# Properties

 Label 70.2.k.a.47.2 Level $70$ Weight $2$ Character 70.47 Analytic conductor $0.559$ Analytic rank $0$ Dimension $16$ CM no Inner twists $4$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$70 = 2 \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 70.k (of order $$12$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.558952814149$$ Analytic rank: $$0$$ Dimension: $$16$$ Relative dimension: $$4$$ over $$\Q(\zeta_{12})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{16} + \cdots)$$ Defining polynomial: $$x^{16} + 10 x^{14} + 61 x^{12} + 266 x^{10} + 852 x^{8} + 1438 x^{6} + 1933 x^{4} + 3038 x^{2} + 2401$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

## Embedding invariants

 Embedding label 47.2 Root $$0.144868 + 1.25092i$$ of defining polynomial Character $$\chi$$ $$=$$ 70.47 Dual form 70.2.k.a.3.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.965926 + 0.258819i) q^{2} +(0.523277 - 1.95290i) q^{3} +(0.866025 - 0.500000i) q^{4} +(-2.03078 - 0.935904i) q^{5} +2.02179i q^{6} +(1.83959 - 1.90155i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(-0.941911 - 0.543813i) q^{9} +O(q^{10})$$ $$q+(-0.965926 + 0.258819i) q^{2} +(0.523277 - 1.95290i) q^{3} +(0.866025 - 0.500000i) q^{4} +(-2.03078 - 0.935904i) q^{5} +2.02179i q^{6} +(1.83959 - 1.90155i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(-0.941911 - 0.543813i) q^{9} +(2.20382 + 0.378409i) q^{10} +(2.01999 + 3.49872i) q^{11} +(-0.523277 - 1.95290i) q^{12} +(0.204875 + 0.204875i) q^{13} +(-1.28475 + 2.31288i) q^{14} +(-2.89039 + 3.47617i) q^{15} +(0.500000 - 0.866025i) q^{16} +(-1.97024 - 0.527924i) q^{17} +(1.05057 + 0.281498i) q^{18} +(-3.10166 + 5.37224i) q^{19} +(-2.22666 + 0.204875i) q^{20} +(-2.75092 - 4.58757i) q^{21} +(-2.85669 - 2.85669i) q^{22} +(1.17456 + 4.38350i) q^{23} +(1.01089 + 1.75092i) q^{24} +(3.24817 + 3.80124i) q^{25} +(-0.250919 - 0.144868i) q^{26} +(2.73397 - 2.73397i) q^{27} +(0.642357 - 2.56659i) q^{28} -7.15869i q^{29} +(1.89220 - 4.10581i) q^{30} +(6.33287 - 3.65628i) q^{31} +(-0.258819 + 0.965926i) q^{32} +(7.88965 - 2.11403i) q^{33} +2.03974 q^{34} +(-5.51548 + 2.13996i) q^{35} -1.08763 q^{36} +(-4.46814 + 1.19723i) q^{37} +(1.60554 - 5.99195i) q^{38} +(0.507306 - 0.292893i) q^{39} +(2.09777 - 0.774197i) q^{40} +2.58745i q^{41} +(3.84454 + 3.71926i) q^{42} +(-4.97801 + 4.97801i) q^{43} +(3.49872 + 2.01999i) q^{44} +(1.40386 + 1.98590i) q^{45} +(-2.26907 - 3.93014i) q^{46} +(-0.0815604 - 0.304388i) q^{47} +(-1.42962 - 1.42962i) q^{48} +(-0.231803 - 6.99616i) q^{49} +(-4.12132 - 2.83103i) q^{50} +(-2.06196 + 3.57142i) q^{51} +(0.279864 + 0.0749894i) q^{52} +(-8.00039 - 2.14370i) q^{53} +(-1.93321 + 3.34841i) q^{54} +(-0.827689 - 8.99566i) q^{55} +(0.0438127 + 2.64539i) q^{56} +(8.86840 + 8.86840i) q^{57} +(1.85281 + 6.91477i) q^{58} +(0.427702 + 0.740802i) q^{59} +(-0.765062 + 4.45565i) q^{60} +(-5.99356 - 3.46038i) q^{61} +(-5.17076 + 5.17076i) q^{62} +(-2.76682 + 0.790700i) q^{63} -1.00000i q^{64} +(-0.224313 - 0.607800i) q^{65} +(-7.07367 + 4.08398i) q^{66} +(-0.817530 + 3.05106i) q^{67} +(-1.97024 + 0.527924i) q^{68} +9.17514 q^{69} +(4.77369 - 3.49455i) q^{70} +7.12240 q^{71} +(1.05057 - 0.281498i) q^{72} +(-2.98311 + 11.1331i) q^{73} +(4.00603 - 2.31288i) q^{74} +(9.12312 - 4.35423i) q^{75} +6.20333i q^{76} +(10.3690 + 2.59511i) q^{77} +(-0.414214 + 0.414214i) q^{78} +(-4.39618 - 2.53813i) q^{79} +(-1.82591 + 1.29076i) q^{80} +(-5.53997 - 9.59552i) q^{81} +(-0.669683 - 2.49929i) q^{82} +(-3.85372 - 3.85372i) q^{83} +(-4.67615 - 2.59749i) q^{84} +(3.50704 + 2.91605i) q^{85} +(3.51999 - 6.09680i) q^{86} +(-13.9802 - 3.74598i) q^{87} +(-3.90231 - 1.04562i) q^{88} +(-1.53615 + 2.66069i) q^{89} +(-1.87002 - 1.55489i) q^{90} +(0.766467 - 0.0126942i) q^{91} +(3.20895 + 3.20895i) q^{92} +(-3.82650 - 14.2807i) q^{93} +(0.157563 + 0.272906i) q^{94} +(11.3267 - 8.00700i) q^{95} +(1.75092 + 1.01089i) q^{96} +(-6.63103 + 6.63103i) q^{97} +(2.03464 + 6.69778i) q^{98} -4.39398i q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$16q - 12q^{5} + 8q^{7} + O(q^{10})$$ $$16q - 12q^{5} + 8q^{7} - 12q^{10} - 12q^{11} + 16q^{15} + 8q^{16} - 36q^{17} - 8q^{18} - 28q^{21} - 8q^{22} - 4q^{23} + 12q^{25} + 12q^{26} + 4q^{28} + 20q^{30} + 24q^{31} + 48q^{33} + 8q^{35} - 8q^{36} + 4q^{37} + 24q^{38} + 36q^{42} - 8q^{43} - 12q^{45} - 8q^{46} + 12q^{47} - 32q^{50} - 16q^{51} - 28q^{53} - 4q^{56} + 8q^{57} - 32q^{58} + 8q^{60} - 12q^{61} - 36q^{63} - 8q^{65} + 32q^{67} - 36q^{68} - 12q^{70} + 16q^{71} - 8q^{72} - 12q^{73} - 48q^{75} + 16q^{77} + 16q^{78} - 12q^{80} - 48q^{82} + 24q^{85} + 12q^{86} - 24q^{87} - 4q^{88} - 16q^{91} + 8q^{92} + 28q^{93} + 20q^{95} + 12q^{96} + 40q^{98} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/70\mathbb{Z}\right)^\times$$.

