# Properties

 Label 70.2.k.a.47.4 Level $70$ Weight $2$ Character 70.47 Analytic conductor $0.559$ Analytic rank $0$ Dimension $16$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$70 = 2 \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 70.k (of order $$12$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.558952814149$$ Analytic rank: $$0$$ Dimension: $$16$$ Relative dimension: $$4$$ over $$\Q(\zeta_{12})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{16} + \cdots)$$ Defining polynomial: $$x^{16} + 10 x^{14} + 61 x^{12} + 266 x^{10} + 852 x^{8} + 1438 x^{6} + 1933 x^{4} + 3038 x^{2} + 2401$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

## Embedding invariants

 Embedding label 47.4 Root $$-1.45333 - 1.51725i$$ of defining polynomial Character $$\chi$$ $$=$$ 70.47 Dual form 70.2.k.a.3.4

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.965926 - 0.258819i) q^{2} +(0.304013 - 1.13459i) q^{3} +(0.866025 - 0.500000i) q^{4} +(-1.79038 + 1.33961i) q^{5} -1.17462i q^{6} +(-2.55176 + 0.698943i) q^{7} +(0.707107 - 0.707107i) q^{8} +(1.40320 + 0.810140i) q^{9} +O(q^{10})$$ $$q+(0.965926 - 0.258819i) q^{2} +(0.304013 - 1.13459i) q^{3} +(0.866025 - 0.500000i) q^{4} +(-1.79038 + 1.33961i) q^{5} -1.17462i q^{6} +(-2.55176 + 0.698943i) q^{7} +(0.707107 - 0.707107i) q^{8} +(1.40320 + 0.810140i) q^{9} +(-1.38266 + 1.75735i) q^{10} +(-0.371536 - 0.643519i) q^{11} +(-0.304013 - 1.13459i) q^{12} +(2.05532 + 2.05532i) q^{13} +(-2.28391 + 1.33557i) q^{14} +(0.975610 + 2.43860i) q^{15} +(0.500000 - 0.866025i) q^{16} +(-6.33660 - 1.69789i) q^{17} +(1.56507 + 0.419359i) q^{18} +(0.946027 - 1.63857i) q^{19} +(-0.880708 + 2.05532i) q^{20} +(0.0172465 + 3.10769i) q^{21} +(-0.525431 - 0.525431i) q^{22} +(-1.36952 - 5.11112i) q^{23} +(-0.587308 - 1.01725i) q^{24} +(1.41090 - 4.79681i) q^{25} +(2.51725 + 1.45333i) q^{26} +(3.83750 - 3.83750i) q^{27} +(-1.86042 + 1.88118i) q^{28} +9.69135i q^{29} +(1.57352 + 2.10300i) q^{30} +(2.96403 - 1.71129i) q^{31} +(0.258819 - 0.965926i) q^{32} +(-0.843083 + 0.225903i) q^{33} -6.56014 q^{34} +(3.63230 - 4.66973i) q^{35} +1.62028 q^{36} +(2.58012 - 0.691342i) q^{37} +(0.489700 - 1.82758i) q^{38} +(2.95680 - 1.70711i) q^{39} +(-0.318742 + 2.21323i) q^{40} -0.817699i q^{41} +(0.820989 + 2.99734i) q^{42} +(1.59589 - 1.59589i) q^{43} +(-0.643519 - 0.371536i) q^{44} +(-3.59753 + 0.429287i) q^{45} +(-2.64571 - 4.58251i) q^{46} +(1.21894 + 4.54913i) q^{47} +(-0.830578 - 0.830578i) q^{48} +(6.02296 - 3.56707i) q^{49} +(0.121320 - 4.99853i) q^{50} +(-3.85282 + 6.67328i) q^{51} +(2.80762 + 0.752300i) q^{52} +(-4.81583 - 1.29040i) q^{53} +(2.71352 - 4.69996i) q^{54} +(1.52725 + 0.654429i) q^{55} +(-1.31014 + 2.29859i) q^{56} +(-1.57150 - 1.57150i) q^{57} +(2.50831 + 9.36112i) q^{58} +(-1.27487 - 2.20815i) q^{59} +(2.06420 + 1.62409i) q^{60} +(5.25989 + 3.03680i) q^{61} +(2.42012 - 2.42012i) q^{62} +(-4.14688 - 1.08652i) q^{63} -1.00000i q^{64} +(-6.43313 - 0.926476i) q^{65} +(-0.755887 + 0.436412i) q^{66} +(-3.54358 + 13.2248i) q^{67} +(-6.33660 + 1.69789i) q^{68} -6.21538 q^{69} +(2.29992 - 5.45072i) q^{70} -16.0173 q^{71} +(1.56507 - 0.419359i) q^{72} +(-2.29071 + 8.54906i) q^{73} +(2.31328 - 1.33557i) q^{74} +(-5.01348 - 3.05909i) q^{75} -1.89205i q^{76} +(1.39785 + 1.38242i) q^{77} +(2.41421 - 2.41421i) q^{78} +(-5.70091 - 3.29142i) q^{79} +(0.264946 + 2.22032i) q^{80} +(-0.756928 - 1.31104i) q^{81} +(-0.211636 - 0.789836i) q^{82} +(9.23519 + 9.23519i) q^{83} +(1.56878 + 2.68272i) q^{84} +(13.6194 - 5.44871i) q^{85} +(1.12846 - 1.95456i) q^{86} +(10.9957 + 2.94629i) q^{87} +(-0.717752 - 0.192321i) q^{88} +(3.01603 - 5.22392i) q^{89} +(-3.36384 + 1.34577i) q^{90} +(-6.68124 - 3.80814i) q^{91} +(-3.74160 - 3.74160i) q^{92} +(-1.04051 - 3.88322i) q^{93} +(2.35481 + 4.07864i) q^{94} +(0.501292 + 4.20096i) q^{95} +(-1.01725 - 0.587308i) q^{96} +(3.16693 - 3.16693i) q^{97} +(4.89451 - 5.00438i) q^{98} -1.20398i q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$16 q - 12 q^{5} + 8 q^{7} + O(q^{10})$$ $$16 q - 12 q^{5} + 8 q^{7} - 12 q^{10} - 12 q^{11} + 16 q^{15} + 8 q^{16} - 36 q^{17} - 8 q^{18} - 28 q^{21} - 8 q^{22} - 4 q^{23} + 12 q^{25} + 12 q^{26} + 4 q^{28} + 20 q^{30} + 24 q^{31} + 48 q^{33} + 8 q^{35} - 8 q^{36} + 4 q^{37} + 24 q^{38} + 36 q^{42} - 8 q^{43} - 12 q^{45} - 8 q^{46} + 12 q^{47} - 32 q^{50} - 16 q^{51} - 28 q^{53} - 4 q^{56} + 8 q^{57} - 32 q^{58} + 8 q^{60} - 12 q^{61} - 36 q^{63} - 8 q^{65} + 32 q^{67} - 36 q^{68} - 12 q^{70} + 16 q^{71} - 8 q^{72} - 12 q^{73} - 48 q^{75} + 16 q^{77} + 16 q^{78} - 12 q^{80} - 48 q^{82} + 24 q^{85} + 12 q^{86} - 24 q^{87} - 4 q^{88} - 16 q^{91} + 8 q^{92} + 28 q^{93} + 20 q^{95} + 12 q^{96} + 40 q^{98} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/70\mathbb{Z}\right)^\times$$.

