.4023i 0.00787455 + 0.0136391i
\(837\) 154.875 578.002i 0.185036 0.690563i
\(838\) −60.5150 225.845i −0.0722136 0.269505i
\(839\) 541.425i 0.645322i 0.946515 + 0.322661i \(0.104577\pi\)
−0.946515 + 0.322661i \(0.895423\pi\)
\(840\) −115.121 + 114.212i −0.137048 + 0.135966i
\(841\) 567.660 0.674982
\(842\) 223.524 59.8930i 0.265468 0.0711318i
\(843\) −215.508 57.7452i −0.255644 0.0684996i
\(844\) 197.107 113.799i 0.233539 0.134834i
\(845\) 88.1387 576.294i 0.104306 0.682005i
\(846\) −426.897 −0.504607
\(847\) 95.9748 838.255i 0.113311 0.989675i
\(848\) 263.831 263.831i 0.311122 0.311122i
\(849\) 446.273 + 257.656i 0.525645 + 0.303482i
\(850\) −355.553 + 1135.20i −0.418297 + 1.33553i
\(851\) 317.788 + 550.425i 0.373429 + 0.646797i
\(852\) −200.211 + 53.6464i −0.234990 + 0.0629653i
\(853\) 203.211 203.211i 0.238231 0.238231i −0.577886 0.816117i \(-0.696122\pi\)
0.816117 + 0.577886i \(0.196122\pi\)
\(854\) −17.7365 119.127i −0.0207687 0.139492i
\(855\) 110.541 + 283.457i 0.129288 + 0.331528i
\(856\) 190.317 329.638i 0.222333 0.385091i
\(857\) 303.758 1133.64i 0.354443 1.32280i −0.526741 0.850026i \(-0.676586\pi\)
0.881184 0.472774i \(-0.156747\pi\)
\(858\) −25.8426 6.92452i −0.0301196 0.00807053i
\(859\) −254.787 147.102i −0.296609 0.171247i 0.344309 0.938856i \(-0.388113\pi\)
−0.640919 + 0.767609i \(0.721446\pi\)
\(860\) −233.678 + 532.449i −0.271719 + 0.619126i
\(861\) −2.27404 + 0.338577i −0.00264116 + 0.000393237i
\(862\) −419.744 419.744i −0.486942 0.486942i
\(863\) −367.260 1370.63i −0.425562 1.58822i −0.762693 0.646760i \(-0.776123\pi\)
0.337132 0.941457i \(-0.390543\pi\)
\(864\) 122.916 70.9657i 0.142264 0.0821363i
\(865\) −8.59885 77.8310i −0.00994087 0.0899780i
\(866\) −355.950 + 616.523i −0.411028 + 0.711921i
\(867\) 976.546 + 976.546i 1.12635 + 1.12635i
\(868\) −331.728 37.9807i −0.382175 0.0437565i
\(869\) 76.7201i 0.0882855i
\(870\) −28.9520 + 189.303i −0.0332782 + 0.217589i
\(871\) 11.8550 + 20.5335i 0.0136108 + 0.0235747i
\(872\) −37.4196 + 139.652i −0.0429124 + 0.160151i
\(873\) 117.182 + 437.330i 0.134229 + 0.500951i
\(874\) 329.615i 0.377134i
\(875\) 874.087 + 39.9665i 0.998956 + 0.0456760i
\(876\) 154.327 0.176173
\(877\) −1352.53 + 362.410i −1.54222 + 0.413238i −0.926984 0.375101i \(-0.877608\pi\)
−0.615241 + 0.788339i \(0.710941\pi\)
\(878\) −256.492 68.7268i −0.292132 0.0782766i
\(879\) 370.554 213.939i 0.421563 0.243390i
\(880\) −13.5104 2.06629i −0.0153527 0.00234806i
\(881\) 1069.93 1.21445 0.607223 0.794532i \(-0.292284\pi\)