 $$n$$ $$31$$ $$57$$ $$\chi(n)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{4}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.965926 + 0.258819i −0.683013 + 0.183013i
$$3$$ 0.523277 1.95290i 0.302114 1.12751i −0.633287 0.773917i $$-0.718295\pi$$
0.935401 0.353588i $$-0.115039\pi$$
$$4$$ 0.866025 0.500000i 0.433013 0.250000i
$$5$$ −2.03078 0.935904i −0.908194 0.418549i
$$6$$ 2.02179i 0.825391i
$$7$$ 1.83959 1.90155i 0.695300 0.718719i
$$8$$ −0.707107 + 0.707107i −0.250000 + 0.250000i
$$9$$ −0.941911 0.543813i −0.313970 0.181271i
$$10$$ 2.20382 + 0.378409i 0.696908 + 0.119663i
$$11$$ 2.01999 + 3.49872i 0.609049 + 1.05490i 0.991397 + 0.130886i $$0.0417820\pi$$
−0.382349 + 0.924018i $$0.624885\pi$$
$$12$$ −0.523277 1.95290i −0.151057 0.563753i
$$13$$ 0.204875 + 0.204875i 0.0568221 + 0.0568221i 0.734947 0.678125i $$-0.237207\pi$$
−0.678125 + 0.734947i $$0.737207\pi$$
$$14$$ −1.28475 + 2.31288i −0.343364 + 0.618143i
$$15$$ −2.89039 + 3.47617i −0.746295 + 0.897544i
$$16$$ 0.500000 0.866025i 0.125000 0.216506i
$$17$$ −1.97024 0.527924i −0.477853 0.128040i 0.0118498 0.999930i $$-0.496228\pi$$
−0.489703 + 0.871890i $$0.662895\pi$$
$$18$$ 1.05057 + 0.281498i 0.247621 + 0.0663498i
$$19$$ −3.10166 + 5.37224i −0.711571 + 1.23248i 0.252697 + 0.967545i $$0.418682\pi$$
−0.964267 + 0.264931i $$0.914651\pi$$
$$20$$ −2.22666 + 0.204875i −0.497897 + 0.0458114i
$$21$$ −2.75092 4.58757i −0.600300 1.00109i
$$22$$ −2.85669 2.85669i −0.609049 0.609049i
$$23$$ 1.17456 + 4.38350i 0.244912 + 0.914023i 0.973428 + 0.228994i $$0.0735437\pi$$
−0.728516 + 0.685029i $$0.759790\pi$$
$$24$$ 1.01089 + 1.75092i 0.206348 + 0.357405i
$$25$$ 3.24817 + 3.80124i 0.649633 + 0.760248i
$$26$$ −0.250919 0.144868i −0.0492094 0.0284110i
$$27$$ 2.73397 2.73397i 0.526152 0.526152i
$$28$$ 0.642357 2.56659i 0.121394 0.485040i
$$29$$ 7.15869i 1.32934i −0.747139 0.664668i $$-0.768573\pi$$
0.747139 0.664668i $$-0.231427\pi$$
$$30$$ 1.89220 4.10581i 0.345467 0.749616i
$$31$$ 6.33287 3.65628i 1.13742 0.656688i 0.191627 0.981468i $$-0.438624\pi$$
0.945790 + 0.324780i $$0.105290\pi$$
$$32$$ −0.258819 + 0.965926i −0.0457532 + 0.170753i
$$33$$ 7.88965 2.11403i 1.37341 0.368005i
$$34$$ 2.03974 0.349813
$$35$$ −5.51548 + 2.13996i −0.932287 + 0.361719i
$$36$$ −1.08763 −0.181271
$$37$$ −4.46814 + 1.19723i −0.734558 + 0.196824i −0.606658 0.794963i $$-0.707490\pi$$
−0.127900 + 0.991787i $$0.540824\pi$$
$$38$$ 1.60554 5.99195i 0.260453 0.972023i
$$39$$ 0.507306 0.292893i 0.0812340 0.0469005i
$$40$$ 2.09777 0.774197i 0.331686 0.122411i
$$41$$ 2.58745i 0.404093i 0.979376 + 0.202046i $$0.0647591\pi$$
−0.979376 + 0.202046i $$0.935241\pi$$
$$42$$ 3.84454 + 3.71926i 0.593225 + 0.573895i
$$43$$ −4.97801 + 4.97801i −0.759140 + 0.759140i −0.976166 0.217026i $$-0.930364\pi$$
0.217026 + 0.976166i $$0.430364\pi$$
$$44$$ 3.49872 + 2.01999i 0.527452 + 0.304524i
$$45$$ 1.40386 + 1.98590i 0.209275 + 0.296041i
$$46$$ −2.26907 3.93014i −0.334556 0.579468i
$$47$$ −0.0815604 0.304388i −0.0118968 0.0443995i 0.959722 0.280950i $$-0.0906497\pi$$
−0.971619 + 0.236551i $$0.923983\pi$$
$$48$$ −1.42962 1.42962i −0.206348 0.206348i
$$49$$ −0.231803 6.99616i −0.0331148 0.999452i
$$50$$ −4.12132 2.83103i −0.582843 0.400368i
$$51$$ −2.06196 + 3.57142i −0.288732 + 0.500099i
$$52$$ 0.279864 + 0.0749894i 0.0388102 + 0.0103992i
$$53$$ −8.00039 2.14370i −1.09894 0.294460i −0.336606 0.941646i $$-0.609279\pi$$
−0.762332 + 0.647186i $$0.775946\pi$$
$$54$$ −1.93321 + 3.34841i −0.263076 + 0.455661i
$$55$$ −0.827689 8.99566i −0.111606 1.21297i
$$56$$ 0.0438127 + 2.64539i 0.00585472 + 0.353505i
$$57$$ 8.86840 + 8.86840i 1.17465 + 1.17465i
$$58$$ 1.85281 + 6.91477i 0.243285 + 0.907953i
$$59$$ 0.427702 + 0.740802i 0.0556821 + 0.0964442i 0.892523 0.451002i $$-0.148933\pi$$
−0.836841 + 0.547446i $$0.815600\pi$$
$$60$$ −0.765062 + 4.45565i −0.0987691 + 0.575222i
$$61$$ −5.99356 3.46038i −0.767397 0.443057i 0.0645484 0.997915i $$-0.479439\pi$$
−0.831945 + 0.554858i $$0.812773\pi$$
$$62$$ −5.17076 + 5.17076i −0.656688 + 0.656688i
$$63$$ −2.76682 + 0.790700i −0.348587 + 0.0996189i
$$64$$ 1.00000i 0.125000i
$$65$$ −0.224313 0.607800i −0.0278226 0.0753883i
$$66$$ −7.07367 + 4.08398i −0.870708 + 0.502704i
$$67$$ −0.817530 + 3.05106i −0.0998772 + 0.372747i −0.997714 0.0675822i $$-0.978472\pi$$
0.897837 + 0.440329i $$0.145138\pi$$
$$68$$ −1.97024 + 0.527924i −0.238926 + 0.0640201i
$$69$$ 9.17514 1.10456
$$70$$ 4.77369 3.49455i 0.570565 0.417679i
$$71$$ 7.12240 0.845273 0.422637 0.906299i $$-0.361105\pi$$
0.422637 + 0.906299i $$0.361105\pi$$
$$72$$ 1.05057 0.281498i 0.123810 0.0331749i
$$73$$ −2.98311 + 11.1331i −0.349147 + 1.30303i 0.538545 + 0.842597i $$0.318974\pi$$
−0.887692 + 0.460438i $$0.847693\pi$$
$$74$$ 4.00603 2.31288i 0.465691 0.268867i
$$75$$ 9.12312 4.35423i 1.05345 0.502783i
$$76$$ 6.20333i 0.711571i
$$77$$ 10.3690 + 2.59511i 1.18165 + 0.295740i
$$78$$ −0.414214 + 0.414214i −0.0469005 + 0.0469005i
$$79$$ −4.39618 2.53813i −0.494609 0.285562i 0.231876 0.972745i $$-0.425514\pi$$
−0.726484 + 0.687183i $$0.758847\pi$$
$$80$$ −1.82591 + 1.29076i −0.204143 + 0.144311i
$$81$$ −5.53997 9.59552i −0.615553 1.06617i
$$82$$ −0.669683 2.49929i −0.0739541 0.276000i
$$83$$ −3.85372 3.85372i −0.423001 0.423001i 0.463235 0.886236i $$-0.346689\pi$$
−0.886236 + 0.463235i $$0.846689\pi$$
$$84$$ −4.67615 2.59749i −0.510210 0.283410i
$$85$$ 3.50704 + 2.91605i 0.380392 + 0.316290i
$$86$$ 3.51999 6.09680i 0.379570 0.657434i
$$87$$ −13.9802 3.74598i −1.49883 0.401611i
$$88$$ −3.90231 1.04562i −0.415988 0.111464i
$$89$$ −1.53615 + 2.66069i −0.162832 + 0.282033i −0.935883 0.352310i $$-0.885396\pi$$
0.773051 + 0.634343i $$0.218729\pi$$
$$90$$ −1.87002 1.55489i −0.197117 0.163900i
$$91$$ 0.766467 0.0126942i 0.0803475 0.00133071i
$$92$$ 3.20895 + 3.20895i 0.334556 + 0.334556i
$$93$$ −3.82650 14.2807i −0.396789 1.48084i
$$94$$ 0.157563 + 0.272906i 0.0162513 + 0.0281481i
$$95$$ 11.3267 8.00700i 1.16210 0.821501i
$$96$$ 1.75092 + 1.01089i 0.178702 + 0.103174i
$$97$$ −6.63103 + 6.63103i −0.673279 + 0.673279i −0.958471 0.285191i $$-0.907943\pi$$
0.285191 + 0.958471i $$0.407943\pi$$
$$98$$ 2.03464 + 6.69778i 0.205530 + 0.676578i
$$99$$ 4.39398i 0.441611i
$$100$$ 4.71361 + 1.66789i 0.471361 + 0.166789i
$$101$$ −8.56364 + 4.94422i −0.852114 + 0.491968i −0.861364 0.507989i $$-0.830389\pi$$
0.00924966 + 0.999957i $$0.497056\pi$$
$$102$$ 1.06735 3.98340i 0.105683 0.394416i