 $$n$$ $$31$$ $$57$$ $$\chi(n)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{4}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.965926 0.258819i 0.683013 0.183013i
$$3$$ 0.304013 1.13459i 0.175522 0.655056i −0.820940 0.571014i $$-0.806550\pi$$
0.996462 0.0840425i $$-0.0267831\pi$$
$$4$$ 0.866025 0.500000i 0.433013 0.250000i
$$5$$ −1.79038 + 1.33961i −0.800681 + 0.599091i
$$6$$ 1.17462i 0.479535i
$$7$$ −2.55176 + 0.698943i −0.964475 + 0.264175i
$$8$$ 0.707107 0.707107i 0.250000 0.250000i
$$9$$ 1.40320 + 0.810140i 0.467734 + 0.270047i
$$10$$ −1.38266 + 1.75735i −0.437234 + 0.555722i
$$11$$ −0.371536 0.643519i −0.112022 0.194028i 0.804563 0.593867i $$-0.202399\pi$$
−0.916586 + 0.399839i $$0.869066\pi$$
$$12$$ −0.304013 1.13459i −0.0877609 0.327528i
$$13$$ 2.05532 + 2.05532i 0.570044 + 0.570044i 0.932141 0.362097i $$-0.117939\pi$$
−0.362097 + 0.932141i $$0.617939\pi$$
$$14$$ −2.28391 + 1.33557i −0.610401 + 0.356946i
$$15$$ 0.975610 + 2.43860i 0.251901 + 0.629645i
$$16$$ 0.500000 0.866025i 0.125000 0.216506i
$$17$$ −6.33660 1.69789i −1.53685 0.411798i −0.611605 0.791163i $$-0.709476\pi$$
−0.925247 + 0.379365i $$0.876143\pi$$
$$18$$ 1.56507 + 0.419359i 0.368890 + 0.0988439i
$$19$$ 0.946027 1.63857i 0.217033 0.375913i −0.736866 0.676039i $$-0.763695\pi$$
0.953900 + 0.300126i $$0.0970286\pi$$
$$20$$ −0.880708 + 2.05532i −0.196932 + 0.459584i
$$21$$ 0.0172465 + 3.10769i 0.00376349 + 0.678154i
$$22$$ −0.525431 0.525431i −0.112022 0.112022i
$$23$$ −1.36952 5.11112i −0.285565 1.06574i −0.948426 0.317000i $$-0.897325\pi$$
0.662861 0.748743i $$-0.269342\pi$$
$$24$$ −0.587308 1.01725i −0.119884 0.207645i
$$25$$ 1.41090 4.79681i 0.282180 0.959361i
$$26$$ 2.51725 + 1.45333i 0.493673 + 0.285022i
$$27$$ 3.83750 3.83750i 0.738528 0.738528i
$$28$$ −1.86042 + 1.88118i −0.351586 + 0.355510i
$$29$$ 9.69135i 1.79964i 0.436263 + 0.899819i $$0.356302\pi$$
−0.436263 + 0.899819i $$0.643698\pi$$
$$30$$ 1.57352 + 2.10300i 0.287285 + 0.383954i
$$31$$ 2.96403 1.71129i 0.532356 0.307356i −0.209619 0.977783i $$-0.567222\pi$$
0.741975 + 0.670427i $$0.233889\pi$$
$$32$$ 0.258819 0.965926i 0.0457532 0.170753i
$$33$$ −0.843083 + 0.225903i −0.146762 + 0.0393247i
$$34$$ −6.56014 −1.12505
$$35$$ 3.63230 4.66973i 0.613971 0.789328i
$$36$$ 1.62028 0.270047
$$37$$ 2.58012 0.691342i 0.424170 0.113656i −0.0404183 0.999183i $$-0.512869\pi$$
0.464588 + 0.885527i $$0.346202\pi$$
$$38$$ 0.489700 1.82758i 0.0794398 0.296473i
$$39$$ 2.95680 1.70711i 0.473466 0.273356i
$$40$$ −0.318742 + 2.21323i −0.0503975 + 0.349943i
$$41$$ 0.817699i 0.127703i −0.997959 0.0638515i $$-0.979662\pi$$
0.997959 0.0638515i $$-0.0203384\pi$$
$$42$$ 0.820989 + 2.99734i 0.126681 + 0.462499i
$$43$$ 1.59589 1.59589i 0.243371 0.243371i −0.574872 0.818243i $$-0.694948\pi$$
0.818243 + 0.574872i $$0.194948\pi$$
$$44$$ −0.643519 0.371536i −0.0970142 0.0560111i
$$45$$ −3.59753 + 0.429287i −0.536288 + 0.0639943i
$$46$$ −2.64571 4.58251i −0.390089 0.675654i
$$47$$ 1.21894 + 4.54913i 0.177800 + 0.663560i 0.996058 + 0.0887076i $$0.0282737\pi$$
−0.818257 + 0.574852i $$0.805060\pi$$
$$48$$ −0.830578 0.830578i −0.119884 0.119884i
$$49$$ 6.02296 3.56707i 0.860423 0.509581i
$$50$$ 0.121320 4.99853i 0.0171573 0.706899i
$$51$$ −3.85282 + 6.67328i −0.539502 + 0.934445i
$$52$$ 2.80762 + 0.752300i 0.389347 + 0.104325i
$$53$$ −4.81583 1.29040i −0.661505 0.177250i −0.0875798 0.996158i $$-0.527913\pi$$
−0.573925 + 0.818908i $$0.694580\pi$$
$$54$$ 2.71352 4.69996i 0.369264 0.639584i
$$55$$ 1.52725 + 0.654429i 0.205935 + 0.0882432i
$$56$$ −1.31014 + 2.29859i −0.175075 + 0.307163i
$$57$$ −1.57150 1.57150i −0.208150 0.208150i
$$58$$ 2.50831 + 9.36112i 0.329357 + 1.22918i
$$59$$ −1.27487 2.20815i −0.165975 0.287476i 0.771026 0.636803i $$-0.219744\pi$$
−0.937001 + 0.349327i $$0.886410\pi$$
$$60$$ 2.06420 + 1.62409i 0.266488 + 0.209669i
$$61$$ 5.25989 + 3.03680i 0.673460 + 0.388822i 0.797386 0.603469i $$-0.206215\pi$$
−0.123927 + 0.992291i $$0.539549\pi$$
$$62$$ 2.42012 2.42012i 0.307356 0.307356i
$$63$$ −4.14688 1.08652i −0.522458 0.136889i
$$64$$ 1.00000i 0.125000i
$$65$$ −6.43313 0.926476i −0.797932 0.114915i
$$66$$ −0.755887 + 0.436412i −0.0930433 + 0.0537186i
$$67$$ −3.54358 + 13.2248i −0.432917 + 1.61567i 0.313084 + 0.949725i $$0.398638\pi$$
−0.746002 + 0.665944i $$0.768029\pi$$
$$68$$ −6.33660 + 1.69789i −0.768426 + 0.205899i
$$69$$ −6.21538 −0.748244
$$70$$ 2.29992 5.45072i 0.274893 0.651486i
$$71$$ −16.0173 −1.90090 −0.950450 0.310879i $$-0.899377\pi$$
−0.950450 + 0.310879i $$0.899377\pi$$
$$72$$ 1.56507 0.419359i 0.184445 0.0494220i
$$73$$ −2.29071 + 8.54906i −0.268108 + 1.00059i 0.692213 + 0.721693i $$0.256636\pi$$
−0.960321 + 0.278898i $$0.910031\pi$$
$$74$$ 2.31328 1.33557i 0.268913 0.155257i
$$75$$ −5.01348 3.05909i −0.578907 0.353233i
$$76$$ 1.89205i 0.217033i
$$77$$ 1.39785 + 1.38242i 0.159300 + 0.157542i
$$78$$ 2.41421 2.41421i 0.273356 0.273356i
$$79$$ −5.70091 3.29142i −0.641402 0.370314i 0.143752 0.989614i $$-0.454083\pi$$
−0.785155 + 0.619300i $$0.787417\pi$$
$$80$$ 0.264946 + 2.22032i 0.0296219 + 0.248239i
$$81$$ −0.756928 1.31104i −0.0841031 0.145671i
$$82$$ −0.211636 0.789836i −0.0233713 0.0872228i
$$83$$ 9.23519 + 9.23519i 1.01369 + 1.01369i 0.999905 + 0.0137887i $$0.00438921\pi$$
0.0137887 + 0.999905i $$0.495611\pi$$
$$84$$ 1.56878 + 2.68272i 0.171168 + 0.292708i
$$85$$ 13.6194 5.44871i 1.47723 0.590995i
$$86$$ 1.12846 1.95456i 0.121685 0.210765i
$$87$$ 10.9957 + 2.94629i 1.17886 + 0.315876i
$$88$$ −0.717752 0.192321i −0.0765127 0.0205015i
$$89$$ 3.01603 5.22392i 0.319699 0.553735i −0.660726 0.750627i $$-0.729752\pi$$
0.980425 + 0.196892i $$0.0630849\pi$$
$$90$$ −3.36384 + 1.34577i −0.354580 + 0.141856i
$$91$$ −6.68124 3.80814i −0.700385 0.399201i
$$92$$ −3.74160 3.74160i −0.390089 0.390089i
$$93$$ −1.04051 3.88322i −0.107895 0.402671i
$$94$$ 2.35481 + 4.07864i 0.242880 + 0.420680i
$$95$$ 0.501292 + 4.20096i 0.0514315 + 0.431009i
$$96$$ −1.01725 0.587308i −0.103822 0.0599418i
$$97$$ 3.16693 3.16693i 0.321553 0.321553i −0.527810 0.849363i $$-0.676987\pi$$
0.849363 + 0.527810i $$0.176987\pi$$
$$98$$ 4.89451 5.00438i 0.494420 0.505519i
$$99$$ 1.20398i 0.121005i
$$100$$ −1.17653 4.85961i −0.117653 0.485961i
$$101$$ 9.68359 5.59083i 0.963554 0.556308i 0.0662887 0.997800i $$-0.478884\pi$$
0.897265 + 0.441493i $$0.145551\pi$$
$$102$$ −1.99437 + 7.44307i −0.197472 + 0.736974i
$$103$$ 2.34351 0.627940i 0.230912 0.0618728i −0.141507 0.989937i $$-0.545195\pi$$
