# Properties

 Label 70.2.k.a.3.1 Level $70$ Weight $2$ Character 70.3 Analytic conductor $0.559$ Analytic rank $0$ Dimension $16$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$70 = 2 \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 70.k (of order $$12$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.558952814149$$ Analytic rank: $$0$$ Dimension: $$16$$ Relative dimension: $$4$$ over $$\Q(\zeta_{12})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{16} + \cdots)$$ Defining polynomial: $$x^{16} + 10 x^{14} + 61 x^{12} + 266 x^{10} + 852 x^{8} + 1438 x^{6} + 1933 x^{4} + 3038 x^{2} + 2401$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

## Embedding invariants

 Embedding label 3.1 Root $$-1.01089 + 0.750919i$$ of defining polynomial Character $$\chi$$ $$=$$ 70.3 Dual form 70.2.k.a.47.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.965926 - 0.258819i) q^{2} +(-0.0749894 - 0.279864i) q^{3} +(0.866025 + 0.500000i) q^{4} +(2.20382 + 0.378409i) q^{5} +0.289737i q^{6} +(0.126334 - 2.64273i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(2.52538 - 1.45803i) q^{9} +O(q^{10})$$ $$q+(-0.965926 - 0.258819i) q^{2} +(-0.0749894 - 0.279864i) q^{3} +(0.866025 + 0.500000i) q^{4} +(2.20382 + 0.378409i) q^{5} +0.289737i q^{6} +(0.126334 - 2.64273i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(2.52538 - 1.45803i) q^{9} +(-2.03078 - 0.935904i) q^{10} +(-2.81288 + 4.87205i) q^{11} +(0.0749894 - 0.279864i) q^{12} +(-1.42962 + 1.42962i) q^{13} +(-0.806019 + 2.51999i) q^{14} +(-0.0593598 - 0.645146i) q^{15} +(0.500000 + 0.866025i) q^{16} +(-5.12784 + 1.37400i) q^{17} +(-2.81669 + 0.754730i) q^{18} +(-1.94590 - 3.37040i) q^{19} +(1.71936 + 1.42962i) q^{20} +(-0.749081 + 0.162821i) q^{21} +(3.97801 - 3.97801i) q^{22} +(-0.290892 + 1.08562i) q^{23} +(-0.144868 + 0.250919i) q^{24} +(4.71361 + 1.66789i) q^{25} +(1.75092 - 1.01089i) q^{26} +(-1.21205 - 1.21205i) q^{27} +(1.43078 - 2.22551i) q^{28} +3.15502i q^{29} +(-0.109639 + 0.638527i) q^{30} +(-3.33287 - 1.92423i) q^{31} +(-0.258819 - 0.965926i) q^{32} +(1.57445 + 0.421872i) q^{33} +5.30873 q^{34} +(1.27845 - 5.77629i) q^{35} +2.91605 q^{36} +(4.86824 + 1.30444i) q^{37} +(1.00727 + 3.75919i) q^{38} +(0.507306 + 0.292893i) q^{39} +(-1.29076 - 1.82591i) q^{40} -7.21050i q^{41} +(0.765697 + 0.0366036i) q^{42} +(1.85669 + 1.85669i) q^{43} +(-4.87205 + 2.81288i) q^{44} +(6.11719 - 2.25760i) q^{45} +(0.561961 - 0.973344i) q^{46} +(-1.52590 + 5.69475i) q^{47} +(0.204875 - 0.204875i) q^{48} +(-6.96808 - 0.667734i) q^{49} +(-4.12132 - 2.83103i) q^{50} +(0.769067 + 1.33206i) q^{51} +(-1.95290 + 0.523277i) q^{52} +(1.33599 - 0.357978i) q^{53} +(0.857049 + 1.48445i) q^{54} +(-8.04270 + 9.67269i) q^{55} +(-1.95803 + 1.77936i) q^{56} +(-0.797333 + 0.797333i) q^{57} +(0.816578 - 3.04751i) q^{58} +(2.73923 - 4.74448i) q^{59} +(0.271166 - 0.588393i) q^{60} +(-3.99172 + 2.30462i) q^{61} +(2.72127 + 2.72127i) q^{62} +(-3.53413 - 6.85809i) q^{63} +1.00000i q^{64} +(-3.69160 + 2.60964i) q^{65} +(-1.41161 - 0.814995i) q^{66} +(0.218698 + 0.816193i) q^{67} +(-5.12784 - 1.37400i) q^{68} +0.325641 q^{69} +(-2.72990 + 5.24858i) q^{70} +4.77710 q^{71} +(-2.81669 - 0.754730i) q^{72} +(1.45256 + 5.42104i) q^{73} +(-4.36475 - 2.51999i) q^{74} +(0.113311 - 1.44425i) q^{75} -3.89180i q^{76} +(12.5202 + 8.04920i) q^{77} +(-0.414214 - 0.414214i) q^{78} +(5.41079 - 3.12392i) q^{79} +(0.774197 + 2.09777i) q^{80} +(4.12576 - 7.14603i) q^{81} +(-1.86622 + 6.96481i) q^{82} +(5.67281 - 5.67281i) q^{83} +(-0.730133 - 0.233533i) q^{84} +(-11.8207 + 1.08763i) q^{85} +(-1.31288 - 2.27397i) q^{86} +(0.882976 - 0.236593i) q^{87} +(5.43407 - 1.45605i) q^{88} +(-5.96090 - 10.3246i) q^{89} +(-6.49307 + 0.597426i) q^{90} +(3.59749 + 3.95871i) q^{91} +(-0.794732 + 0.794732i) q^{92} +(-0.288594 + 1.07705i) q^{93} +(2.94782 - 5.10577i) q^{94} +(-3.01302 - 8.16409i) q^{95} +(-0.250919 + 0.144868i) q^{96} +(-6.63103 - 6.63103i) q^{97} +(6.55783 + 2.44845i) q^{98} +16.4050i q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$16 q - 12 q^{5} + 8 q^{7} + O(q^{10})$$ $$16 q - 12 q^{5} + 8 q^{7} - 12 q^{10} - 12 q^{11} + 16 q^{15} + 8 q^{16} - 36 q^{17} - 8 q^{18} - 28 q^{21} - 8 q^{22} - 4 q^{23} + 12 q^{25} + 12 q^{26} + 4 q^{28} + 20 q^{30} + 24 q^{31} + 48 q^{33} + 8 q^{35} - 8 q^{36} + 4 q^{37} + 24 q^{38} + 36 q^{42} - 8 q^{43} - 12 q^{45} - 8 q^{46} + 12 q^{47} - 32 q^{50} - 16 q^{51} - 28 q^{53} - 4 q^{56} + 8 q^{57} - 32 q^{58} + 8 q^{60} - 12 q^{61} - 36 q^{63} - 8 q^{65} + 32 q^{67} - 36 q^{68} - 12 q^{70} + 16 q^{71} - 8 q^{72} - 12 q^{73} - 48 q^{75} + 16 q^{77} + 16 q^{78} - 12 q^{80} - 48 q^{82} + 24 q^{85} + 12 q^{86} - 24 q^{87} - 4 q^{88} - 16 q^{91} + 8 q^{92} + 28 q^{93} + 20 q^{95} + 12 q^{96} + 40 q^{98} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/70\mathbb{Z}\right)^\times$$.