$$103$$ 4.13612 1.10827i 0.407544 0.109201i −0.0492221 0.998788i $$-0.515674\pi$$
0.456766 + 0.889587i $$0.349008\pi$$
$$104$$ −0.289737 −0.0284110
$$105$$ 1.29299 + 11.8910i 0.126183 + 1.16044i
$$106$$ 8.28261 0.804479
$$107$$ 14.3653 3.84918i 1.38875 0.372114i 0.514457 0.857516i $$-0.327993\pi$$
0.874291 + 0.485402i $$0.161327\pi$$
$$108$$ 1.00070 3.73467i 0.0962926 0.359369i
$$109$$ −11.4586 + 6.61564i −1.09754 + 0.633664i −0.935573 0.353133i $$-0.885116\pi$$
−0.161964 + 0.986797i $$0.551783\pi$$
$$110$$ 3.12773 + 8.47492i 0.298218 + 0.808052i
$$111$$ 9.35230i 0.887681i
$$112$$ −0.726997 2.54391i −0.0686947 0.240377i
$$113$$ 9.75336 9.75336i 0.917519 0.917519i −0.0793296 0.996848i $$-0.525278\pi$$
0.996848 + 0.0793296i $$0.0252780\pi$$
$$114$$ −10.8615 6.27091i −1.01728 0.587324i
$$115$$ 1.71727 10.0012i 0.160136 0.932618i
$$116$$ −3.57935 6.19961i −0.332334 0.575619i
$$117$$ −0.0815604 0.304388i −0.00754026 0.0281406i
$$118$$ −0.604862 0.604862i −0.0556821 0.0556821i
$$119$$ −4.62831 + 2.77535i −0.424276 + 0.254416i
$$120$$ −0.414214 4.50184i −0.0378124 0.410960i
$$121$$ −2.66069 + 4.60846i −0.241881 + 0.418951i
$$122$$ 6.68495 + 1.79123i 0.605227 + 0.162170i
$$123$$ 5.05303 + 1.35396i 0.455617 + 0.122082i
$$124$$ 3.65628 6.33287i 0.328344 0.568708i
$$125$$ −3.03873 10.7595i −0.271792 0.962356i
$$126$$ 2.46790 1.47986i 0.219858 0.131837i
$$127$$ −2.19984 2.19984i −0.195204 0.195204i 0.602736 0.797940i $$-0.294077\pi$$
−0.797940 + 0.602736i $$0.794077\pi$$
$$128$$ 0.258819 + 0.965926i 0.0228766 + 0.0853766i
$$129$$ 7.11667 + 12.3264i 0.626587 + 1.08528i
$$130$$ 0.373980 + 0.529033i 0.0328002 + 0.0463993i
$$131$$ −6.32091 3.64938i −0.552260 0.318848i 0.197773 0.980248i $$-0.436629\pi$$
−0.750033 + 0.661400i $$0.769963\pi$$
$$132$$ 5.77563 5.77563i 0.502704 0.502704i
$$133$$ 4.50980 + 15.7807i 0.391049 + 1.36836i
$$134$$ 3.15869i 0.272870i
$$135$$ −8.11083 + 2.99337i −0.698069 + 0.257628i
$$136$$ 1.76647 1.01987i 0.151473 0.0874531i
$$137$$ 1.85804 6.93431i 0.158743 0.592438i −0.840012 0.542567i $$-0.817452\pi$$
0.998756 0.0498710i $$-0.0158810\pi$$
$$138$$ −8.86251 + 2.37470i −0.754427 + 0.202148i
$$139$$ 12.4172 1.05321 0.526605 0.850110i $$-0.323465\pi$$
0.526605 + 0.850110i $$0.323465\pi$$
$$140$$ −3.70657 + 4.61100i −0.313262 + 0.389701i
$$141$$ −0.637116 −0.0536549
$$142$$ −6.87971 + 1.84341i −0.577332 + 0.154696i
$$143$$ −0.302955 + 1.13064i −0.0253344 + 0.0945492i
$$144$$ −0.941911 + 0.543813i −0.0784926 + 0.0453177i
$$145$$ −6.69985 + 14.5378i −0.556392 + 1.20730i
$$146$$ 11.5259i 0.953887i
$$147$$ −13.7841 3.20824i −1.13689 0.264611i
$$148$$ −3.27091 + 3.27091i −0.268867 + 0.268867i
$$149$$ 20.7399 + 11.9742i 1.69908 + 0.980963i 0.946637 + 0.322302i $$0.104457\pi$$
0.752440 + 0.658661i $$0.228877\pi$$
$$150$$ −7.68530 + 6.56710i −0.627502 + 0.536202i
$$151$$ 1.77167 + 3.06862i 0.144176 + 0.249721i 0.929065 0.369916i $$-0.120613\pi$$
−0.784889 + 0.619636i $$0.787280\pi$$
$$152$$ −1.60554 5.99195i −0.130226 0.486012i
$$153$$ 1.56870 + 1.56870i 0.126822 + 0.126822i
$$154$$ −10.6873 + 0.177002i −0.861207 + 0.0142632i
$$155$$ −16.2826 + 1.49816i −1.30785 + 0.120335i
$$156$$ 0.292893 0.507306i 0.0234502 0.0406170i
$$157$$ −5.91389 1.58462i −0.471980 0.126467i 0.0149859 0.999888i $$-0.495230\pi$$
−0.486966 + 0.873421i $$0.661896\pi$$
$$158$$ 4.90330 + 1.31384i 0.390086 + 0.104523i
$$159$$ −8.37284 + 14.5022i −0.664010 + 1.15010i
$$160$$ 1.42962 1.71936i 0.113021 0.135927i
$$161$$ 10.4962 + 5.83037i 0.827213 + 0.459498i
$$162$$ 7.83471 + 7.83471i 0.615553 + 0.615553i
$$163$$ −4.28549 15.9937i −0.335666 1.25272i −0.903146 0.429334i $$-0.858748\pi$$
0.567480 0.823387i $$-0.307918\pi$$
$$164$$ 1.29373 + 2.24080i 0.101023 + 0.174977i
$$165$$ −18.0007 3.09083i −1.40135 0.240621i
$$166$$ 4.71983 + 2.72499i 0.366329 + 0.211500i
$$167$$ −10.2873 + 10.2873i −0.796056 + 0.796056i −0.982471 0.186415i $$-0.940313\pi$$
0.186415 + 0.982471i $$0.440313\pi$$
$$168$$ 5.18910 + 1.29871i 0.400348 + 0.100198i
$$169$$ 12.9161i 0.993543i
$$170$$ −4.14227 1.90900i −0.317698 0.146414i
$$171$$ 5.84298 3.37345i 0.446824 0.257974i
$$172$$ −1.82208 + 6.80009i −0.138932 + 0.518502i
$$173$$ 7.50720 2.01155i 0.570762 0.152935i 0.0381159 0.999273i $$-0.487864\pi$$
0.532646 + 0.846338i $$0.321198\pi$$
$$174$$ 14.4734 1.09722
$$175$$ 13.2036 + 0.816171i 0.998095 + 0.0616967i
$$176$$ 4.03997 0.304524
$$177$$ 1.67052 0.447613i 0.125564 0.0336447i
$$178$$ 0.795171 2.96762i 0.0596006 0.222432i
$$179$$ 3.34695 1.93236i 0.250163 0.144431i −0.369676 0.929161i $$-0.620531\pi$$
0.619839 + 0.784729i $$0.287198\pi$$
$$180$$ 2.20873 + 1.01791i 0.164629 + 0.0758708i
$$181$$ 6.99107i 0.519642i −0.965657 0.259821i $$-0.916336\pi$$
0.965657 0.259821i $$-0.0836636\pi$$
$$182$$ −0.737064 + 0.210638i −0.0546348 + 0.0156135i
$$183$$ −9.89407 + 9.89407i −0.731390 + 0.731390i
$$184$$ −3.93014 2.26907i −0.289734 0.167278i
$$185$$ 10.1943 + 1.75043i 0.749502 + 0.128694i
$$186$$ 7.39223 + 12.8037i 0.542024 + 0.938814i
$$187$$ −2.13280 7.95971i −0.155966 0.582071i
$$188$$ −0.222827 0.222827i −0.0162513 0.0162513i
$$189$$ −0.169398 10.2282i −0.0123219 0.743990i
$$190$$ −8.86840 + 10.6657i −0.643381 + 0.773774i
$$191$$ −2.23721 + 3.87496i −0.161879 + 0.280383i −0.935543 0.353214i $$-0.885089\pi$$
0.773664 + 0.633597i $$0.218422\pi$$
$$192$$ −1.95290 0.523277i −0.140938 0.0377643i
$$193$$ 19.3907 + 5.19573i 1.39577 + 0.373997i 0.876825 0.480809i $$-0.159657\pi$$
0.518949 + 0.854805i $$0.326324\pi$$
$$194$$ 4.68885 8.12132i 0.336640 0.583077i
$$195$$ −1.30435 + 0.120013i −0.0934064 + 0.00859431i
$$196$$ −3.69883 5.94295i −0.264202 0.424497i
$$197$$ −7.84901 7.84901i −0.559219 0.559219i 0.369866 0.929085i $$-0.379404\pi$$
−0.929085 + 0.369866i $$0.879404\pi$$
$$198$$ 1.13725 + 4.24426i 0.0808205 + 0.301626i
$$199$$ −5.40103 9.35485i −0.382869 0.663148i 0.608602 0.793475i $$-0.291730\pi$$
−0.991471 + 0.130327i $$0.958397\pi$$
$$200$$ −4.98468 0.391082i −0.352470 0.0276537i
$$201$$ 5.53062 + 3.19310i 0.390100 + 0.225224i
$$202$$ 6.99218 6.99218i 0.491968 0.491968i
$$203$$ −13.6126 13.1691i −0.955419 0.924288i
$$204$$ 4.12392i 0.288732i
$$205$$ 2.42161 5.25456i 0.169133 0.366995i
$$206$$ −3.70835 + 2.14101i −0.258373 + 0.149172i
$$207$$ 1.27748 4.76761i 0.0887908 0.331372i
$$208$$ 0.279864 0.0749894i 0.0194051 0.00519958i
$$209$$ −25.0613 −1.73353
$$210$$ −4.32654 11.1511i −0.298560 0.769502i
$$211$$ 7.56555 0.520834 0.260417 0.965496i $$-0.416140\pi$$
0.260417 + 0.965496i $$0.416140\pi$$