0.372420 + 0.928064i $$0.378528\pi$$
$$104$$ 2.90667 0.285022
$$105$$ −4.19397 5.54084i −0.409289 0.540730i
$$106$$ −4.98571 −0.484255
$$107$$ 6.41422 1.71868i 0.620086 0.166151i 0.0649189 0.997891i $$-0.479321\pi$$
0.555167 + 0.831739i $$0.312654\pi$$
$$108$$ 1.40462 5.24213i 0.135160 0.504424i
$$109$$ −7.76000 + 4.48024i −0.743274 + 0.429129i −0.823258 0.567667i $$-0.807846\pi$$
0.0799848 + 0.996796i $$0.474513\pi$$
$$110$$ 1.64459 + 0.236848i 0.156806 + 0.0225826i
$$111$$ 3.13756i 0.297804i
$$112$$ −0.670578 + 2.55936i −0.0633637 + 0.241837i
$$113$$ 0.307790 0.307790i 0.0289545 0.0289545i −0.692481 0.721436i $$-0.743482\pi$$
0.721436 + 0.692481i $$0.243482\pi$$
$$114$$ −1.92469 1.11122i −0.180263 0.104075i
$$115$$ 9.29886 + 7.31621i 0.867123 + 0.682240i
$$116$$ 4.84567 + 8.39295i 0.449910 + 0.779266i
$$117$$ 1.21894 + 4.54913i 0.112691 + 0.420568i
$$118$$ −1.80295 1.80295i −0.165975 0.165975i
$$119$$ 17.3562 0.0963204i 1.59104 0.00882967i
$$120$$ 2.41421 + 1.03449i 0.220387 + 0.0944359i
$$121$$ 5.22392 9.04810i 0.474902 0.822554i
$$122$$ 5.86664 + 1.57196i 0.531141 + 0.142319i
$$123$$ −0.927753 0.248591i −0.0836527 0.0224147i
$$124$$ 1.71129 2.96403i 0.153678 0.266178i
$$125$$ 3.89980 + 10.4781i 0.348808 + 0.937194i
$$126$$ −4.28679 + 0.0237900i −0.381898 + 0.00211939i
$$127$$ −11.1823 11.1823i −0.992267 0.992267i 0.00770296 0.999970i $$-0.497548\pi$$
−0.999970 + 0.00770296i $$0.997548\pi$$
$$128$$ −0.258819 0.965926i −0.0228766 0.0853766i
$$129$$ −1.32551 2.29585i −0.116705 0.202139i
$$130$$ −6.45372 + 0.770110i −0.566028 + 0.0675431i
$$131$$ −8.30763 4.79641i −0.725841 0.419064i 0.0910579 0.995846i $$-0.470975\pi$$
−0.816899 + 0.576781i $$0.804308\pi$$
$$132$$ −0.617179 + 0.617179i −0.0537186 + 0.0537186i
$$133$$ −1.26877 + 4.84245i −0.110016 + 0.419893i
$$134$$ 13.6913i 1.18275i
$$135$$ −1.72983 + 12.0113i −0.148880 + 1.03377i
$$136$$ −5.68124 + 3.28007i −0.487163 + 0.281264i
$$137$$ 2.40949 8.99233i 0.205856 0.768267i −0.783330 0.621606i $$-0.786481\pi$$
0.989187 0.146661i $$-0.0468526\pi$$
$$138$$ −6.00360 + 1.60866i −0.511060 + 0.136938i
$$139$$ −22.1714 −1.88056 −0.940278 0.340408i $$-0.889435\pi$$
−0.940278 + 0.340408i $$0.889435\pi$$
$$140$$ 0.810803 5.86026i 0.0685253 0.495282i
$$141$$ 5.53198 0.465877
$$142$$ −15.4715 + 4.14557i −1.29834 + 0.347889i
$$143$$ 0.559013 2.08627i 0.0467470 0.174462i
$$144$$ 1.40320 0.810140i 0.116934 0.0675116i
$$145$$ −12.9826 17.3512i −1.07815 1.44094i
$$146$$ 8.85064i 0.732484i
$$147$$ −2.21611 7.91803i −0.182781 0.653068i
$$148$$ 1.88878 1.88878i 0.155257 0.155257i
$$149$$ 3.41418 + 1.97118i 0.279701 + 0.161485i 0.633288 0.773916i $$-0.281705\pi$$
−0.353587 + 0.935402i $$0.615038\pi$$
$$150$$ −5.63440 1.65727i −0.460047 0.135315i
$$151$$ 9.97267 + 17.2732i 0.811564 + 1.40567i 0.911769 + 0.410703i $$0.134717\pi$$
−0.100205 + 0.994967i $$0.531950\pi$$
$$152$$ −0.489700 1.82758i −0.0397199 0.148237i
$$153$$ −7.51602 7.51602i −0.607634 0.607634i
$$154$$ 1.70802 + 0.973528i 0.137636 + 0.0784491i
$$155$$ −3.01429 + 7.03449i −0.242113 + 0.565024i
$$156$$ 1.70711 2.95680i 0.136678 0.236733i
$$157$$ −7.20903 1.93165i −0.575343 0.154163i −0.0405972 0.999176i $$-0.512926\pi$$
−0.534746 + 0.845013i $$0.679593\pi$$
$$158$$ −6.35854 1.70376i −0.505858 0.135544i
$$159$$ −2.92815 + 5.07170i −0.232217 + 0.402212i
$$160$$ 0.830578 + 2.07609i 0.0656630 + 0.164129i
$$161$$ 7.06707 + 12.0851i 0.556963 + 0.952442i
$$162$$ −1.07046 1.07046i −0.0841031 0.0841031i
$$163$$ 3.14893 + 11.7520i 0.246644 + 0.920486i 0.972550 + 0.232693i $$0.0747537\pi$$
−0.725907 + 0.687793i $$0.758580\pi$$
$$164$$ −0.408849 0.708148i −0.0319258 0.0552970i
$$165$$ 1.20681 1.53385i 0.0939503 0.119410i
$$166$$ 11.3107 + 6.53026i 0.877884 + 0.506847i
$$167$$ 1.45564 1.45564i 0.112641 0.112641i −0.648540 0.761181i $$-0.724620\pi$$
0.761181 + 0.648540i $$0.224620\pi$$
$$168$$ 2.20966 + 2.18527i 0.170479 + 0.168598i
$$169$$ 4.55129i 0.350099i
$$170$$ 11.7451 8.78801i 0.900809 0.674010i
$$171$$ 2.65494 1.53283i 0.203028 0.117218i
$$172$$ 0.584136 2.18003i 0.0445400 0.166225i
$$173$$ 9.08750 2.43499i 0.690910 0.185129i 0.103754 0.994603i $$-0.466914\pi$$
0.587155 + 0.809474i $$0.300248\pi$$
$$174$$ 11.3836 0.862989
$$175$$ −0.247587 + 13.2264i −0.0187158 + 0.999825i
$$176$$ −0.743072 −0.0560111
$$177$$ −2.89292 + 0.775156i −0.217445 + 0.0582643i
$$178$$ 1.56121 5.82653i 0.117018 0.436717i
$$179$$ 3.89494 2.24874i 0.291121 0.168079i −0.347326 0.937744i $$-0.612910\pi$$
0.638447 + 0.769665i $$0.279577\pi$$
$$180$$ −2.90091 + 2.17054i −0.216221 + 0.161782i
$$181$$ 17.8850i 1.32938i −0.747118 0.664691i $$-0.768563\pi$$
0.747118 0.664691i $$-0.231437\pi$$
$$182$$ −7.43921 1.94915i −0.551431 0.144480i
$$183$$ 5.04460 5.04460i 0.372907 0.372907i
$$184$$ −4.58251 2.64571i −0.337827 0.195044i
$$185$$ −3.69327 + 4.69412i −0.271535 + 0.345119i
$$186$$ −2.01010 3.48160i −0.147388 0.255283i
$$187$$ 1.26165 + 4.70855i 0.0922612 + 0.344323i
$$188$$ 3.33020 + 3.33020i 0.242880 + 0.242880i
$$189$$ −7.11019 + 12.4746i −0.517190 + 0.907392i
$$190$$ 1.57150 + 3.92807i 0.114009 + 0.284972i
$$191$$ 1.38774 2.40364i 0.100413 0.173921i −0.811442 0.584433i $$-0.801317\pi$$
0.911855 + 0.410512i $$0.134650\pi$$
$$192$$ −1.13459 0.304013i −0.0818821 0.0219402i
$$193$$ 4.96491 + 1.33034i 0.357382 + 0.0957602i 0.433043 0.901373i $$-0.357440\pi$$
−0.0756607 + 0.997134i $$0.524107\pi$$
$$194$$ 2.23936 3.87868i 0.160776 0.278473i
$$195$$ −3.00693 + 7.01731i −0.215330 + 0.502520i
$$196$$ 3.43250 6.10065i 0.245179 0.435761i
$$197$$ 1.34043 + 1.34043i 0.0955019 + 0.0955019i 0.753244 0.657742i $$-0.228488\pi$$
−0.657742 + 0.753244i $$0.728488\pi$$
$$198$$ −0.311614 1.16296i −0.0221454 0.0826479i
$$199$$ −7.25148 12.5599i −0.514043 0.890349i −0.999867 0.0162926i $$-0.994814\pi$$
0.485824 0.874057i $$-0.338520\pi$$
$$200$$ −2.39420 4.38951i −0.169295 0.310385i
$$201$$ 13.9275 + 8.04103i 0.982368 + 0.567171i
$$202$$ 7.90662 7.90662i 0.556308 0.556308i
$$203$$ −6.77370 24.7300i −0.475420 1.73571i
$$204$$ 7.70563i 0.539502i
$$205$$ 1.09540 + 1.46399i 0.0765057 + 0.102249i
$$206$$ 2.10113 1.21309i 0.146393 0.0845198i
$$207$$ 2.21901 8.28144i 0.154232 0.575600i
$$208$$ 2.80762 0.752300i 0.194674 0.0521627i
$$209$$ −1.40593 −0.0972504
$$210$$ −5.48513 4.26656i −0.378510 0.294421i
$$211$$ 10.0324 0.690660 0.345330 0.938481i $$-0.387767\pi$$
0.345330 + 0.938481i $$0.387767\pi$$
$$212$$ −4.81583 + 1.29040i −0.330752 + 0.0886249i