0.607223 + 0.794532i \(0.292284\pi\)
\(882\) −371.463 + 231.547i −0.421160 + 0.262525i
\(883\) 1198.71 1198.71i 1.35754 1.35754i 0.480593 0.876944i \(-0.340421\pi\)
0.876944 0.480593i \(-0.159579\pi\)
\(884\) −984.865 568.612i −1.11410 0.643227i
\(885\) −188.058 + 20.7769i −0.212495 + 0.0234767i
\(886\) 423.071 + 732.781i 0.477507 + 0.827067i
\(887\) 74.4895 19.9594i 0.0839791 0.0225021i −0.216585 0.976264i \(-0.569492\pi\)
0.300564 + 0.953762i \(0.402825\pi\)
\(888\) 86.0635 86.0635i 0.0969183 0.0969183i
\(889\) −995.290 392.688i −1.11956 0.441719i
\(890\) −517.021 226.908i −0.580923 0.254952i
\(891\) 5.38137 9.32080i 0.00603969 0.0104611i
\(892\) −116.334 + 434.166i −0.130420 + 0.486733i
\(893\) −444.672 119.150i −0.497953 0.133426i
\(894\) −175.444 101.293i −0.196246 0.113303i
\(895\) −1597.33 + 622.920i −1.78473 + 0.696000i
\(896\) −49.2665 62.0065i −0.0549849 0.0692037i
\(897\) −473.612 473.612i −0.527996 0.527996i
\(898\) −34.3562 128.219i −0.0382586 0.142783i
\(899\) −341.479 + 197.153i −0.379843 + 0.219302i
\(900\) −301.394 94.3987i −0.334882 0.104887i
\(901\) −1569.24 + 2718.00i −1.74166 + 3.01665i
\(902\) −0.137018 0.137018i −0.000151905 0.000151905i
\(903\) 396.896 535.757i 0.439530 0.593307i
\(904\) 255.398i 0.282520i
\(905\) −435.595 66.6201i −0.481320 0.0736134i
\(906\) −273.340 473.440i −0.301700 0.522560i
\(907\) 260.960 973.915i 0.287717 1.07378i −0.659113 0.752044i \(-0.729068\pi\)
0.946831 0.321732i \(-0.104265\pi\)
\(908\) 147.770 + 551.485i 0.162742 + 0.607362i
\(909\) 347.414i 0.382194i
\(910\) −219.700 + 807.124i −0.241428 + 0.886950i
\(911\) −1241.02 −1.36226 −0.681130 0.732162i \(-0.738511\pi\)
−0.681130 + 0.732162i \(0.738511\pi\)
\(912\) 60.9702 16.3369i 0.0668532 0.0179133i
\(913\) −21.5791 5.78210i −0.0236354 0.00633308i
\(914\) −259.707 + 149.942i −0.284143 + 0.164050i
\(915\) −80.3042 + 58.9991i −0.0877642 + 0.0644799i
\(916\) 626.697 0.684167
\(917\) −46.8865 + 409.512i −0.0511303 + 0.446578i
\(918\) −844.193 + 844.193i −0.919600 + 0.919600i
\(919\) 5.83356 + 3.36801i 0.00634772 + 0.00366486i 0.503171 0.864187i \(-0.332167\pi\)
−0.496823 + 0.867852i \(0.665500\pi\)
\(920\) −267.052 213.914i −0.290274 0.232515i
\(921\) 429.325 + 743.612i 0.466150 + 0.807396i
\(922\) 478.650 128.254i 0.519143 0.139104i
\(923\) −756.027 + 756.027i −0.819097 + 0.819097i
\(924\) 14.5785 + 5.75188i 0.0157776 + 0.00622498i
\(925\) −656.160 27.3972i −0.709363 0.0296186i
\(926\) −327.380 + 567.039i −0.353542 + 0.612353i