$$212$$ −8.00039 + 2.14370i −0.549469 + 0.147230i
$$213$$ 3.72699 13.9093i 0.255369 0.953050i
$$214$$ −12.8796 + 7.43604i −0.880431 + 0.508317i
$$215$$ 14.7682 5.45032i 1.00718 0.371709i
$$216$$ 3.86642i 0.263076i
$$217$$ 4.69728 18.7683i 0.318872 1.27408i
$$218$$ 9.35593 9.35593i 0.633664 0.633664i
$$219$$ 20.1809 + 11.6514i 1.36370 + 0.787330i
$$220$$ −5.21463 7.37662i −0.351570 0.497332i
$$221$$ −0.295494 0.511811i −0.0198771 0.0344281i
$$222$$ −2.42055 9.03363i −0.162457 0.606298i
$$223$$ 9.35230 + 9.35230i 0.626277 + 0.626277i 0.947129 0.320853i $$-0.103969\pi$$
−0.320853 + 0.947129i $$0.603969\pi$$
$$224$$ 1.36064 + 2.26907i 0.0909114 + 0.151608i
$$225$$ −0.992322 5.34682i −0.0661548 0.356455i
$$226$$ −6.89667 + 11.9454i −0.458759 + 0.794595i
$$227$$ 15.6420 + 4.19127i 1.03820 + 0.278184i 0.737367 0.675493i $$-0.236069\pi$$
0.300832 + 0.953677i $$0.402736\pi$$
$$228$$ 12.1145 + 3.24606i 0.802300 + 0.214976i
$$229$$ 5.88820 10.1987i 0.389103 0.673947i −0.603226 0.797570i $$-0.706118\pi$$
0.992329 + 0.123624i $$0.0394515\pi$$
$$230$$ 0.929750 + 10.1049i 0.0613059 + 0.666297i
$$231$$ 10.4938 18.8915i 0.690442 1.24297i
$$232$$ 5.06196 + 5.06196i 0.332334 + 0.332334i
$$233$$ −1.48154 5.52920i −0.0970591 0.362230i 0.900264 0.435343i $$-0.143373\pi$$
−0.997324 + 0.0731138i $$0.976706\pi$$
$$234$$ 0.157563 + 0.272906i 0.0103002 + 0.0178405i
$$235$$ −0.119246 + 0.694478i −0.00777876 + 0.0453028i
$$236$$ 0.740802 + 0.427702i 0.0482221 + 0.0278410i
$$237$$ −7.25713 + 7.25713i −0.471402 + 0.471402i
$$238$$ 3.75229 3.87867i 0.243225 0.251417i
$$239$$ 8.33794i 0.539337i 0.962953 + 0.269668i $$0.0869141\pi$$
−0.962953 + 0.269668i $$0.913086\pi$$
$$240$$ 1.56526 + 4.24124i 0.101037 + 0.273771i
$$241$$ 2.56723 1.48219i 0.165370 0.0954763i −0.415031 0.909807i $$-0.636229\pi$$
0.580401 + 0.814331i $$0.302896\pi$$
$$242$$ 1.37728 5.14006i 0.0885347 0.330416i
$$243$$ −10.4340 + 2.79578i −0.669340 + 0.179349i
$$244$$ −6.92077 −0.443057
$$245$$ −6.07700 + 14.4246i −0.388245 + 0.921556i
$$246$$ −5.23128 −0.333535
$$247$$ −1.73609 + 0.465184i −0.110465 + 0.0295989i
$$248$$ −1.89263 + 7.06340i −0.120182 + 0.448526i
$$249$$ −9.54248 + 5.50936i −0.604730 + 0.349141i
$$250$$ 5.71994 + 9.60637i 0.361761 + 0.607560i
$$251$$ 16.1800i 1.02127i 0.859796 + 0.510637i $$0.170590\pi$$
−0.859796 + 0.510637i $$0.829410\pi$$
$$252$$ −2.00079 + 2.06818i −0.126038 + 0.130283i
$$253$$ −12.9641 + 12.9641i −0.815043 + 0.815043i
$$254$$ 2.69424 + 1.55552i 0.169052 + 0.0976020i
$$255$$ 7.52990 5.32298i 0.471541 0.333338i
$$256$$ −0.500000 0.866025i −0.0312500 0.0541266i
$$257$$ −1.50754 5.62621i −0.0940377 0.350954i 0.902834 0.429989i $$-0.141483\pi$$
−0.996872 + 0.0790355i $$0.974816\pi$$
$$258$$ −10.0645 10.0645i −0.626587 0.626587i
$$259$$ −5.94295 + 10.6988i −0.369277 + 0.664793i
$$260$$ −0.498161 0.414214i −0.0308946 0.0256884i
$$261$$ −3.89299 + 6.74285i −0.240970 + 0.417372i
$$262$$ 7.05006 + 1.88906i 0.435554 + 0.116706i
$$263$$ −1.67793 0.449601i −0.103466 0.0277236i 0.206715 0.978401i $$-0.433723\pi$$
−0.310180 + 0.950678i $$0.600389\pi$$
$$264$$ −4.08398 + 7.07367i −0.251352 + 0.435354i
$$265$$ 14.2408 + 11.8410i 0.874803 + 0.727386i
$$266$$ −8.44048 14.0758i −0.517519 0.863041i
$$267$$ 4.39223 + 4.39223i 0.268800 + 0.268800i
$$268$$ 0.817530 + 3.05106i 0.0499386 + 0.186373i
$$269$$ −1.89169 3.27650i −0.115338 0.199772i 0.802577 0.596549i $$-0.203462\pi$$
−0.917915 + 0.396777i $$0.870128\pi$$
$$270$$ 7.05972 4.99061i 0.429641 0.303719i
$$271$$ −18.4029 10.6249i −1.11789 0.645416i −0.177032 0.984205i $$-0.556649\pi$$
−0.940862 + 0.338789i $$0.889983\pi$$
$$272$$ −1.44231 + 1.44231i −0.0874531 + 0.0874531i
$$273$$ 0.376284 1.50347i 0.0227737 0.0909943i
$$274$$ 7.17893i 0.433695i
$$275$$ −6.73822 + 19.0429i −0.406330 + 1.14833i
$$276$$ 7.94591 4.58757i 0.478287 0.276139i
$$277$$ −1.26567 + 4.72353i −0.0760465 + 0.283810i −0.993469 0.114106i $$-0.963600\pi$$
0.917422 + 0.397916i $$0.130266\pi$$
$$278$$ −11.9941 + 3.21380i −0.719356 + 0.192751i
$$279$$ −7.95333 −0.476153
$$280$$ 2.38686 5.41322i 0.142642 0.323502i
$$281$$ −29.4776 −1.75849 −0.879243 0.476373i $$-0.841951\pi$$
−0.879243 + 0.476373i $$0.841951\pi$$
$$282$$ 0.615407 0.164898i 0.0366470 0.00981952i
$$283$$ −2.92041 + 10.8991i −0.173601 + 0.647886i 0.823185 + 0.567773i $$0.192195\pi$$
−0.996786 + 0.0801133i $$0.974472\pi$$
$$284$$ 6.16818 3.56120i 0.366014 0.211318i
$$285$$ −9.70983 26.3098i −0.575161 1.55846i
$$286$$ 1.17053i 0.0692148i
$$287$$ 4.92018 + 4.75986i 0.290429 + 0.280966i
$$288$$ 0.769067 0.769067i 0.0453177 0.0453177i
$$289$$ −11.1193 6.41973i −0.654076 0.377631i
$$290$$ 2.70891 15.7764i 0.159073 0.926425i
$$291$$ 9.47985 + 16.4196i 0.555719 + 0.962533i
$$292$$ 2.98311 + 11.1331i 0.174573 + 0.651517i
$$293$$ −7.23407 7.23407i −0.422619 0.422619i 0.463485 0.886105i $$-0.346599\pi$$
−0.886105 + 0.463485i $$0.846599\pi$$
$$294$$ 14.1448 0.468657i 0.824939 0.0273326i
$$295$$ −0.175251 1.90470i −0.0102035 0.110896i
$$296$$ 2.31288 4.00603i 0.134433 0.232846i
$$297$$ 15.0880 + 4.04281i 0.875493 + 0.234588i
$$298$$ −23.1323 6.19829i −1.34002 0.359057i
$$299$$ −0.657432 + 1.13871i −0.0380203 + 0.0658531i
$$300$$ 5.72374 8.33243i 0.330460 0.481073i
$$301$$ 0.308440 + 18.6235i 0.0177782 + 1.07344i
$$302$$ −2.50552 2.50552i −0.144176 0.144176i
$$303$$ 5.17439 + 19.3111i 0.297261 + 1.10939i
$$304$$ 3.10166 + 5.37224i 0.177893 + 0.308119i
$$305$$ 8.93304 + 12.6367i 0.511504 + 0.723575i
$$306$$ −1.92125 1.10924i −0.109831 0.0634108i
$$307$$ −1.07859 + 1.07859i −0.0615584 + 0.0615584i −0.737216 0.675657i $$-0.763860\pi$$
0.675657 + 0.737216i $$0.263860\pi$$
$$308$$ 10.2773 2.93705i 0.585605 0.167354i
$$309$$ 8.65735i 0.492500i
$$310$$ 15.3400 5.66136i 0.871256 0.321544i
$$311$$ −8.33830 + 4.81412i −0.472821 + 0.272984i −0.717420 0.696641i $$-0.754677\pi$$
0.244599 + 0.969624i $$0.421344\pi$$
$$312$$ −0.151613 + 0.565826i −0.00858338 + 0.0320336i
$$313$$ 2.92361 0.783378i 0.165252 0.0442791i −0.175244 0.984525i $$-0.556072\pi$$
0.340496 + 0.940246i $$0.389405\pi$$
$$314$$ 6.12251 0.345513
$$315$$ 6.35883 + 0.983739i 0.358280 + 0.0554274i
$$316$$ −5.07627 −0.285562
$$317$$ −1.88227 + 0.504353i −0.105719 + 0.0283273i −0.311291 0.950315i $$-0.600761\pi$$
0.205572 + 0.978642i $$0.434095\pi$$
$$318$$ 4.33410 16.1751i 0.243044 0.907054i
$$319$$ 25.0463 14.4605i 1.40232 0.809631i
$$320$$ −0.935904 + 2.03078i −0.0523186 + 0.113524i