$$213$$ −4.86945 + 18.1730i −0.333649 + 1.24520i
$$214$$ 5.75083 3.32024i 0.393119 0.226967i
$$215$$ −0.719378 + 4.99511i −0.0490611 + 0.340664i
$$216$$ 5.42705i 0.369264i
$$217$$ −6.36741 + 6.43848i −0.432248 + 0.437073i
$$218$$ −6.33602 + 6.33602i −0.429129 + 0.429129i
$$219$$ 9.00328 + 5.19804i 0.608385 + 0.351251i
$$220$$ 1.64985 0.196874i 0.111233 0.0132732i
$$221$$ −9.53406 16.5135i −0.641330 1.11082i
$$222$$ −0.812061 3.03065i −0.0545020 0.203404i
$$223$$ −3.13756 3.13756i −0.210107 0.210107i 0.594206 0.804313i $$-0.297466\pi$$
−0.804313 + 0.594206i $$0.797466\pi$$
$$224$$ 0.0146827 + 2.64571i 0.000981028 + 0.176774i
$$225$$ 5.86586 5.58787i 0.391058 0.372525i
$$226$$ 0.217641 0.376965i 0.0144772 0.0250753i
$$227$$ 0.648012 + 0.173634i 0.0430101 + 0.0115245i 0.280260 0.959924i $$-0.409579\pi$$
−0.237250 + 0.971449i $$0.576246\pi$$
$$228$$ −2.14671 0.575209i −0.142169 0.0380941i
$$229$$ −6.60166 + 11.4344i −0.436250 + 0.755608i −0.997397 0.0721088i $$-0.977027\pi$$
0.561146 + 0.827717i $$0.310360\pi$$
$$230$$ 10.8756 + 4.66020i 0.717115 + 0.307284i
$$231$$ 1.99345 1.16572i 0.131159 0.0766986i
$$232$$ 6.85282 + 6.85282i 0.449910 + 0.449910i
$$233$$ −2.24110 8.36389i −0.146819 0.547937i −0.999668 0.0257782i $$-0.991794\pi$$
0.852849 0.522158i $$-0.174873\pi$$
$$234$$ 2.35481 + 4.07864i 0.153938 + 0.266629i
$$235$$ −8.27641 6.51177i −0.539894 0.424781i
$$236$$ −2.20815 1.27487i −0.143738 0.0829873i
$$237$$ −5.46757 + 5.46757i −0.355157 + 0.355157i
$$238$$ 16.7399 4.58516i 1.08509 0.297212i
$$239$$ 4.00294i 0.258929i 0.991584 + 0.129464i $$0.0413258\pi$$
−0.991584 + 0.129464i $$0.958674\pi$$
$$240$$ 2.59970 + 0.374399i 0.167810 + 0.0241674i
$$241$$ −15.0040 + 8.66256i −0.966493 + 0.558005i −0.898165 0.439658i $$-0.855100\pi$$
−0.0683274 + 0.997663i $$0.521766\pi$$
$$242$$ 2.70410 10.0918i 0.173826 0.648728i
$$243$$ 14.0088 3.75364i 0.898663 0.240796i
$$244$$ 6.07359 0.388822
$$245$$ −6.00489 + 14.4548i −0.383639 + 0.923483i
$$246$$ −0.960481 −0.0612380
$$247$$ 5.31218 1.42339i 0.338006 0.0905683i
$$248$$ 0.885827 3.30595i 0.0562501 0.209928i
$$249$$ 13.2858 7.67055i 0.841952 0.486101i
$$250$$ 6.47886 + 9.11177i 0.409759 + 0.576279i
$$251$$ 5.49938i 0.347118i 0.984824 + 0.173559i $$0.0555267\pi$$
−0.984824 + 0.173559i $$0.944473\pi$$
$$252$$ −4.13456 + 1.13248i −0.260453 + 0.0713397i
$$253$$ −2.78028 + 2.78028i −0.174795 + 0.174795i
$$254$$ −13.6954 7.90707i −0.859329 0.496134i
$$255$$ −2.04158 17.1089i −0.127849 1.07140i
$$256$$ −0.500000 0.866025i −0.0312500 0.0541266i
$$257$$ 4.27307 + 15.9473i 0.266547 + 0.994766i 0.961297 + 0.275515i $$0.0888483\pi$$
−0.694750 + 0.719251i $$0.744485\pi$$
$$258$$ −1.87456 1.87456i −0.116705 0.116705i
$$259$$ −6.10065 + 3.56750i −0.379076 + 0.221674i
$$260$$ −6.03449 + 2.41421i −0.374243 + 0.149723i
$$261$$ −7.85135 + 13.5989i −0.485986 + 0.841753i
$$262$$ −9.26595 2.48280i −0.572453 0.153388i
$$263$$ 9.52484 + 2.55217i 0.587327 + 0.157374i 0.540231 0.841517i $$-0.318337\pi$$
0.0470956 + 0.998890i $$0.485003\pi$$
$$264$$ −0.436412 + 0.755887i −0.0268593 + 0.0465216i
$$265$$ 10.3508 4.14102i 0.635843 0.254381i
$$266$$ 0.0277804 + 5.00583i 0.00170333 + 0.306927i
$$267$$ −5.01010 5.01010i −0.306613 0.306613i
$$268$$ 3.54358 + 13.2248i 0.216459 + 0.807835i
$$269$$ −4.47922 7.75824i −0.273103 0.473028i 0.696552 0.717506i $$-0.254717\pi$$
−0.969655 + 0.244478i $$0.921383\pi$$
$$270$$ 1.43788 + 12.0498i 0.0875063 + 0.733325i
$$271$$ −19.7889 11.4251i −1.20209 0.694027i −0.241071 0.970507i $$-0.577499\pi$$
−0.961020 + 0.276480i $$0.910832\pi$$
$$272$$ −4.63872 + 4.63872i −0.281264 + 0.281264i
$$273$$ −6.35186 + 6.42276i −0.384432 + 0.388723i
$$274$$ 9.30954i 0.562410i
$$275$$ −3.61104 + 0.874245i −0.217754 + 0.0527189i
$$276$$ −5.38268 + 3.10769i −0.323999 + 0.187061i
$$277$$ 5.57320 20.7995i 0.334861 1.24972i −0.569158 0.822228i $$-0.692731\pi$$
0.904019 0.427491i $$-0.140603\pi$$
$$278$$ −21.4160 + 5.73839i −1.28444 + 0.344166i
$$279$$ 5.54552 0.332002
$$280$$ −0.733571 5.87042i −0.0438392 0.350825i
$$281$$ −5.64885 −0.336982 −0.168491 0.985703i $$-0.553889\pi$$
−0.168491 + 0.985703i $$0.553889\pi$$
$$282$$ 5.34348 1.43178i 0.318200 0.0852614i
$$283$$ −0.757948 + 2.82870i −0.0450553 + 0.168149i −0.984788 0.173762i $$-0.944408\pi$$
0.939732 + 0.341911i $$0.111074\pi$$
$$284$$ −13.8714 + 8.00863i −0.823113 + 0.475225i
$$285$$ 4.91877 + 0.708383i 0.291363 + 0.0419610i
$$286$$ 2.15986i 0.127715i
$$287$$ 0.571524 + 2.08657i 0.0337360 + 0.123166i
$$288$$ 1.14571 1.14571i 0.0675116 0.0675116i
$$289$$ 22.5473 + 13.0177i 1.32631 + 0.765747i
$$290$$ −17.0310 13.3998i −1.00010 0.786863i
$$291$$ −2.63038 4.55596i −0.154196 0.267075i
$$292$$ 2.29071 + 8.54906i 0.134054 + 0.500296i
$$293$$ 10.7875 + 10.7875i 0.630212 + 0.630212i 0.948121 0.317909i $$-0.102981\pi$$
−0.317909 + 0.948121i $$0.602981\pi$$
$$294$$ −4.18993 7.07466i −0.244362 0.412602i
$$295$$ 5.24056 + 2.24558i 0.305117 + 0.130743i
$$296$$ 1.33557 2.31328i 0.0776285 0.134456i
$$297$$ −3.89528 1.04374i −0.226027 0.0605637i
$$298$$ 3.80802 + 1.02036i 0.220593 + 0.0591077i
$$299$$ 7.69020 13.3198i 0.444736 0.770305i
$$300$$ −5.87135 0.142505i −0.338982 0.00822751i
$$301$$ −2.95689 + 5.18776i −0.170432 + 0.299018i
$$302$$ 14.1035 + 14.1035i 0.811564 + 0.811564i
$$303$$ −3.39936 12.6866i −0.195288 0.728826i
$$304$$ −0.946027 1.63857i −0.0542584 0.0939783i
$$305$$ −13.4853 + 1.60917i −0.772166 + 0.0921411i
$$306$$ −9.20520 5.31463i −0.526226 0.303817i
$$307$$ −6.89201 + 6.89201i −0.393348 + 0.393348i −0.875879 0.482531i $$-0.839718\pi$$
0.482531 + 0.875879i $$0.339718\pi$$
$$308$$ 1.90179 + 0.498288i 0.108364 + 0.0283926i
$$309$$ 2.84982i 0.162121i
$$310$$ −1.09092 + 7.57495i −0.0619599 + 0.430228i
$$311$$ −0.109136 + 0.0630096i −0.00618852 + 0.00357294i −0.503091 0.864233i $$-0.667804\pi$$
0.496903 + 0.867806i $$0.334471\pi$$
$$312$$ 0.883663 3.29788i 0.0500276 0.186706i
$$313$$ −11.2955 + 3.02662i −0.638459 + 0.171075i −0.563505 0.826112i $$-0.690548\pi$$
−0.0749536 + 0.997187i $$0.523881\pi$$
$$314$$ −7.46334 −0.421181
$$315$$ 8.87999 3.60991i 0.500331 0.203395i
$$316$$ −6.58284 −0.370314
$$317$$ 10.5732 2.83308i 0.593851 0.159122i 0.0506382 0.998717i $$-0.483874\pi$$
0.543212 + 0.839595i $$0.317208\pi$$
$$318$$ −1.51572 + 5.65674i −0.0849974 + 0.317214i
$$319$$ 6.23657 3.60068i 0.349181 0.201600i
$$320$$ 1.33961 + 1.79038i 0.0748864 + 0.100085i
$$321$$ 7.80001i 0.435354i