 $$n$$ $$31$$ $$57$$ $$\chi(n)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{3}{4}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.965926 0.258819i −0.683013 0.183013i
$$3$$ −0.0749894 0.279864i −0.0432952 0.161580i 0.940894 0.338702i $$-0.109988\pi$$
−0.984189 + 0.177122i $$0.943321\pi$$
$$4$$ 0.866025 + 0.500000i 0.433013 + 0.250000i
$$5$$ 2.20382 + 0.378409i 0.985577 + 0.169230i
$$6$$ 0.289737i 0.118285i
$$7$$ 0.126334 2.64273i 0.0477497 0.998859i
$$8$$ −0.707107 0.707107i −0.250000 0.250000i
$$9$$ 2.52538 1.45803i 0.841792 0.486009i
$$10$$ −2.03078 0.935904i −0.642190 0.295959i
$$11$$ −2.81288 + 4.87205i −0.848115 + 1.46898i 0.0347729 + 0.999395i $$0.488929\pi$$
−0.882888 + 0.469583i $$0.844404\pi$$
$$12$$ 0.0749894 0.279864i 0.0216476 0.0807899i
$$13$$ −1.42962 + 1.42962i −0.396505 + 0.396505i −0.876998 0.480493i $$-0.840458\pi$$
0.480493 + 0.876998i $$0.340458\pi$$
$$14$$ −0.806019 + 2.51999i −0.215418 + 0.673495i
$$15$$ −0.0593598 0.645146i −0.0153266 0.166576i
$$16$$ 0.500000 + 0.866025i 0.125000 + 0.216506i
$$17$$ −5.12784 + 1.37400i −1.24368 + 0.333244i −0.819893 0.572516i $$-0.805967\pi$$
−0.423790 + 0.905760i $$0.639301\pi$$
$$18$$ −2.81669 + 0.754730i −0.663900 + 0.177892i
$$19$$ −1.94590 3.37040i −0.446420 0.773223i 0.551729 0.834023i $$-0.313968\pi$$
−0.998150 + 0.0608002i $$0.980635\pi$$
$$20$$ 1.71936 + 1.42962i 0.384460 + 0.319673i
$$21$$ −0.749081 + 0.162821i −0.163463 + 0.0355304i
$$22$$ 3.97801 3.97801i 0.848115 0.848115i
$$23$$ −0.290892 + 1.08562i −0.0606552 + 0.226368i −0.989599 0.143852i $$-0.954051\pi$$
0.928944 + 0.370220i $$0.120718\pi$$
$$24$$ −0.144868 + 0.250919i −0.0295711 + 0.0512187i
$$25$$ 4.71361 + 1.66789i 0.942723 + 0.333577i
$$26$$ 1.75092 1.01089i 0.343384 0.198253i
$$27$$ −1.21205 1.21205i −0.233259 0.233259i
$$28$$ 1.43078 2.22551i 0.270391 0.420581i
$$29$$ 3.15502i 0.585872i 0.956132 + 0.292936i $$0.0946322\pi$$
−0.956132 + 0.292936i $$0.905368\pi$$
$$30$$ −0.109639 + 0.638527i −0.0200172 + 0.116579i
$$31$$ −3.33287 1.92423i −0.598601 0.345602i 0.169890 0.985463i $$-0.445659\pi$$
−0.768491 + 0.639861i $$0.778992\pi$$
$$32$$ −0.258819 0.965926i −0.0457532 0.170753i
$$33$$ 1.57445 + 0.421872i 0.274076 + 0.0734386i
$$34$$ 5.30873 0.910440
$$35$$ 1.27845 5.77629i 0.216098 0.976372i
$$36$$ 2.91605 0.486009
$$37$$ 4.86824 + 1.30444i 0.800334 + 0.214449i 0.635731 0.771911i $$-0.280699\pi$$
0.164603 + 0.986360i $$0.447366\pi$$
$$38$$ 1.00727 + 3.75919i 0.163401 + 0.609822i
$$39$$ 0.507306 + 0.292893i 0.0812340 + 0.0469005i
$$40$$ −1.29076 1.82591i −0.204087 0.288702i
$$41$$ 7.21050i 1.12609i −0.826426 0.563046i $$-0.809629\pi$$
0.826426 0.563046i $$-0.190371\pi$$
$$42$$ 0.765697 + 0.0366036i 0.118150 + 0.00564806i
$$43$$ 1.85669 + 1.85669i 0.283143 + 0.283143i 0.834361 0.551218i $$-0.185837\pi$$