$$321$$ 30.0682i 1.67824i
$$322$$ −11.6475 2.91510i −0.649091 0.162452i
$$323$$ 8.94715 8.94715i 0.497833 0.497833i
$$324$$ −9.59552 5.53997i −0.533084 0.307776i
$$325$$ −0.113311 + 1.44425i −0.00628535 + 0.0801124i
$$326$$ 8.27894 + 14.3395i 0.458528 + 0.794194i
$$327$$ 6.92363 + 25.8393i 0.382878 + 1.42892i
$$328$$ −1.82961 1.82961i −0.101023 0.101023i
$$329$$ −0.728847 0.404858i −0.0401826 0.0223205i
$$330$$ 18.1873 1.67341i 1.00118 0.0921183i
$$331$$ 14.4468 25.0225i 0.794066 1.37536i −0.129365 0.991597i $$-0.541294\pi$$
0.923431 0.383765i $$-0.125373\pi$$
$$332$$ −5.26428 1.41056i −0.288915 0.0774145i
$$333$$ 4.85966 + 1.30214i 0.266308 + 0.0713570i
$$334$$ 7.27423 12.5993i 0.398028 0.689405i
$$335$$ 4.51573 5.43092i 0.246721 0.296723i
$$336$$ −5.34841 + 0.0885800i −0.291780 + 0.00483244i
$$337$$ −0.823226 0.823226i −0.0448440 0.0448440i 0.684329 0.729173i $$-0.260095\pi$$
−0.729173 + 0.684329i $$0.760095\pi$$
$$338$$ 3.34292 + 12.4759i 0.181831 + 0.678602i
$$339$$ −13.9436 24.1510i −0.757312 1.31170i
$$340$$ 4.49521 + 0.771855i 0.243787 + 0.0418597i
$$341$$ 25.5846 + 14.7713i 1.38548 + 0.799910i
$$342$$ −4.77078 + 4.77078i −0.257974 + 0.257974i
$$343$$ −13.7300 12.4293i −0.741350 0.671119i
$$344$$ 7.03997i 0.379570i
$$345$$ −18.6327 8.58706i −1.00315 0.462312i
$$346$$ −6.73077 + 3.88601i −0.361849 + 0.208913i
$$347$$ −4.32336 + 16.1350i −0.232090 + 0.866172i 0.747349 + 0.664432i $$0.231326\pi$$
−0.979439 + 0.201740i $$0.935340\pi$$
$$348$$ −13.9802 + 3.74598i −0.749417 + 0.200806i
$$349$$ 36.7146 1.96529 0.982644 0.185503i $$-0.0593916\pi$$
0.982644 + 0.185503i $$0.0593916\pi$$
$$350$$ −12.9649 + 2.62897i −0.693003 + 0.140524i
$$351$$ 1.12024 0.0597942
$$352$$ −3.90231 + 1.04562i −0.207994 + 0.0557318i
$$353$$ −3.69356 + 13.7845i −0.196588 + 0.733677i 0.795262 + 0.606266i $$0.207333\pi$$
−0.991850 + 0.127411i $$0.959333\pi$$
$$354$$ −1.49774 + 0.864723i −0.0796042 + 0.0459595i
$$355$$ −14.4640 6.66588i −0.767672 0.353788i
$$356$$ 3.07230i 0.162832i
$$357$$ 2.99808 + 10.4909i 0.158675 + 0.555236i
$$358$$ −2.73277 + 2.73277i −0.144431 + 0.144431i
$$359$$ −23.4596 13.5444i −1.23815 0.714847i −0.269435 0.963019i $$-0.586837\pi$$
−0.968716 + 0.248172i $$0.920170\pi$$
$$360$$ −2.39693 0.411567i −0.126329 0.0216915i
$$361$$ −9.74064 16.8713i −0.512665 0.887962i
$$362$$ 1.80942 + 6.75285i 0.0951011 + 0.354922i
$$363$$ 7.60756 + 7.60756i 0.399293 + 0.399293i
$$364$$ 0.657432 0.394227i 0.0344588 0.0206631i
$$365$$ 16.4776 19.8171i 0.862477 1.03727i
$$366$$ 6.99616 12.1177i 0.365695 0.633403i
$$367$$ 21.8990 + 5.86782i 1.14312 + 0.306298i 0.780204 0.625525i $$-0.215115\pi$$
0.362914 + 0.931823i $$0.381782\pi$$
$$368$$ 4.38350 + 1.17456i 0.228506 + 0.0612279i
$$369$$ 1.40709 2.43715i 0.0732502 0.126873i
$$370$$ −10.3000 + 0.947702i −0.535472 + 0.0492687i
$$371$$ −18.7938 + 11.2696i −0.975726 + 0.585090i
$$372$$ −10.4542 10.4542i −0.542024 0.542024i
$$373$$ −3.32215 12.3984i −0.172014 0.641966i −0.997041 0.0768720i $$-0.975507\pi$$
0.825027 0.565094i $$-0.191160\pi$$
$$374$$ 4.12025 + 7.13648i 0.213053 + 0.369019i
$$375$$ −22.6022 + 0.304135i −1.16717 + 0.0157055i
$$376$$ 0.272906 + 0.157563i 0.0140741 + 0.00812567i
$$377$$ 1.46664 1.46664i 0.0755356 0.0755356i
$$378$$ 2.81087 + 9.83581i 0.144576 + 0.505900i
$$379$$ 14.4739i 0.743476i 0.928338 + 0.371738i $$0.121238\pi$$
−0.928338 + 0.371738i $$0.878762\pi$$
$$380$$ 5.80572 12.5976i 0.297827 0.646244i
$$381$$ −5.44718 + 3.14493i −0.279068 + 0.161120i
$$382$$ 1.15807 4.32196i 0.0592518 0.221131i
$$383$$ 1.69189 0.453341i 0.0864517 0.0231647i −0.215334 0.976540i $$-0.569084\pi$$
0.301786 + 0.953376i $$0.402417\pi$$
$$384$$ 2.02179 0.103174
$$385$$ −18.6283 14.9744i −0.949387 0.763168i
$$386$$ −20.0747 −1.02178
$$387$$ 7.39595 1.98174i 0.375957 0.100737i
$$388$$ −2.42713 + 9.05816i −0.123219 + 0.459858i
$$389$$ −2.40954 + 1.39115i −0.122169 + 0.0705341i −0.559839 0.828601i $$-0.689137\pi$$
0.437670 + 0.899135i $$0.355804\pi$$
$$390$$ 1.22884 0.453514i 0.0622249 0.0229646i
$$391$$ 9.25661i 0.468127i
$$392$$ 5.11094 + 4.78312i 0.258142 + 0.241584i
$$393$$ −10.4344 + 10.4344i −0.526348 + 0.526348i
$$394$$ 9.61304 + 5.55009i 0.484298 + 0.279610i
$$395$$ 6.55224 + 9.26881i 0.329679 + 0.466364i
$$396$$ −2.19699 3.80530i −0.110403 0.191223i
$$397$$ 10.2668 + 38.3163i 0.515277 + 1.92304i 0.349791 + 0.936828i $$0.386253\pi$$
0.165486 + 0.986212i $$0.447081\pi$$
$$398$$ 7.63821 + 7.63821i 0.382869 + 0.382869i
$$399$$ 33.1780 0.549491i 1.66098 0.0275089i
$$400$$ 4.91605 0.912375i 0.245803 0.0456187i
$$401$$ 9.98528 17.2950i 0.498641 0.863672i −0.501358 0.865240i $$-0.667166\pi$$
0.999999 + 0.00156835i $$0.000499221\pi$$
$$402$$ −6.16860 1.65287i −0.307662 0.0824378i
$$403$$ 2.04653 + 0.548365i 0.101945 + 0.0273160i
$$404$$ −4.94422 + 8.56364i −0.245984 + 0.426057i
$$405$$ 2.27000 + 24.6713i 0.112797 + 1.22593i
$$406$$ 16.5572 + 9.19714i 0.821720 + 0.456446i
$$407$$ −13.2144 13.2144i −0.655012 0.655012i
$$408$$ −1.06735 3.98340i −0.0528417 0.197208i
$$409$$ −7.65280 13.2550i −0.378407 0.655419i 0.612424 0.790529i $$-0.290195\pi$$
−0.990831 + 0.135110i $$0.956861\pi$$
$$410$$ −0.979116 + 5.70228i −0.0483551 + 0.281615i
$$411$$ −12.5697 7.25713i −0.620019 0.357968i
$$412$$ 3.02785 3.02785i 0.149172 0.149172i
$$413$$ 2.19547 + 0.549475i 0.108032 + 0.0270379i
$$414$$ 4.93579i 0.242581i
$$415$$ 4.21936 + 11.4328i 0.207120 + 0.561214i
$$416$$ −0.250919 + 0.144868i −0.0123023 + 0.00710276i
$$417$$ 6.49762 24.2495i 0.318190 1.18750i
$$418$$ 24.2073 6.48634i 1.18402 0.317257i
$$419$$ −27.7027 −1.35337 −0.676684 0.736274i $$-0.736584\pi$$
−0.676684 + 0.736274i $$0.736584\pi$$
$$420$$ 7.06525 + 9.65138i 0.344749 + 0.470939i
$$421$$ 33.0159 1.60910 0.804549 0.593887i $$-0.202407\pi$$
0.804549 + 0.593887i $$0.202407\pi$$
$$422$$ −7.30776 + 1.95811i −0.355736 + 0.0953192i
$$423$$ −0.0887072 + 0.331060i −0.00431309 + 0.0160967i
$$424$$ 7.17295 4.14131i 0.348349 0.201120i
$$425$$ −4.39289 9.20413i −0.213087 0.446466i
$$426$$ 14.4000i 0.697681i
$$427$$ −17.6058 + 5.03138i −0.852005 + 0.243485i
$$428$$ 10.5161 10.5161i 0.508317 0.508317i
$$429$$ 2.04950 + 1.18328i 0.0989509 + 0.0571293i
$$430$$ −12.8544 + 9.08690i −0.619892 + 0.438209i
$$431$$ −11.9586 20.7129i −0.576027 0.997708i −0.995929 0.0901384i $$-0.971269\pi$$
0.419902 0.907569i $$-0.362064\pi$$
$$432$$ −1.00070 3.73467i −0.0481463 0.179684i
$$433$$ −13.2515 13.2515i −0.636829 0.636829i 0.312943 0.949772i $$-0.398685\pi$$