$$322$$ 9.95413 + 9.84425i 0.554722 + 0.548599i
$$323$$ −8.77670 + 8.77670i −0.488349 + 0.488349i
$$324$$ −1.31104 0.756928i −0.0728354 0.0420516i
$$325$$ 12.7588 6.95913i 0.707733 0.386023i
$$326$$ 6.08327 + 10.5365i 0.336921 + 0.583565i
$$327$$ 2.72410 + 10.1665i 0.150643 + 0.562208i
$$328$$ −0.578200 0.578200i −0.0319258 0.0319258i
$$329$$ −6.29002 10.7563i −0.346780 0.593016i
$$330$$ 0.768703 1.79393i 0.0423157 0.0987528i
$$331$$ 2.73019 4.72883i 0.150065 0.259920i −0.781186 0.624298i $$-0.785385\pi$$
0.931251 + 0.364378i $$0.118718\pi$$
$$332$$ 12.6155 + 3.38031i 0.692366 + 0.185519i
$$333$$ 4.18052 + 1.12017i 0.229091 + 0.0613848i
$$334$$ 1.02929 1.78279i 0.0563205 0.0975500i
$$335$$ −11.3717 28.4244i −0.621304 1.55299i
$$336$$ 2.69996 + 1.53891i 0.147295 + 0.0839544i
$$337$$ 20.4823 + 20.4823i 1.11574 + 1.11574i 0.992359 + 0.123385i $$0.0393751\pi$$
0.123385 + 0.992359i $$0.460625\pi$$
$$338$$ −1.17796 4.39621i −0.0640727 0.239122i
$$339$$ −0.255644 0.442788i −0.0138847 0.0240490i
$$340$$ 9.07041 11.5284i 0.491912 0.625217i
$$341$$ −2.20249 1.27161i −0.119272 0.0688615i
$$342$$ 2.16775 2.16775i 0.117218 0.117218i
$$343$$ −12.8760 + 13.3120i −0.695237 + 0.718781i
$$344$$ 2.25693i 0.121685i
$$345$$ 11.1279 8.32618i 0.599105 0.448266i
$$346$$ 8.14763 4.70404i 0.438019 0.252891i
$$347$$ −5.57442 + 20.8040i −0.299250 + 1.11682i 0.638532 + 0.769595i $$0.279542\pi$$
−0.937783 + 0.347223i $$0.887125\pi$$
$$348$$ 10.9957 2.94629i 0.589432 0.157938i
$$349$$ 12.5744 0.673093 0.336546 0.941667i $$-0.390741\pi$$
0.336546 + 0.941667i $$0.390741\pi$$
$$350$$ 3.18410 + 12.8398i 0.170198 + 0.686318i
$$351$$ 15.7746 0.841987
$$352$$ −0.717752 + 0.192321i −0.0382563 + 0.0102508i
$$353$$ 0.178457 0.666012i 0.00949832 0.0354482i −0.961014 0.276500i $$-0.910826\pi$$
0.970512 + 0.241051i $$0.0774922\pi$$
$$354$$ −2.59372 + 1.49749i −0.137855 + 0.0795905i
$$355$$ 28.6769 21.4569i 1.52201 1.13881i
$$356$$ 6.03207i 0.319699i
$$357$$ 5.16723 19.7215i 0.273479 1.04377i
$$358$$ 3.18020 3.18020i 0.168079 0.168079i
$$359$$ −19.1381 11.0494i −1.01007 0.583165i −0.0988582 0.995102i $$-0.531519\pi$$
−0.911212 + 0.411937i $$0.864852\pi$$
$$360$$ −2.24029 + 2.84739i −0.118074 + 0.150071i
$$361$$ 7.71007 + 13.3542i 0.405793 + 0.702854i
$$362$$ −4.62898 17.2756i −0.243294 0.907985i
$$363$$ −8.67775 8.67775i −0.455464 0.455464i
$$364$$ −7.69020 + 0.0426776i −0.403076 + 0.00223692i
$$365$$ −7.35115 18.3747i −0.384777 0.961775i
$$366$$ 3.56707 6.17834i 0.186454 0.322947i
$$367$$ 12.9539 + 3.47100i 0.676191 + 0.181185i 0.580542 0.814230i $$-0.302841\pi$$
0.0956487 + 0.995415i $$0.469507\pi$$
$$368$$ −5.11112 1.36952i −0.266436 0.0713912i
$$369$$ 0.662450 1.14740i 0.0344858 0.0597311i
$$370$$ −2.35250 + 5.49006i −0.122300 + 0.285415i
$$371$$ 13.1908 0.0732036i 0.684830 0.00380054i
$$372$$ −2.84271 2.84271i −0.147388 0.147388i
$$373$$ −3.87359 14.4564i −0.200567 0.748526i −0.990755 0.135662i $$-0.956684\pi$$
0.790188 0.612864i $$-0.209983\pi$$
$$374$$ 2.43733 + 4.22157i 0.126031 + 0.218292i
$$375$$ 13.0740 1.23918i 0.675138 0.0639912i
$$376$$ 4.07864 + 2.35481i 0.210340 + 0.121440i
$$377$$ −19.9189 + 19.9189i −1.02587 + 1.02587i
$$378$$ −3.63926 + 13.8898i −0.187183 + 0.714413i
$$379$$ 1.71784i 0.0882395i 0.999026 + 0.0441198i $$0.0140483\pi$$
−0.999026 + 0.0441198i $$0.985952\pi$$
$$380$$ 2.53461 + 3.38749i 0.130023 + 0.173775i
$$381$$ −16.0869 + 9.28776i −0.824156 + 0.475827i
$$382$$ 0.718348 2.68091i 0.0367539 0.137167i
$$383$$ −10.1017 + 2.70676i −0.516175 + 0.138309i −0.507497 0.861654i $$-0.669429\pi$$
−0.00867837 + 0.999962i $$0.502762\pi$$
$$384$$ −1.17462 −0.0599418
$$385$$ −4.35459 0.602485i −0.221931 0.0307055i
$$386$$ 5.14005 0.261622
$$387$$ 3.53225 0.946464i 0.179554 0.0481114i
$$388$$ 1.15918 4.32611i 0.0588483 0.219625i
$$389$$ −18.8548 + 10.8858i −0.955978 + 0.551934i −0.894933 0.446201i $$-0.852777\pi$$
−0.0610449 + 0.998135i $$0.519443\pi$$
$$390$$ −1.08825 + 7.55645i −0.0551058 + 0.382636i
$$391$$ 34.7124i 1.75548i
$$392$$ 1.73658 6.78117i 0.0877104 0.342501i
$$393$$ −7.96759 + 7.96759i −0.401912 + 0.401912i
$$394$$ 1.64169 + 0.947829i 0.0827071 + 0.0477510i
$$395$$ 14.6160 1.74410i 0.735410 0.0877551i
$$396$$ −0.601992 1.04268i −0.0302512 0.0523967i
$$397$$ −8.20427 30.6188i −0.411761 1.53671i −0.791237 0.611510i $$-0.790562\pi$$
0.379476 0.925202i $$-0.376104\pi$$
$$398$$ −10.2551 10.2551i −0.514043 0.514043i
$$399$$ 5.10848 + 2.91170i 0.255744 + 0.145767i
$$400$$ −3.44871 3.62028i −0.172435 0.181014i
$$401$$ −6.98528 + 12.0989i −0.348828 + 0.604188i −0.986042 0.166499i $$-0.946754\pi$$
0.637213 + 0.770687i $$0.280087\pi$$
$$402$$ 15.5341 + 4.16234i 0.774769 + 0.207599i
$$403$$ 9.60930 + 2.57480i 0.478673 + 0.128260i
$$404$$ 5.59083 9.68359i 0.278154 0.481777i
$$405$$ 3.11146 + 1.33327i 0.154610 + 0.0662505i
$$406$$ −12.9435 22.1342i −0.642374 1.09850i
$$407$$ −1.40350 1.40350i −0.0695690 0.0695690i
$$408$$ 1.99437 + 7.44307i 0.0987358 + 0.368487i
$$409$$ 9.36960 + 16.2286i 0.463297 + 0.802454i 0.999123 0.0418748i $$-0.0133330\pi$$
−0.535826 + 0.844328i $$0.680000\pi$$
$$410$$ 1.43698 + 1.13060i 0.0709673 + 0.0558361i
$$411$$ −9.47010 5.46757i −0.467126 0.269695i
$$412$$ 1.71557 1.71557i 0.0845198 0.0845198i
$$413$$ 4.79654 + 4.74360i 0.236022 + 0.233417i
$$414$$ 8.57358i 0.421369i
$$415$$ −28.9060 4.16294i −1.41894 0.204351i
$$416$$ 2.51725 1.45333i 0.123418 0.0712555i
$$417$$ −6.74040 + 25.1555i −0.330079 + 1.23187i
$$418$$ −1.35803 + 0.363882i −0.0664232 + 0.0177981i
$$419$$ 31.5744 1.54251 0.771255 0.636526i $$-0.219629\pi$$
0.771255 + 0.636526i $$0.219629\pi$$
$$420$$ −6.40250 2.70152i −0.312410 0.131821i
$$421$$ −13.5569 −0.660722 −0.330361 0.943855i $$-0.607171\pi$$
−0.330361 + 0.943855i $$0.607171\pi$$
$$422$$ 9.69057 2.59658i 0.471729 0.126399i
$$423$$ −1.97502 + 7.37087i −0.0960287 + 0.358384i
$$424$$ −4.31775 + 2.49286i −0.209689 + 0.121064i
$$425$$ −17.0848 + 27.9999i −0.828733 + 1.35820i
$$426$$ 18.8141i 0.911547i
$$427$$ −15.5445 4.07282i −0.752252 0.197097i
$$428$$ 4.69553 4.69553i 0.226967 0.226967i
$$429$$ −2.19711 1.26850i −0.106078 0.0612439i
$$430$$ 0.597964 + 5.01109i 0.0288364 + 0.241656i
$$431$$ −6.63518 11.4925i −0.319605 0.553572i 0.660800 0.750562i $$-0.270217\pi$$
−0.980406 + 0.196989i $$0.936884\pi$$
$$432$$ −1.40462 5.24213i −0.0675800 0.252212i
$$433$$ −12.0535 12.0535i −0.579252 0.579252i 0.355445 0.934697i $$-0.384329\pi$$
−0.934697 + 0.355445i $$0.884329\pi$$