\(927\) 0.366025 1.36603i 0.000394849 0.00147360i
\(928\) −90.3380 24.2060i −0.0973470 0.0260840i
\(929\) −361.434 208.674i −0.389057 0.224622i 0.292694 0.956206i \(-0.405448\pi\)
−0.681752 + 0.731584i \(0.738782\pi\)
\(930\) 100.370 + 257.375i 0.107924 + 0.276747i
\(931\) −451.556 + 137.511i −0.485022 + 0.147702i
\(932\) 71.5514 + 71.5514i 0.0767719 + 0.0767719i
\(933\) −186.157 694.748i −0.199525 0.744639i
\(934\) −666.301 + 384.689i −0.713384 + 0.411872i
\(935\) 114.270 12.6247i 0.122214 0.0135023i
\(936\) 150.966 261.480i 0.161288 0.279359i
\(937\) −46.4937 46.4937i −0.0496198 0.0496198i 0.681862 0.731481i \(-0.261171\pi\)
−0.731481 + 0.681862i \(0.761171\pi\)
\(938\) −5.53117 12.7400i −0.00589677 0.0135821i
\(939\) 340.825i 0.362966i
\(940\) 385.119 282.945i 0.409701 0.301005i
\(941\) 720.442 + 1247.84i 0.765614 + 1.32608i 0.939922 + 0.341390i \(0.110898\pi\)
−0.174308 + 0.984691i \(0.555769\pi\)
\(942\) 95.5134 356.461i 0.101394 0.378408i
\(943\) −1.25555 4.68579i −0.00133145 0.00496902i
\(944\) 92.4010i 0.0978824i
\(945\) 758.760 + 442.088i 0.802921 + 0.467818i
\(946\) 56.1955 0.0594033
\(947\) −539.920 + 144.671i −0.570137 + 0.152768i −0.532359 0.846518i \(-0.678694\pi\)
−0.0377774 + 0.999286i \(0.512028\pi\)
\(948\) 355.275 + 95.1957i 0.374763 + 0.100417i
\(949\) 689.416 398.035i 0.726466 0.419425i
\(950\) −287.596 182.450i −0.302732 0.192053i
\(951\) 675.697 0.710512
\(952\) 535.282 + 396.544i 0.562271 + 0.416538i
\(953\) 27.0794 27.0794i 0.0284149 0.0284149i −0.692757 0.721171i \(-0.743604\pi\)
0.721171 + 0.692757i \(0.243604\pi\)
\(954\) −721.626 416.631i −0.756421 0.436720i
\(955\) 147.181 183.742i 0.154117 0.192400i
\(956\) 195.330 + 338.321i 0.204320 + 0.353893i
\(957\) 17.8770 4.79014i 0.0186803 0.00500537i
\(958\) −67.6332 + 67.6332i −0.0705984 + 0.0705984i
\(959\) −135.834 912.321i −0.141641 0.951325i
\(960\) −26.3325 + 60.0000i −0.0274297 + 0.0625000i
\(961\) 196.098 339.651i 0.204056 0.353435i
\(962\) 162.494 606.437i 0.168913 0.630391i
\(963\) −821.090 220.010i −0.852637 0.228463i
\(964\) −160.962 92.9315i −0.166973 0.0964020i
\(965\) 468.622 + 205.666i 0.485618 + 0.213126i
\(966\) 244.074 + 307.190i 0.252665 + 0.318002i
\(967\) 1012.58 + 1012.58i 1.04713 + 1.04713i 0.998833 + 0.0483007i \(0.0153806\pi\)
0.0483007 + 0.998833i \(0.484619\pi\)
\(968\) −88.2363 329.302i −0.0911532 0.340188i
\(969\) −459.814 + 265.474i −0.474524 + 0.273967i
\(970\) −395.574 316.863i −0.407808 0.326663i