−0.949772 + 0.312943i $$0.898685\pi$$
$$434$$ 0.320383 + 19.3446i 0.0153789 + 0.928569i
$$435$$ 24.8849 + 20.6914i 1.19314 + 0.992077i
$$436$$ −6.61564 + 11.4586i −0.316832 + 0.548769i
$$437$$ −27.1923 7.28615i −1.30078 0.348544i
$$438$$ −22.5088 6.03122i −1.07551 0.288183i
$$439$$ −7.05383 + 12.2176i −0.336661 + 0.583114i −0.983802 0.179256i $$-0.942631\pi$$
0.647141 + 0.762370i $$0.275964\pi$$
$$440$$ 6.94616 + 5.77563i 0.331145 + 0.275342i
$$441$$ −3.58626 + 6.71582i −0.170774 + 0.319801i
$$442$$ 0.417892 + 0.417892i 0.0198771 + 0.0198771i
$$443$$ 5.45161 + 20.3457i 0.259014 + 0.966652i 0.965813 + 0.259238i $$0.0834715\pi$$
−0.706800 + 0.707414i $$0.749862\pi$$
$$444$$ 4.67615 + 8.09933i 0.221920 + 0.384377i
$$445$$ 5.60975 3.96560i 0.265928 0.187988i
$$446$$ −11.4542 6.61308i −0.542371 0.313138i
$$447$$ 34.2370 34.2370i 1.61936 1.61936i
$$448$$ −1.90155 1.83959i −0.0898399 0.0869125i
$$449$$ 31.3247i 1.47831i 0.673538 + 0.739153i $$0.264774\pi$$
−0.673538 + 0.739153i $$0.735226\pi$$
$$450$$ 2.34237 + 4.90780i 0.110420 + 0.231356i
$$451$$ −9.05278 + 5.22662i −0.426279 + 0.246112i
$$452$$ 3.56998 13.3233i 0.167918 0.626677i
$$453$$ 6.91977 1.85415i 0.325119 0.0871154i
$$454$$ −16.1938 −0.760014
$$455$$ −1.56841 0.691560i −0.0735281 0.0324209i
$$456$$ −12.5418 −0.587324
$$457$$ 2.76404 0.740622i 0.129296 0.0346448i −0.193591 0.981082i $$-0.562013\pi$$
0.322887 + 0.946438i $$0.395347\pi$$
$$458$$ −3.04796 + 11.3751i −0.142422 + 0.531525i
$$459$$ −6.82989 + 3.94324i −0.318792 + 0.184055i
$$460$$ −3.51341 9.51994i −0.163814 0.443870i
$$461$$ 3.02674i 0.140969i −0.997513 0.0704846i $$-0.977545\pi$$
0.997513 0.0704846i $$-0.0224546\pi$$
$$462$$ −5.24675 + 20.9638i −0.244101 + 0.975325i
$$463$$ 19.2889 19.2889i 0.896431 0.896431i −0.0986876 0.995118i $$-0.531464\pi$$
0.995118 + 0.0986876i $$0.0314644\pi$$
$$464$$ −6.19961 3.57935i −0.287810 0.166167i
$$465$$ −5.59457 + 32.5822i −0.259442 + 1.51096i
$$466$$ 2.86212 + 4.95734i 0.132585 + 0.229644i
$$467$$ −6.50385 24.2727i −0.300962 1.12321i −0.936366 0.351026i $$-0.885833\pi$$
0.635403 0.772180i $$-0.280834\pi$$
$$468$$ −0.222827 0.222827i −0.0103002 0.0103002i
$$469$$ 4.29784 + 7.16729i 0.198456 + 0.330955i
$$470$$ −0.0645612 0.701677i −0.00297799 0.0323660i
$$471$$ −6.18921 + 10.7200i −0.285184 + 0.493953i
$$472$$ −0.826257 0.221395i −0.0380316 0.0101905i
$$473$$ −27.4722 7.36115i −1.26317 0.338466i
$$474$$ 5.13157 8.88814i 0.235701 0.408246i
$$475$$ −30.4959 + 5.65976i −1.39925 + 0.259688i
$$476$$ −2.62056 + 4.71767i −0.120113 + 0.216234i
$$477$$ 6.36989 + 6.36989i 0.291657 + 0.291657i
$$478$$ −2.15802 8.05384i −0.0987055 0.368374i
$$479$$ −4.14346 7.17668i −0.189319 0.327911i 0.755704 0.654913i $$-0.227295\pi$$
−0.945024 + 0.327002i $$0.893961\pi$$
$$480$$ −2.60964 3.69160i −0.119113 0.168498i
$$481$$ −1.16069 0.670127i −0.0529231 0.0305551i
$$482$$ −2.09613 + 2.09613i −0.0954763 + 0.0954763i
$$483$$ 16.8785 17.4470i 0.767999 0.793867i
$$484$$ 5.32139i 0.241881i
$$485$$ 19.6722 7.26018i 0.893269 0.329668i
$$486$$ 9.35485 5.40103i 0.424345 0.244996i
$$487$$ 2.76375 10.3144i 0.125237 0.467392i −0.874611 0.484826i $$-0.838883\pi$$
0.999848 + 0.0174340i $$0.00554969\pi$$
$$488$$ 6.68495 1.79123i 0.302613 0.0810850i
$$489$$ −33.4765 −1.51386
$$490$$ 2.13656 15.5060i 0.0965198 0.700488i
$$491$$ 25.7259 1.16100 0.580498 0.814262i $$-0.302858\pi$$
0.580498 + 0.814262i $$0.302858\pi$$
$$492$$ 5.05303 1.35396i 0.227808 0.0610411i
$$493$$ −3.77924 + 14.1043i −0.170209 + 0.635227i
$$494$$ 1.55654 0.898666i 0.0700319 0.0404329i
$$495$$ −4.11234 + 8.92322i −0.184836 + 0.401069i
$$496$$ 7.31256i 0.328344i
$$497$$ 13.1023 13.5436i 0.587719 0.607514i
$$498$$ 7.79141 7.79141i 0.349141 0.349141i
$$499$$ −12.6429 7.29940i −0.565975 0.326766i 0.189565 0.981868i $$-0.439292\pi$$
−0.755540 + 0.655102i $$0.772626\pi$$
$$500$$ −8.01135 7.79861i −0.358278 0.348764i
$$501$$ 14.7069 + 25.4732i 0.657058 + 1.13806i
$$502$$ −4.18770 15.6287i −0.186906 0.697543i
$$503$$ 13.9891 + 13.9891i 0.623744 + 0.623744i 0.946487 0.322743i $$-0.104605\pi$$
−0.322743 + 0.946487i $$0.604605\pi$$
$$504$$ 1.39733 2.51555i 0.0622419 0.112051i
$$505$$ 22.0182 2.02589i 0.979798 0.0901510i
$$506$$ 9.16697 15.8777i 0.407522 0.705848i
$$507$$ −25.2237 6.75868i −1.12022 0.300163i
$$508$$ −3.00504 0.805197i −0.133327 0.0357248i
$$509$$ 1.42883 2.47481i 0.0633319 0.109694i −0.832621 0.553843i $$-0.813161\pi$$
0.895953 + 0.444149i $$0.146494\pi$$
$$510$$ −5.89564 + 7.09049i −0.261063 + 0.313972i
$$511$$ 15.6825 + 26.1530i 0.693754 + 1.15694i
$$512$$ 0.707107 + 0.707107i 0.0312500 + 0.0312500i
$$513$$ 6.20768 + 23.1674i 0.274076 + 1.02287i
$$514$$ 2.91234 + 5.04433i 0.128458 + 0.222496i
$$515$$ −9.43680 1.62036i −0.415835 0.0714015i
$$516$$ 12.3264 + 7.11667i 0.542641 + 0.313294i
$$517$$ 0.900216 0.900216i 0.0395914 0.0395914i
$$518$$ 2.97139 11.8724i 0.130555 0.521644i
$$519$$ 15.7134i 0.689741i
$$520$$ 0.588393 + 0.271166i 0.0258027 + 0.0118914i
$$521$$ 24.7917 14.3135i 1.08614 0.627084i 0.153595 0.988134i $$-0.450915\pi$$
0.932547 + 0.361049i $$0.117581\pi$$
$$522$$ 2.01516 7.52068i 0.0882011 0.329171i
$$523$$ 30.5069 8.17429i 1.33397 0.357437i 0.479777 0.877390i $$-0.340717\pi$$
0.854195 + 0.519954i $$0.174051\pi$$
$$524$$ −7.29876 −0.318848
$$525$$ 8.50302 25.3581i 0.371102 1.10672i
$$526$$ 1.73712 0.0757422
$$527$$ −14.4075 + 3.86048i −0.627600 + 0.168165i
$$528$$ 2.11403 7.88965i 0.0920012 0.343353i
$$529$$ 2.08308 1.20267i 0.0905687 0.0522899i
$$530$$ −16.8202 7.75174i −0.730623 0.336714i
$$531$$ 0.930359i 0.0403742i
$$532$$ 11.7960 + 11.4116i 0.511419 + 0.494755i
$$533$$ −0.530105 + 0.530105i −0.0229614 + 0.0229614i
$$534$$ −5.37936 3.10577i −0.232788 0.134400i
$$535$$ −32.7753 5.62772i −1.41700 0.243308i
$$536$$ −1.57935 2.73551i −0.0682174 0.118156i
$$537$$ −2.02232 7.54741i −0.0872696 0.325695i
$$538$$ 2.67525 + 2.67525i 0.115338 + 0.115338i
$$539$$ 24.0094 14.9432i 1.03416 0.643648i
$$540$$ −5.52750 + 6.64775i −0.237866 + 0.286073i
$$541$$ −18.4994 + 32.0420i −0.795353 + 1.37759i 0.127262 + 0.991869i $$0.459381\pi$$
−0.922615 + 0.385722i $$0.873952\pi$$
$$542$$ 20.5257 + 5.49985i 0.881655 + 0.236239i
$$543$$ −13.6528 3.65827i −0.585899 0.156991i
$$544$$ 1.01987 1.76647i 0.0437266 0.0757366i
$$545$$ 29.4616 2.71076i 1.26200 0.116116i
$$546$$ 0.0256649 + 1.54963i 0.00109836 + 0.0663182i
$$547$$ −20.0765 20.0765i −0.858409 0.858409i 0.132742 0.991151i $$-0.457622\pi$$