$$434$$ −4.48405 + 7.86710i −0.215241 + 0.377633i
$$435$$ −23.6334 + 9.45497i −1.13313 + 0.453331i
$$436$$ −4.48024 + 7.76000i −0.214565 + 0.371637i
$$437$$ −9.67052 2.59121i −0.462604 0.123954i
$$438$$ 10.0419 + 2.69071i 0.479818 + 0.128567i
$$439$$ −17.5238 + 30.3521i −0.836366 + 1.44863i 0.0565475 + 0.998400i $$0.481991\pi$$
−0.892913 + 0.450228i $$0.851343\pi$$
$$440$$ 1.54268 0.617179i 0.0735445 0.0294229i
$$441$$ 11.3413 0.125883i 0.540060 0.00599443i
$$442$$ −13.4832 13.4832i −0.641330 0.641330i
$$443$$ −0.0163232 0.0609189i −0.000775538 0.00289435i 0.965537 0.260266i $$-0.0838102\pi$$
−0.966313 + 0.257372i $$0.917144\pi$$
$$444$$ −1.56878 2.71721i −0.0744511 0.128953i
$$445$$ 1.59817 + 13.3931i 0.0757606 + 0.634893i
$$446$$ −3.84271 2.21859i −0.181958 0.105053i
$$447$$ 3.27444 3.27444i 0.154876 0.154876i
$$448$$ 0.698943 + 2.55176i 0.0330219 + 0.120559i
$$449$$ 24.5207i 1.15720i −0.815611 0.578601i $$-0.803599\pi$$
0.815611 0.578601i $$-0.196401\pi$$
$$450$$ 4.21974 6.91566i 0.198921 0.326008i
$$451$$ −0.526205 + 0.303804i −0.0247780 + 0.0143056i
$$452$$ 0.112659 0.420450i 0.00529904 0.0197763i
$$453$$ 22.6298 6.06364i 1.06324 0.284894i
$$454$$ 0.670872 0.0314856
$$455$$ 17.0634 2.13224i 0.799943 0.0999612i
$$456$$ −2.22244 −0.104075
$$457$$ −19.3892 + 5.19531i −0.906987 + 0.243027i −0.682015 0.731339i $$-0.738896\pi$$
−0.224973 + 0.974365i $$0.572229\pi$$
$$458$$ −3.41727 + 12.7534i −0.159679 + 0.595929i
$$459$$ −30.8324 + 17.8011i −1.43913 + 0.830884i
$$460$$ 11.7112 + 1.68660i 0.546035 + 0.0786380i
$$461$$ 11.6940i 0.544642i −0.962207 0.272321i $$-0.912209\pi$$
0.962207 0.272321i $$-0.0877912\pi$$
$$462$$ 1.62382 1.64194i 0.0755468 0.0763900i
$$463$$ 2.77226 2.77226i 0.128838 0.128838i −0.639747 0.768585i $$-0.720961\pi$$
0.768585 + 0.639747i $$0.220961\pi$$
$$464$$ 8.39295 + 4.84567i 0.389633 + 0.224955i
$$465$$ 7.06489 + 5.55856i 0.327626 + 0.257772i
$$466$$ −4.32947 7.49886i −0.200559 0.347378i
$$467$$ −5.41472 20.2080i −0.250563 0.935116i −0.970505 0.241081i $$-0.922498\pi$$
0.719942 0.694035i $$-0.244169\pi$$
$$468$$ 3.33020 + 3.33020i 0.153938 + 0.153938i
$$469$$ −0.201026 36.2233i −0.00928250 1.67264i
$$470$$ −9.67977 4.14779i −0.446495 0.191323i
$$471$$ −4.38327 + 7.59205i −0.201971 + 0.349823i
$$472$$ −2.46287 0.659924i −0.113363 0.0303754i
$$473$$ −1.61992 0.434055i −0.0744838 0.0199579i
$$474$$ −3.86615 + 6.69637i −0.177578 + 0.307575i
$$475$$ −6.52514 6.84976i −0.299394 0.314289i
$$476$$ 14.9828 8.76153i 0.686734 0.401584i
$$477$$ −5.71218 5.71218i −0.261543 0.261543i
$$478$$ 1.03604 + 3.86655i 0.0473873 + 0.176852i
$$479$$ 12.1419 + 21.0303i 0.554775 + 0.960899i 0.997921 + 0.0644496i $$0.0205292\pi$$
−0.443145 + 0.896450i $$0.646137\pi$$
$$480$$ 2.60802 0.311210i 0.119039 0.0142047i
$$481$$ 6.72392 + 3.88206i 0.306584 + 0.177007i
$$482$$ −12.2507 + 12.2507i −0.558005 + 0.558005i
$$483$$ 15.8602 4.34420i 0.721663 0.197668i
$$484$$ 10.4478i 0.474902i
$$485$$ −1.42755 + 9.91244i −0.0648219 + 0.450101i
$$486$$ 12.5599 7.25148i 0.569730 0.328934i
$$487$$ 0.661539 2.46890i 0.0299772 0.111876i −0.949316 0.314323i $$-0.898223\pi$$
0.979293 + 0.202446i $$0.0648892\pi$$
$$488$$ 5.86664 1.57196i 0.265570 0.0711594i
$$489$$ 14.2910 0.646262
$$490$$ −2.05910 + 15.5164i −0.0930209 + 0.700962i
$$491$$ 14.5668 0.657391 0.328695 0.944436i $$-0.393391\pi$$
0.328695 + 0.944436i $$0.393391\pi$$
$$492$$ −0.927753 + 0.248591i −0.0418264 + 0.0112073i
$$493$$ 16.4548 61.4102i 0.741088 2.76578i
$$494$$ 4.76277 2.74978i 0.214287 0.123719i
$$495$$ 1.61287 + 2.15559i 0.0724930 + 0.0968864i
$$496$$ 3.42257i 0.153678i
$$497$$ 40.8722 11.1951i 1.83337 0.502171i
$$498$$ 10.8478 10.8478i 0.486101 0.486101i
$$499$$ 26.0565 + 15.0437i 1.16645 + 0.673450i 0.952841 0.303469i $$-0.0981450\pi$$
0.213608 + 0.976919i $$0.431478\pi$$
$$500$$ 8.61640 + 7.12444i 0.385337 + 0.318615i
$$501$$ −1.20902 2.09409i −0.0540152 0.0935572i
$$502$$ 1.42334 + 5.31199i 0.0635269 + 0.237086i
$$503$$ 24.6819 + 24.6819i 1.10051 + 1.10051i 0.994349 + 0.106161i $$0.0338558\pi$$
0.106161 + 0.994349i $$0.466144\pi$$
$$504$$ −3.70057 + 2.16400i −0.164837 + 0.0963921i
$$505$$ −9.84777 + 22.9819i −0.438220 + 1.02268i
$$506$$ −1.96595 + 3.40513i −0.0873973 + 0.151377i
$$507$$ −5.16386 1.38365i −0.229335 0.0614501i
$$508$$ −15.2753 4.09300i −0.677731 0.181598i
$$509$$ −6.22521 + 10.7824i −0.275927 + 0.477920i −0.970369 0.241629i $$-0.922318\pi$$
0.694441 + 0.719549i $$0.255652\pi$$
$$510$$ −6.40013 15.9976i −0.283403 0.708384i
$$511$$ −0.129951 23.4162i −0.00574869 1.03587i
$$512$$ −0.707107 0.707107i −0.0312500 0.0312500i
$$513$$ −2.65762 9.91839i −0.117337 0.437908i
$$514$$ 8.25494 + 14.2980i 0.364110 + 0.630656i
$$515$$ −3.35456 + 4.26363i −0.147820 + 0.187878i
$$516$$ −2.29585 1.32551i −0.101069 0.0583524i
$$517$$ 2.47458 2.47458i 0.108832 0.108832i
$$518$$ −4.96944 + 5.02490i −0.218345 + 0.220782i
$$519$$ 11.0509i 0.485079i
$$520$$ −5.20403 + 3.89379i −0.228212 + 0.170754i
$$521$$ 30.6011 17.6676i 1.34066 0.774030i 0.353756 0.935338i $$-0.384904\pi$$
0.986904 + 0.161308i $$0.0515711\pi$$
$$522$$ −4.06416 + 15.1676i −0.177883 + 0.663869i
$$523$$ −15.8804 + 4.25513i −0.694400 + 0.186064i −0.588721 0.808336i $$-0.700368\pi$$
−0.105679 + 0.994400i $$0.533702\pi$$
$$524$$ −9.59282 −0.419064
$$525$$ 14.9313 + 4.30192i 0.651657 + 0.187751i
$$526$$ 9.86084 0.429953
$$527$$ −21.6875 + 5.81115i −0.944722 + 0.253137i
$$528$$ −0.225903 + 0.843083i −0.00983118 + 0.0366905i
$$529$$ −4.32938 + 2.49957i −0.188234 + 0.108677i
$$530$$ 8.92631 6.67890i 0.387734 0.290113i
$$531$$ 4.13131i 0.179283i
$$532$$ 1.32244 + 4.82807i 0.0573349 + 0.209323i
$$533$$ 1.68063 1.68063i 0.0727964 0.0727964i
$$534$$ −6.13610 3.54268i −0.265535 0.153307i
$$535$$ −9.18150 + 11.6696i −0.396951 + 0.504522i
$$536$$ 6.84567 + 11.8571i 0.295688 + 0.512147i
$$537$$ −1.36729 5.10281i −0.0590031 0.220202i
$$538$$ −6.33457 6.33457i −0.273103 0.273103i
$$539$$ −4.53322 2.55059i −0.195260 0.109862i
$$540$$ 4.50759 + 11.2670i 0.193976 + 0.484856i
$$541$$ 13.2572 22.9621i 0.569970 0.987218i −0.426598 0.904441i $$-0.640288\pi$$
0.996568 0.0827763i $$-0.0263787\pi$$
$$542$$ −22.0717 5.91408i −0.948059 0.254032i
$$543$$ −20.2922 5.43727i −0.870820 0.233336i
$$544$$ −3.28007 + 5.68124i −0.140632 + 0.243581i
$$545$$ 7.89157 18.4167i 0.338038 0.788884i
$$546$$ −4.47310 + 7.84789i −0.191431 + 0.335859i
$$547$$ −1.07403 1.07403i −0.0459223 0.0459223i 0.683773 0.729695i $$-0.260338\pi$$