\(971\) 676.674 1172.03i 0.696884 1.20704i −0.272658 0.962111i \(-0.587903\pi\)
0.969542 0.244927i \(-0.0787640\pi\)
\(972\) −355.831 355.831i −0.366082 0.366082i
\(973\) −190.212 438.116i −0.195490 0.450274i
\(974\) 1054.34i 1.08249i
\(975\) 675.393 151.080i 0.692711 0.154954i
\(976\) −24.3325 42.1451i −0.0249308 0.0431815i
\(977\) 160.479 598.914i 0.164256 0.613014i −0.833877 0.551950i \(-0.813884\pi\)
0.998134 0.0610638i \(-0.0194493\pi\)
\(978\) −149.681 558.618i −0.153048 0.571184i
\(979\) 54.5673i 0.0557377i
\(980\) 181.641 455.089i 0.185348 0.464377i
\(981\) 322.881 0.329135
\(982\) 271.922 72.8614i 0.276907 0.0741969i
\(983\) 1296.21 + 347.318i 1.31862 + 0.353324i 0.848462 0.529256i \(-0.177529\pi\)
0.470161 + 0.882580i \(0.344196\pi\)
\(984\) −0.804519 + 0.464489i −0.000817600 + 0.000472042i
\(985\) 683.038 + 929.689i 0.693439 + 0.943846i
\(986\) 786.692 0.797862
\(987\) −502.648 + 218.228i −0.509268 + 0.221103i
\(988\) 230.232 230.232i 0.233029 0.233029i
\(989\) 1218.36 + 703.422i 1.23191 + 0.711246i
\(990\) 3.35184 + 30.3386i 0.00338569 + 0.0306450i
\(991\) −727.843 1260.66i −0.734453 1.27211i −0.954963 0.296725i \(-0.904105\pi\)
0.220510 0.975385i \(-0.429228\pi\)
\(992\) −130.317 + 34.9183i −0.131368 + 0.0351999i
\(993\) −432.491 + 432.491i −0.435540 + 0.435540i
\(994\) 490.367 389.615i 0.493327 0.391967i
\(995\) 1587.23 618.980i 1.59521 0.622091i
\(996\) −53.5514 + 92.7537i −0.0537664 + 0.0931262i
\(997\) 237.255 885.448i 0.237969 0.888112i −0.738819 0.673904i \(-0.764616\pi\)
0.976788 0.214208i \(-0.0687171\pi\)
\(998\) 744.210 + 199.410i 0.745701 + 0.199810i
\(999\) −570.798 329.551i −0.571370 0.329880i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 70.3.l.b.37.1 yes 8
5.2 odd 4 350.3.p.b.93.1 8
5.3 odd 4 inner 70.3.l.b.23.2 8
5.4 even 2 350.3.p.b.107.2 8
7.2 even 3 490.3.f.f.197.2 4
7.4 even 3 inner 70.3.l.b.67.2 yes 8
7.5 odd 6 490.3.f.k.197.1 4
35.4 even 6 350.3.p.b.207.1 8
35.18 odd 12 inner 70.3.l.b.53.1 yes 8
35.23 odd 12 490.3.f.f.393.2 4
35.32 odd 12 350.3.p.b.193.2 8
35.33 even 12 490.3.f.k.393.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.l.b.23.2 8 5.3 odd 4 inner
70.3.l.b.37.1 yes 8 1.1 even 1 trivial
70.3.l.b.53.1 yes 8 35.18 odd 12 inner
70.3.l.b.67.2 yes 8 7.4 even 3 inner
350.3.p.b.93.1 8 5.2 odd 4
350.3.p.b.107.2 8 5.4 even 2
350.3.p.b.193.2 8 35.32 odd 12
350.3.p.b.207.1 8 35.4 even 6
490.3.f.f.197.2 4 7.2 even 3
490.3.f.f.393.2 4 35.23 odd 12
490.3.f.k.197.1 4 7.5 odd 6
490.3.f.k.393.1 4 35.33 even 12