−0.991151 + 0.132742i $$0.957622\pi$$
$$548$$ −1.85804 6.93431i −0.0793717 0.296219i
$$549$$ 3.76360 + 6.51875i 0.160627 + 0.278213i
$$550$$ 1.57996 20.1380i 0.0673697 0.858687i
$$551$$ 38.4582 + 22.2039i 1.63838 + 0.945916i
$$552$$ −6.48781 + 6.48781i −0.276139 + 0.276139i
$$553$$ −12.9136 + 3.69043i −0.549141 + 0.156933i
$$554$$ 4.89016i 0.207763i
$$555$$ 8.75286 18.9925i 0.371538 0.806187i
$$556$$ 10.7536 6.20859i 0.456054 0.263303i
$$557$$ −6.65499 + 24.8367i −0.281981 + 1.05237i 0.669037 + 0.743229i $$0.266707\pi$$
−0.951017 + 0.309137i $$0.899960\pi$$
$$558$$ 7.68233 2.05847i 0.325219 0.0871421i
$$559$$ −2.03974 −0.0862718
$$560$$ −0.904483 + 5.84653i −0.0382214 + 0.247061i
$$561$$ −16.6605 −0.703408
$$562$$ 28.4732 7.62937i 1.20107 0.321825i
$$563$$ 1.38907 5.18407i 0.0585422 0.218482i −0.930458 0.366400i $$-0.880590\pi$$
0.989000 + 0.147917i $$0.0472569\pi$$
$$564$$ −0.551759 + 0.318558i −0.0232332 + 0.0134137i
$$565$$ −28.9352 + 10.6788i −1.21731 + 0.449258i
$$566$$ 11.2836i 0.474286i
$$567$$ −28.4377 7.11728i −1.19427 0.298898i
$$568$$ −5.03630 + 5.03630i −0.211318 + 0.211318i
$$569$$ 22.0839 + 12.7502i 0.925806 + 0.534514i 0.885483 0.464672i $$-0.153828\pi$$
0.0403234 + 0.999187i $$0.487161\pi$$
$$570$$ 16.1884 + 22.9002i 0.678059 + 0.959184i
$$571$$ −7.95235 13.7739i −0.332795 0.576419i 0.650263 0.759709i $$-0.274659\pi$$
−0.983059 + 0.183290i $$0.941325\pi$$
$$572$$ 0.302955 + 1.13064i 0.0126672 + 0.0472746i
$$573$$ 6.39672 + 6.39672i 0.267227 + 0.267227i
$$574$$ −5.98447 3.32424i −0.249787 0.138751i
$$575$$ −12.8476 + 18.7031i −0.535781 + 0.779973i
$$576$$ −0.543813 + 0.941911i −0.0226589 + 0.0392463i
$$577$$ −22.2641 5.96565i −0.926867 0.248353i −0.236349 0.971668i $$-0.575951\pi$$
−0.690518 + 0.723315i $$0.742617\pi$$
$$578$$ 12.4020 + 3.32310i 0.515854 + 0.138223i
$$579$$ 20.2934 35.1493i 0.843366 1.46075i
$$580$$ 1.46664 + 15.9400i 0.0608988 + 0.661872i
$$581$$ −14.4173 + 0.238779i −0.598132 + 0.00990621i
$$582$$ −13.4065 13.4065i −0.555719 0.555719i
$$583$$ −8.66048 32.3214i −0.358681 1.33861i
$$584$$ −5.76293 9.98169i −0.238472 0.413045i
$$585$$ −0.119246 + 0.694478i −0.00493022 + 0.0287131i
$$586$$ 8.85989 + 5.11526i 0.365999 + 0.211310i
$$587$$ 28.2277 28.2277i 1.16508 1.16508i 0.181734 0.983348i $$-0.441829\pi$$
0.983348 0.181734i $$-0.0581711\pi$$
$$588$$ −13.5415 + 4.11362i −0.558441 + 0.169643i
$$589$$ 45.3622i 1.86912i
$$590$$ 0.662251 + 1.79444i 0.0272644 + 0.0738758i
$$591$$ −19.4355 + 11.2211i −0.799471 + 0.461575i
$$592$$ −1.19723 + 4.46814i −0.0492060 + 0.183639i
$$593$$ −34.2220 + 9.16977i −1.40533 + 0.376557i −0.880256 0.474499i $$-0.842629\pi$$
−0.525075 + 0.851056i $$0.675963\pi$$
$$594$$ −15.6202 −0.640905
$$595$$ 11.9965 1.30447i 0.491811 0.0534782i
$$596$$ 23.9483 0.980963
$$597$$ −21.0953 + 5.65247i −0.863373 + 0.231340i
$$598$$ 0.340312 1.27006i 0.0139164 0.0519367i
$$599$$ 14.5339 8.39115i 0.593839 0.342853i −0.172775 0.984961i $$-0.555273\pi$$
0.766614 + 0.642108i $$0.221940\pi$$
$$600$$ −3.37211 + 9.52993i −0.137666 + 0.389058i
$$601$$ 1.73528i 0.0707833i −0.999374 0.0353917i $$-0.988732\pi$$
0.999374 0.0353917i $$-0.0112679\pi$$
$$602$$ −5.11804 17.9091i −0.208596 0.729919i
$$603$$ 2.42925 2.42925i 0.0989266 0.0989266i
$$604$$ 3.06862 + 1.77167i 0.124860 + 0.0720881i
$$605$$ 9.71637 6.86862i 0.395027 0.279249i
$$606$$ −9.99616 17.3139i −0.406066 0.703327i
$$607$$ 10.2070 + 38.0930i 0.414288 + 1.54615i 0.786257 + 0.617900i $$0.212016\pi$$
−0.371968 + 0.928245i $$0.621317\pi$$
$$608$$ −4.38642 4.38642i −0.177893 0.177893i
$$609$$ −32.8410 + 19.6930i −1.33079 + 0.798000i
$$610$$ −11.8993 9.89407i −0.481787 0.400599i
$$611$$ 0.0456517 0.0790711i 0.00184687 0.00319887i
$$612$$ 2.14288 + 0.574183i 0.0866208 + 0.0232100i
$$613$$ −0.330293 0.0885018i −0.0133404 0.00357455i 0.252143 0.967690i $$-0.418865\pi$$
−0.265483 + 0.964116i $$0.585531\pi$$
$$614$$ 0.762678 1.32100i 0.0307792 0.0533111i
$$615$$ −8.99444 7.47875i −0.362691 0.301572i
$$616$$ −9.16697 + 5.49694i −0.369348 + 0.221478i
$$617$$ 11.1876 + 11.1876i 0.450397 + 0.450397i 0.895486 0.445089i $$-0.146828\pi$$
−0.445089 + 0.895486i $$0.646828\pi$$
$$618$$ 2.24069 + 8.36236i 0.0901337 + 0.336383i
$$619$$ 18.2682 + 31.6414i 0.734260 + 1.27178i 0.955047 + 0.296454i $$0.0958042\pi$$
−0.220787 + 0.975322i $$0.570862\pi$$
$$620$$ −13.3521 + 9.43875i −0.536232 + 0.379069i
$$621$$ 15.1956 + 8.77316i 0.609777 + 0.352055i
$$622$$ 6.80819 6.80819i 0.272984 0.272984i
$$623$$ 2.23356 + 7.81566i 0.0894855 + 0.313128i
$$624$$ 0.585786i 0.0234502i
$$625$$ −3.89884 + 24.6941i −0.155953 + 0.987764i
$$626$$ −2.62123 + 1.51337i −0.104766 + 0.0604864i
$$627$$ −13.1140 + 48.9421i −0.523723 + 1.95456i
$$628$$ −5.91389 + 1.58462i −0.235990 + 0.0632333i
$$629$$ 9.43535 0.376212
$$630$$ −6.39677 + 0.695569i −0.254854 + 0.0277121i
$$631$$ −35.8189 −1.42593 −0.712964 0.701201i $$-0.752648\pi$$
−0.712964 + 0.701201i $$0.752648\pi$$
$$632$$ 4.90330 1.31384i 0.195043 0.0522616i
$$633$$ 3.95888 14.7747i 0.157351 0.587243i
$$634$$ 1.68760 0.974335i 0.0670231 0.0386958i
$$635$$ 2.40856 + 6.52623i 0.0955807 + 0.258986i
$$636$$ 16.7457i 0.664010i
$$637$$ 1.38585 1.48083i 0.0549093 0.0586726i
$$638$$ −20.4502 + 20.4502i −0.809631 + 0.809631i
$$639$$ −6.70867 3.87325i −0.265391 0.153223i
$$640$$ 0.378409 2.20382i 0.0149579 0.0871135i
$$641$$ 7.16573 + 12.4114i 0.283029 + 0.490221i 0.972129 0.234445i $$-0.0753272\pi$$
−0.689100 + 0.724666i $$0.741994\pi$$
$$642$$ 7.78222 + 29.0436i 0.307140 + 1.14626i
$$643$$ 7.65201 + 7.65201i 0.301766 + 0.301766i 0.841704 0.539939i $$-0.181553\pi$$
−0.539939 + 0.841704i $$0.681553\pi$$
$$644$$ 12.0051 0.198828i 0.473068 0.00783492i
$$645$$ −2.91605 31.6928i −0.114819 1.24790i
$$646$$ −6.32659 + 10.9580i −0.248916 + 0.431136i
$$647$$ 31.2468 + 8.37254i 1.22844 + 0.329159i 0.813971 0.580906i $$-0.197302\pi$$
0.414466 + 0.910065i $$0.363968\pi$$
$$648$$ 10.7024 + 2.86770i 0.420430 + 0.112654i
$$649$$ −1.72791 + 2.99282i −0.0678262 + 0.117478i
$$650$$ −0.264349 1.42436i −0.0103686 0.0558681i
$$651$$ −34.1947 18.9943i −1.34019 0.744447i
$$652$$ −11.7082 11.7082i −0.458528 0.458528i
$$653$$ −0.132578 0.494788i −0.00518818 0.0193625i 0.963283 0.268487i $$-0.0865237\pi$$
−0.968471 + 0.249125i $$0.919857\pi$$
$$654$$ −13.3754 23.1669i −0.523020 0.905898i
$$655$$ 9.42093 + 13.3269i 0.368106 + 0.520724i
$$656$$ 2.24080 + 1.29373i 0.0874886 + 0.0505116i
$$657$$ 8.86417 8.86417i 0.345824 0.345824i