−0.729695 + 0.683773i $$0.760338\pi$$
$$548$$ −2.40949 8.99233i −0.102928 0.384133i
$$549$$ 4.92046 + 8.52249i 0.210000 + 0.363731i
$$550$$ −3.26172 + 1.77906i −0.139080 + 0.0758594i
$$551$$ 15.8799 + 9.16828i 0.676507 + 0.390582i
$$552$$ −4.39494 + 4.39494i −0.187061 + 0.187061i
$$553$$ 16.8479 + 4.41431i 0.716444 + 0.187715i
$$554$$ 21.5332i 0.914858i
$$555$$ 4.20311 + 5.61742i 0.178412 + 0.238446i
$$556$$ −19.2010 + 11.0857i −0.814305 + 0.470139i
$$557$$ 4.02313 15.0145i 0.170466 0.636186i −0.826814 0.562475i $$-0.809849\pi$$
0.997280 0.0737108i $$-0.0234842\pi$$
$$558$$ 5.35657 1.43529i 0.226761 0.0607606i
$$559$$ 6.56014 0.277464
$$560$$ −2.22795 5.48053i −0.0941482 0.231595i
$$561$$ 5.72584 0.241745
$$562$$ −5.45637 + 1.46203i −0.230163 + 0.0616721i
$$563$$ −7.10355 + 26.5108i −0.299379 + 1.11730i 0.638298 + 0.769789i $$0.279639\pi$$
−0.937677 + 0.347508i $$0.887028\pi$$
$$564$$ 4.79084 2.76599i 0.201731 0.116469i
$$565$$ −0.138742 + 0.963380i −0.00583694 + 0.0405297i
$$566$$ 2.92849i 0.123093i
$$567$$ 2.84784 + 2.81641i 0.119598 + 0.118278i
$$568$$ −11.3259 + 11.3259i −0.475225 + 0.475225i
$$569$$ −5.85207 3.37869i −0.245332 0.141642i 0.372293 0.928115i $$-0.378572\pi$$
−0.617625 + 0.786473i $$0.711905\pi$$
$$570$$ 4.93451 0.588825i 0.206684 0.0246632i
$$571$$ −5.87721 10.1796i −0.245953 0.426004i 0.716446 0.697643i $$-0.245768\pi$$
−0.962399 + 0.271639i $$0.912434\pi$$
$$572$$ −0.559013 2.08627i −0.0233735 0.0872312i
$$573$$ −2.30526 2.30526i −0.0963034 0.0963034i
$$574$$ 1.09209 + 1.86755i 0.0455831 + 0.0779501i
$$575$$ −26.4493 0.641957i −1.10301 0.0267715i
$$576$$ 0.810140 1.40320i 0.0337558 0.0584668i
$$577$$ 2.17865 + 0.583767i 0.0906983 + 0.0243025i 0.303883 0.952709i $$-0.401717\pi$$
−0.213184 + 0.977012i $$0.568384\pi$$
$$578$$ 25.1483 + 6.73845i 1.04603 + 0.280283i
$$579$$ 3.01879 5.22870i 0.125457 0.217297i
$$580$$ −19.9189 8.53525i −0.827085 0.354407i
$$581$$ −30.0209 17.1111i −1.24547 0.709889i
$$582$$ −3.71992 3.71992i −0.154196 0.154196i
$$583$$ 0.958858 + 3.57851i 0.0397118 + 0.148207i
$$584$$ 4.42532 + 7.66488i 0.183121 + 0.317175i
$$585$$ −8.27641 6.51177i −0.342188 0.269229i
$$586$$ 13.2119 + 7.62790i 0.545779 + 0.315106i
$$587$$ 12.8372 12.8372i 0.529847 0.529847i −0.390680 0.920527i $$-0.627760\pi$$
0.920527 + 0.390680i $$0.127760\pi$$
$$588$$ −5.87822 5.74916i −0.242414 0.237091i
$$589$$ 6.47569i 0.266826i
$$590$$ 5.64319 + 0.812712i 0.232327 + 0.0334588i
$$591$$ 1.92835 1.11333i 0.0793218 0.0457965i
$$592$$ 0.691342 2.58012i 0.0284140 0.106042i
$$593$$ 35.1170 9.40957i 1.44208 0.386405i 0.548820 0.835940i $$-0.315077\pi$$
0.893262 + 0.449535i $$0.148410\pi$$
$$594$$ −4.03269 −0.165463
$$595$$ −30.9452 + 23.4230i −1.26863 + 0.960249i
$$596$$ 3.94236 0.161485
$$597$$ −16.4549 + 4.40908i −0.673455 + 0.180452i
$$598$$ 3.98074 14.8563i 0.162785 0.607520i
$$599$$ 30.9792 17.8858i 1.26578 0.730796i 0.291589 0.956544i $$-0.405816\pi$$
0.974186 + 0.225748i $$0.0724826\pi$$
$$600$$ −5.70817 + 1.38197i −0.233035 + 0.0564186i
$$601$$ 45.6631i 1.86264i 0.364204 + 0.931319i $$0.381341\pi$$
−0.364204 + 0.931319i $$0.618659\pi$$
$$602$$ −1.51345 + 5.77629i −0.0616835 + 0.235424i
$$603$$ −15.6863 + 15.6863i −0.638796 + 0.638796i
$$604$$ 17.2732 + 9.97267i 0.702835 + 0.405782i
$$605$$ 2.76811 + 23.1975i 0.112540 + 0.943113i
$$606$$ −6.56707 11.3745i −0.266769 0.462057i
$$607$$ −0.303188 1.13151i −0.0123060 0.0459267i 0.959500 0.281709i $$-0.0909014\pi$$
−0.971806 + 0.235783i $$0.924235\pi$$
$$608$$ −1.33788 1.33788i −0.0542584 0.0542584i
$$609$$ −30.1177 + 0.167142i −1.22043 + 0.00677293i
$$610$$ −12.6093 + 5.04460i −0.510536 + 0.204250i
$$611$$ −6.84463 + 11.8553i −0.276904 + 0.479612i
$$612$$ −10.2671 2.75105i −0.415022 0.111205i
$$613$$ 13.4629 + 3.60737i 0.543760 + 0.145700i 0.520235 0.854023i $$-0.325844\pi$$
0.0235253 + 0.999723i $$0.492511\pi$$
$$614$$ −4.87339 + 8.44095i −0.196674 + 0.340649i
$$615$$ 1.99404 0.797755i 0.0804076 0.0321686i
$$616$$ 1.96595 0.0109103i 0.0792105 0.000439588i
$$617$$ 22.7725 + 22.7725i 0.916788 + 0.916788i 0.996794 0.0800065i $$-0.0254941\pi$$
−0.0800065 + 0.996794i $$0.525494\pi$$
$$618$$ −0.737588 2.75272i −0.0296702 0.110731i
$$619$$ −11.3386 19.6391i −0.455738 0.789361i 0.542992 0.839738i $$-0.317291\pi$$
−0.998730 + 0.0503763i $$0.983958\pi$$
$$620$$ 0.906797 + 7.59919i 0.0364178 + 0.305191i
$$621$$ −24.8695 14.3584i −0.997978 0.576183i
$$622$$ −0.0891090 + 0.0891090i −0.00357294 + 0.00357294i
$$623$$ −4.04497 + 15.4382i −0.162058 + 0.618520i
$$624$$ 3.41421i 0.136678i
$$625$$ −21.0187 13.5356i −0.840749 0.541425i
$$626$$ −10.1273 + 5.84698i −0.404767 + 0.233692i
$$627$$ −0.427421 + 1.59516i −0.0170696 + 0.0637045i
$$628$$ −7.20903 + 1.93165i −0.287672 + 0.0770814i
$$629$$ −17.5231 −0.698690
$$630$$ 7.64310 5.78521i 0.304508 0.230488i
$$631$$ 32.4210 1.29066 0.645330 0.763904i $$-0.276720\pi$$
0.645330 + 0.763904i $$0.276720\pi$$
$$632$$ −6.35854 + 1.70376i −0.252929 + 0.0677721i
$$633$$ 3.04998 11.3827i 0.121226 0.452421i
$$634$$ 9.47968 5.47310i 0.376486 0.217364i
$$635$$ 35.0004 + 5.04063i 1.38895 + 0.200031i
$$636$$ 5.85629i 0.232217i
$$637$$ 19.7106 + 5.04765i 0.780963 + 0.199995i
$$638$$ 5.09214 5.09214i 0.201600 0.201600i
$$639$$ −22.4755 12.9762i −0.889116 0.513331i
$$640$$ 1.75735 + 1.38266i 0.0694652 + 0.0546543i
$$641$$ 0.428070 + 0.741439i 0.0169077 + 0.0292851i 0.874355 0.485286i $$-0.161285\pi$$
−0.857448 + 0.514571i $$0.827951\pi$$
$$642$$ −2.01879 7.53423i −0.0796754 0.297353i
$$643$$ −16.4254 16.4254i −0.647754 0.647754i 0.304696 0.952450i $$-0.401445\pi$$
−0.952450 + 0.304696i $$0.901445\pi$$
$$644$$ 12.1628 + 6.93250i 0.479283 + 0.273179i
$$645$$ 5.44871 + 2.33478i 0.214543 + 0.0919317i
$$646$$ −6.20607 + 10.7492i −0.244174 + 0.422922i
$$647$$ −45.8316 12.2805i −1.80183 0.482798i −0.807564 0.589779i $$-0.799215\pi$$
−0.994261 + 0.106982i $$0.965881\pi$$
$$648$$ −1.46227 0.391815i −0.0574435 0.0153919i
$$649$$ −0.947323 + 1.64081i −0.0371857 + 0.0644075i
$$650$$ 10.5229 10.0242i 0.412744 0.393183i
$$651$$ 5.36927 + 9.18179i 0.210438 + 0.359863i
$$652$$ 8.60305 + 8.60305i 0.336921 + 0.336921i
$$653$$ 6.80004 + 25.3781i 0.266106 + 0.993121i 0.961570 + 0.274560i $$0.0885323\pi$$
−0.695464 + 0.718561i $$0.744801\pi$$
$$654$$ 5.26256 + 9.11502i 0.205782 + 0.356425i
$$655$$ 21.2991 2.54158i 0.832225 0.0993077i
$$656$$ −0.708148 0.408849i −0.0276485 0.0159629i
$$657$$ −10.1403 + 10.1403i −0.395609 + 0.395609i
$$658$$ −8.85964 8.76184i −0.345385 0.341572i
$$659$$ 26.2355i 1.02199i 0.859583 + 0.510996i $$0.170723\pi$$
−0.859583 + 0.510996i $$0.829277\pi$$
$$660$$ 0.278205 1.93176i 0.0108291 0.0751937i
$$661$$ −12.6197 + 7.28597i −0.490848 + 0.283391i −0.724926 0.688827i $$-0.758126\pi$$
0.234078 + 0.972218i $$0.424793\pi$$
$$662$$ 1.41325 5.27432i 0.0549275 0.204992i
$$663$$ −21.6345 + 5.79695i −0.840215 + 0.225135i
$$664$$ 13.0605 0.506847
$$665$$ −4.21541 10.3695i −0.163466 0.402110i
$$666$$ 4.32800 0.167706
$$667$$ 49.5336 13.2725i 1.91795 0.513913i
$$668$$ 0.532802 1.98844i 0.0206147 0.0769352i
$$669$$ −4.51371 + 2.60599i −0.174510 + 0.100753i
$$670$$ −18.3410 24.5127i −0.708576 0.947007i
$$671$$ 4.51312i 0.174227i
$$672$$ 3.00626 + 0.787671i 0.115969 + 0.0303851i
$$673$$ −16.4201 + 16.4201i −0.632950 + 0.632950i −0.948807 0.315857i $$-0.897708\pi$$
0.315857 + 0.948807i $$0.397708\pi$$
$$674$$ 25.0856 + 14.4832i 0.966263 + 0.557872i
$$675$$ −12.9934 23.8221i −0.500117 0.916913i
$$676$$ −2.27565 3.94154i −0.0875249 0.151598i
$$677$$ −5.89172 21.9882i −0.226437 0.845075i −0.981824 0.189796i $$-0.939217\pi$$
0.755386 0.655280i $$-0.227449\pi$$
$$678$$ −0.361535 0.361535i −0.0138847 0.0138847i
$$679$$ −5.86774 + 10.2947i −0.225183 + 0.395076i
$$680$$ 5.77756 13.4832i 0.221559 0.517057i
$$681$$ 0.394008 0.682442i 0.0150984 0.0261512i
$$682$$ −2.45656 0.658233i −0.0940665 0.0252050i
$$683$$ −29.5964 7.93034i −1.13248 0.303446i −0.356554 0.934275i $$-0.616048\pi$$
−0.775922 + 0.630829i $$0.782715\pi$$
$$684$$ 1.53283 2.65494i 0.0586091 0.101514i
$$685$$ 7.73231 + 19.3274i 0.295436 + 0.738463i
$$686$$ −8.99183 + 16.1910i −0.343310 + 0.618173i
$$687$$ 10.9664 + 10.9664i 0.418394 + 0.418394i
$$688$$ −0.584136 2.18003i −0.0222700 0.0831127i
$$689$$ −7.24590 12.5503i −0.276047 0.478127i
$$690$$ 8.59373 10.9226i 0.327158 0.415815i
$$691$$ 27.7284 + 16.0090i 1.05484 + 0.609012i 0.924000 0.382392i $$-0.124900\pi$$
0.130839 + 0.991404i $$0.458233\pi$$
$$692$$ 6.65251 6.65251i 0.252891 0.252891i
$$693$$ 0.841516 + 3.07228i 0.0319665 + 0.116706i
$$694$$ 21.5379i 0.817567i
$$695$$ 39.6952 29.7010i 1.50573 1.12662i
$$696$$ 9.85849 5.69180i 0.373685 0.215747i
$$697$$ −1.38836 + 5.18143i −0.0525879 + 0.196261i
$$698$$ 12.1459 3.25450i 0.459731 0.123184i
$$699$$ −10.1709 −0.384699
$$700$$ 6.39880 + 11.5782i 0.241852 + 0.437616i
$$701$$ −18.5294 −0.699844 −0.349922 0.936779i $$-0.613792\pi$$
−0.349922 + 0.936779i $$0.613792\pi$$
$$702$$ 15.2371 4.08277i 0.575088 0.154094i
$$703$$ 1.30806 4.88174i 0.0493343 0.184118i
$$704$$ −0.643519 + 0.371536i −0.0242535 + 0.0140028i
$$705$$ −9.90433 + 7.41068i −0.373019 + 0.279103i
$$706$$ 0.689506i 0.0259499i
$$707$$ −20.8025 + 21.0347i −0.782360 + 0.791092i
$$708$$ −2.11777 + 2.11777i −0.0795905 + 0.0795905i
$$709$$ −23.1074 13.3411i −0.867818 0.501035i −0.00119522 0.999999i $$-0.500380\pi$$
−0.866622 + 0.498965i $$0.833714\pi$$
$$710$$ 22.1464 28.1479i 0.831138 1.05637i
$$711$$ −5.33302 9.23706i −0.200004 0.346417i
$$712$$ −1.56121 5.82653i −0.0585089 0.218358i
$$713$$ −12.8059 12.8059i −0.479585 0.479585i
$$714$$ −0.113139 20.3869i −0.00423413 0.762960i
$$715$$ 1.79393 + 4.48406i 0.0670893 + 0.167694i
$$716$$ 2.24874 3.89494i 0.0840395 0.145561i
$$717$$ 4.54170 + 1.21695i 0.169613 + 0.0454477i
$$718$$ −21.3458 5.71959i −0.796618 0.213453i
$$719$$ −15.9890 + 27.6937i −0.596288 + 1.03280i 0.397076 + 0.917786i $$0.370025\pi$$
−0.993364 + 0.115015i $$0.963308\pi$$
$$720$$ −1.42699 + 3.33020i −0.0531809 + 0.124109i
$$721$$ −5.54117 + 3.24033i −0.206364 + 0.120676i
$$722$$ 10.9037 + 10.9037i 0.405793 + 0.405793i
$$723$$ 5.26706 + 19.6569i 0.195884 + 0.731049i
$$724$$ −8.94250 15.4889i −0.332346 0.575639i
$$725$$ 46.4875 + 13.6735i 1.72650 + 0.507822i
$$726$$ −10.6280 6.13610i −0.394443 0.227732i
$$727$$ 21.4539 21.4539i 0.795683 0.795683i −0.186729 0.982412i $$-0.559789\pi$$
0.982412 + 0.186729i $$0.0597885\pi$$
$$728$$ −7.41711 + 2.03159i −0.274897 + 0.0752958i
$$729$$ 21.5770i 0.799146i
$$730$$ −11.8564 15.8460i −0.438824 0.586486i
$$731$$ −12.8222 + 7.40288i −0.474245 + 0.273805i
$$732$$ 1.84645 6.89105i 0.0682468 0.254700i
$$733$$ −12.5691 + 3.36789i −0.464252 + 0.124396i −0.483360 0.875422i $$-0.660584\pi$$
0.0191085 + 0.999817i $$0.493917\pi$$
$$734$$ 13.4109 0.495006
$$735$$ 14.5747 + 11.2075i 0.537597 + 0.413396i
$$736$$ −5.29142 −0.195044
$$737$$ 9.82700 2.63314i 0.361982 0.0969928i
$$738$$ 0.342909 1.27976i 0.0126227 0.0471084i
$$739$$ −3.12136 + 1.80212i −0.114821 + 0.0662920i −0.556311 0.830974i $$-0.687784\pi$$
0.441490 + 0.897266i $$0.354450\pi$$
$$740$$ −0.851405 + 5.91186i −0.0312983 + 0.217324i
$$741$$ 6.45988i 0.237309i
$$742$$ 12.7223 3.48473i 0.467052 0.127928i
$$743$$ 31.1070 31.1070i 1.14121 1.14121i 0.152977 0.988230i $$-0.451114\pi$$
0.988230 0.152977i $$-0.0488859\pi$$
$$744$$ −3.48160 2.01010i −0.127642 0.0736939i
$$745$$ −8.75328 + 1.04451i −0.320695 + 0.0382680i
$$746$$ −7.48320 12.9613i −0.273979 0.474546i
$$747$$ 5.47705 + 20.4406i 0.200395 + 0.747884i
$$748$$ 3.44690 + 3.44690i 0.126031 + 0.126031i
$$749$$ −15.1663 + 8.86884i −0.554164 + 0.324060i
$$750$$ 12.3078 4.58076i 0.449417 0.167266i
$$751$$ 25.5141 44.1917i 0.931023 1.61258i 0.149447 0.988770i $$-0.452251\pi$$
0.781576 0.623810i $$-0.214416\pi$$
$$752$$ 4.54913 + 1.21894i 0.165890 + 0.0444501i
$$753$$ 6.23954 + 1.67188i 0.227382 + 0.0609267i
$$754$$ −14.0848 + 24.3955i −0.512936 + 0.888432i
$$755$$ −40.9941 17.5660i −1.49193 0.639293i
$$756$$ 0.0796836 + 14.3584i 0.00289807 + 0.522210i
$$757$$ 26.8141 + 26.8141i 0.974576 + 0.974576i 0.999685 0.0251083i $$-0.00799305\pi$$
−0.0251083 + 0.999685i $$0.507993\pi$$
$$758$$ 0.444610 + 1.65931i 0.0161490 + 0.0602687i
$$759$$ 2.30924 + 3.99972i 0.0838200 + 0.145181i
$$760$$ 3.32499 + 2.61606i 0.120610 + 0.0948944i
$$761$$ −25.8753 14.9391i −0.937980 0.541543i −0.0486532 0.998816i $$-0.515493\pi$$
−0.889326 + 0.457273i $$0.848826\pi$$
$$762$$ −13.1349 + 13.1349i −0.475827 + 0.475827i
$$763$$ 16.6702 16.8563i 0.603503 0.610239i
$$764$$ 2.77548i 0.100413i
$$765$$ 23.5250 + 3.38799i 0.850549 + 0.122493i
$$766$$ −9.05698 + 5.22905i −0.327242 + 0.188933i
$$767$$ 1.91818 7.15874i 0.0692614 0.258487i
$$768$$ −1.13459 + 0.304013i −0.0409410 + 0.0109701i
$$769$$ 44.7341 1.61315 0.806576 0.591130i $$-0.201318\pi$$
0.806576 + 0.591130i $$0.201318\pi$$
$$770$$ −4.36215 + 0.545096i −0.157201 + 0.0196439i
$$771$$ 19.3927