$$658$$ 0.808797 + 0.202423i 0.0315302 + 0.00789127i
$$659$$ 19.5542i 0.761723i 0.924632 + 0.380862i $$0.124373\pi$$
−0.924632 + 0.380862i $$0.875627\pi$$
$$660$$ −17.1345 + 6.32361i −0.666959 + 0.246146i
$$661$$ 34.0324 19.6486i 1.32371 0.764242i 0.339388 0.940647i $$-0.389780\pi$$
0.984318 + 0.176405i $$0.0564468\pi$$
$$662$$ −7.47819 + 27.9090i −0.290648 + 1.08471i
$$663$$ −1.15414 + 0.309250i −0.0448230 + 0.0120103i
$$664$$ 5.44998 0.211500
$$665$$ 5.61080 36.2679i 0.217578 1.40641i
$$666$$ −5.03109 −0.194951
$$667$$ 31.3801 8.40828i 1.21504 0.325570i
$$668$$ −3.76542 + 14.0527i −0.145688 + 0.543716i
$$669$$ 23.1579 13.3702i 0.895337 0.516923i
$$670$$ −2.95623 + 6.41462i −0.114209 + 0.247819i
$$671$$ 27.9597i 1.07937i
$$672$$ 5.14324 1.46983i 0.198405 0.0567000i
$$673$$ 18.4813 18.4813i 0.712401 0.712401i −0.254636 0.967037i $$-0.581956\pi$$
0.967037 + 0.254636i $$0.0819556\pi$$
$$674$$ 1.00824 + 0.582108i 0.0388360 + 0.0224220i
$$675$$ 19.2729 + 1.51208i 0.741812 + 0.0582002i
$$676$$ −6.45803 11.1856i −0.248386 0.430217i
$$677$$ −10.6631 39.7951i −0.409815 1.52945i −0.794999 0.606611i $$-0.792528\pi$$
0.385183 0.922840i $$-0.374138\pi$$
$$678$$ 19.7192 + 19.7192i 0.757312 + 0.757312i
$$679$$ 0.410862 + 24.8076i 0.0157674 + 0.952030i
$$680$$ −4.54181 + 0.417892i −0.174171 + 0.0160254i
$$681$$ 16.3702 28.3541i 0.627309 1.08653i
$$682$$ −28.5359 7.64618i −1.09270 0.292787i
$$683$$ 8.81689 + 2.36248i 0.337369 + 0.0903978i 0.423526 0.905884i $$-0.360792\pi$$
−0.0861573 + 0.996282i $$0.527459\pi$$
$$684$$ 3.37345 5.84298i 0.128987 0.223412i
$$685$$ −10.2631 + 12.3431i −0.392134 + 0.471607i
$$686$$ 16.4791 + 8.45219i 0.629175 + 0.322706i
$$687$$ −16.8358 16.8358i −0.642325 0.642325i
$$688$$ 1.82208 + 6.80009i 0.0694661 + 0.259251i
$$689$$ −1.19989 2.07827i −0.0457121 0.0791758i
$$690$$ 20.2203 + 3.47195i 0.769775 + 0.132175i
$$691$$ −41.9971 24.2470i −1.59765 0.922401i −0.991940 0.126712i $$-0.959558\pi$$
−0.605706 0.795689i $$-0.707109\pi$$
$$692$$ 5.49565 5.49565i 0.208913 0.208913i
$$693$$ −8.35538 8.08313i −0.317395 0.307053i
$$694$$ 16.7042i 0.634082i
$$695$$ −25.2166 11.6213i −0.956520 0.440821i
$$696$$ 12.5343 7.23668i 0.475111 0.274306i
$$697$$ 1.36598 5.09790i 0.0517401 0.193097i
$$698$$ −35.4636 + 9.50244i −1.34232 + 0.359673i
$$699$$ −11.5732 −0.437739
$$700$$ 11.8427 5.89495i 0.447612 0.222808i
$$701$$ −30.8898 −1.16669 −0.583347 0.812223i $$-0.698257\pi$$
−0.583347 + 0.812223i $$0.698257\pi$$
$$702$$ −1.08207 + 0.289940i −0.0408402 + 0.0109431i
$$703$$ 7.42684 27.7173i 0.280109 1.04538i
$$704$$ 3.49872 2.01999i 0.131863 0.0761311i
$$705$$ 1.29385 + 0.596280i 0.0487290 + 0.0224572i
$$706$$ 14.2708i 0.537089i
$$707$$ −6.35191 + 25.3796i −0.238888 + 0.954496i
$$708$$ 1.22290 1.22290i 0.0459595 0.0459595i
$$709$$ −12.7354 7.35277i −0.478287 0.276139i 0.241416 0.970422i $$-0.422388\pi$$
−0.719702 + 0.694283i $$0.755722\pi$$
$$710$$ 15.6965 + 2.69518i 0.589078 + 0.101148i
$$711$$ 2.76054 + 4.78140i 0.103528 + 0.179316i
$$712$$ −0.795171 2.96762i −0.0298003 0.111216i
$$713$$ 23.4656 + 23.4656i 0.878795 + 0.878795i
$$714$$ −5.61116 9.35745i −0.209992 0.350194i
$$715$$ 1.67341 2.01256i 0.0625821 0.0752654i
$$716$$ 1.93236 3.34695i 0.0722157 0.125081i
$$717$$ 16.2831 + 4.36306i 0.608105 + 0.162941i
$$718$$ 26.1658 + 7.01110i 0.976499 + 0.261652i
$$719$$ 11.7360 20.3273i 0.437679 0.758082i −0.559831 0.828607i $$-0.689134\pi$$
0.997510 + 0.0705247i $$0.0224674\pi$$
$$720$$ 2.42177 0.222827i 0.0902542 0.00830428i
$$721$$ 5.50134 9.90382i 0.204881 0.368837i
$$722$$ 13.7753 + 13.7753i 0.512665 + 0.512665i
$$723$$ −1.55119 5.78913i −0.0576895 0.215300i
$$724$$ −3.49553 6.05444i −0.129911 0.225012i
$$725$$ 27.2119 23.2526i 1.01062 0.863581i
$$726$$ −9.31732 5.37936i −0.345798 0.199647i
$$727$$ −14.1380 + 14.1380i −0.524349 + 0.524349i −0.918882 0.394533i $$-0.870907\pi$$
0.394533 + 0.918882i $$0.370907\pi$$
$$728$$ −0.532998 + 0.550950i −0.0197542 + 0.0204196i
$$729$$ 11.4004i 0.422236i
$$730$$ −10.7871 + 23.4065i −0.399249 + 0.866315i
$$731$$ 12.4359 7.17986i 0.459958 0.265557i
$$732$$ −3.62148 + 13.5155i −0.133854 + 0.499549i
$$733$$ −26.7908 + 7.17859i −0.989543 + 0.265147i −0.717058 0.697013i $$-0.754512\pi$$
−0.272484 + 0.962160i $$0.587845\pi$$
$$734$$ −22.6715 −0.836821
$$735$$ 24.9899 + 19.4158i 0.921765 + 0.716164i
$$736$$ −4.53813 −0.167278
$$737$$ −12.3262 + 3.30280i −0.454042 + 0.121660i
$$738$$ −0.728364 + 2.71829i −0.0268114 + 0.100062i
$$739$$ −11.7451 + 6.78102i −0.432050 + 0.249444i −0.700219 0.713928i $$-0.746915\pi$$
0.268170 + 0.963372i $$0.413581\pi$$
$$740$$ 9.70376 3.58125i 0.356717 0.131649i
$$741$$ 3.63383i 0.133492i
$$742$$ 15.2366 15.7498i 0.559354 0.578194i
$$743$$ 13.5961 13.5961i 0.498791 0.498791i −0.412270 0.911062i $$-0.635264\pi$$
0.911062 + 0.412270i $$0.135264\pi$$
$$744$$ 12.8037 + 7.39223i 0.469407 + 0.271012i
$$745$$ −30.9115 43.7275i −1.13251 1.60205i
$$746$$ 6.41789 + 11.1161i 0.234976 + 0.406990i
$$747$$ 1.53416 + 5.72557i 0.0561320 + 0.209488i
$$748$$ −5.82691 5.82691i −0.213053 0.213053i
$$749$$ 19.1069 34.3973i 0.698152 1.25685i
$$750$$ 21.7534 6.14366i 0.794320 0.224335i
$$751$$ −21.8309 + 37.8123i −0.796622 + 1.37979i 0.125182 + 0.992134i $$0.460049\pi$$
−0.921804 + 0.387656i $$0.873285\pi$$
$$752$$ −0.304388 0.0815604i −0.0110999 0.00297420i
$$753$$ 31.5979 + 8.46663i 1.15149 + 0.308541i
$$754$$ −1.03707 + 1.79626i −0.0377678 + 0.0654158i
$$755$$ −0.725941 7.88981i −0.0264197 0.287140i
$$756$$ −5.26079 8.77316i −0.191333 0.319077i
$$757$$ 7.88896 + 7.88896i 0.286729 + 0.286729i 0.835785 0.549056i $$-0.185013\pi$$
−0.549056 + 0.835785i $$0.685013\pi$$
$$758$$ −3.74613 13.9807i −0.136065 0.507803i
$$759$$ 18.5337 + 32.1013i 0.672730 + 1.16520i
$$760$$ −2.34739 + 13.6710i −0.0851489 + 0.495899i
$$761$$ −1.70923 0.986825i −0.0619596 0.0357724i 0.468700 0.883357i $$-0.344722\pi$$
−0.530660 + 0.847585i $$0.678056\pi$$
$$762$$ 4.44761 4.44761i 0.161120 0.161120i
$$763$$ −8.49921 + 33.9593i −0.307692 + 1.22941i
$$764$$ 4.47442i 0.161879i
$$765$$ −1.71753 4.65384i −0.0620976 0.168260i
$$766$$ −1.51691 + 0.875788i −0.0548082 + 0.0316435i
$$767$$ −0.0641463 + 0.239397i −0.00231619 + 0.00864413i
$$768$$ −1.95290 + 0.523277i −0.0704691 + 0.0188821i
$$769$$ −17.4914 −0.630756 −0.315378 0.948966i $$-0.602131\pi$$
−0.315378 + 0.948966i $$0.602131\pi$$
$$770$$ 21.8693 + 9.64284i 0.788113 + 0.347504i
$$771$$ −11.7763 −0.424112
$$772$$ 19.3907