−0.551218 + 0.834361i $$0.685837\pi$$
$$44$$ −4.87205 + 2.81288i −0.734489 + 0.424058i
$$45$$ 6.11719 2.25760i 0.911897 0.336543i
$$46$$ 0.561961 0.973344i 0.0828566 0.143512i
$$47$$ −1.52590 + 5.69475i −0.222576 + 0.830665i 0.760785 + 0.649004i $$0.224814\pi$$
−0.983361 + 0.181661i $$0.941853\pi$$
$$48$$ 0.204875 0.204875i 0.0295711 0.0295711i
$$49$$ −6.96808 0.667734i −0.995440 0.0953905i
$$50$$ −4.12132 2.83103i −0.582843 0.400368i
$$51$$ 0.769067 + 1.33206i 0.107691 + 0.186526i
$$52$$ −1.95290 + 0.523277i −0.270818 + 0.0725655i
$$53$$ 1.33599 0.357978i 0.183512 0.0491720i −0.165892 0.986144i $$-0.553050\pi$$
0.349405 + 0.936972i $$0.386384\pi$$
$$54$$ 0.857049 + 1.48445i 0.116630 + 0.202008i
$$55$$ −8.04270 + 9.67269i −1.08448 + 1.30426i
$$56$$ −1.95803 + 1.77936i −0.261652 + 0.237777i
$$57$$ −0.797333 + 0.797333i −0.105609 + 0.105609i
$$58$$ 0.816578 3.04751i 0.107222 0.400158i
$$59$$ 2.73923 4.74448i 0.356617 0.617679i −0.630776 0.775965i $$-0.717263\pi$$
0.987393 + 0.158286i $$0.0505968\pi$$
$$60$$ 0.271166 0.588393i 0.0350074 0.0759612i
$$61$$ −3.99172 + 2.30462i −0.511088 + 0.295077i −0.733281 0.679926i $$-0.762012\pi$$
0.222193 + 0.975003i $$0.428678\pi$$
$$62$$ 2.72127 + 2.72127i 0.345602 + 0.345602i
$$63$$ −3.53413 6.85809i −0.445259 0.864038i
$$64$$ 1.00000i 0.125000i
$$65$$ −3.69160 + 2.60964i −0.457887 + 0.323686i
$$66$$ −1.41161 0.814995i −0.173758 0.100319i
$$67$$ 0.218698 + 0.816193i 0.0267182 + 0.0997138i 0.977997 0.208617i $$-0.0668963\pi$$
−0.951279 + 0.308331i $$0.900230\pi$$
$$68$$ −5.12784 1.37400i −0.621842 0.166622i
$$69$$ 0.325641 0.0392026
$$70$$ −2.72990 + 5.24858i −0.326286 + 0.627326i
$$71$$ 4.77710 0.566937 0.283469 0.958982i $$-0.408515\pi$$
0.283469 + 0.958982i $$0.408515\pi$$
$$72$$ −2.81669 0.754730i −0.331950 0.0889458i
$$73$$ 1.45256 + 5.42104i 0.170010 + 0.634485i 0.997348 + 0.0727807i $$0.0231873\pi$$
−0.827338 + 0.561704i $$0.810146\pi$$
$$74$$ −4.36475 2.51999i −0.507391 0.292943i
$$75$$ 0.113311 1.44425i 0.0130840 0.166767i
$$76$$ 3.89180i 0.446420i
$$77$$ 12.5202 + 8.04920i 1.42681 + 0.917291i
$$78$$ −0.414214 0.414214i −0.0469005 0.0469005i
$$79$$ 5.41079 3.12392i 0.608761 0.351469i −0.163719 0.986507i $$-0.552349\pi$$
0.772481 + 0.635038i $$0.219016\pi$$
$$80$$ 0.774197 + 2.09777i 0.0865578 + 0.234537i
$$81$$ 4.12576 7.14603i 0.458418 0.794003i
$$82$$ −1.86622 + 6.96481i −0.206089 + 0.769135i
$$83$$ 5.67281 5.67281i 0.622672 0.622672i −0.323542 0.946214i $$-0.604874\pi$$
0.946214 + 0.323542i $$0.104874\pi$$
$$84$$ −0.730133 0.233533i −0.0796641 0.0254806i
$$85$$ −11.8207 + 1.08763i −1.28214 + 0.117970i
$$86$$ −1.31288 2.27397i −0.141571 0.245209i
$$87$$ 0.882976 0.236593i 0.0946650 0.0253654i
$$88$$ 5.43407 1.45605i 0.579273 0.155216i
$$89$$ −5.96090 10.3246i −0.631855 1.09440i −0.987172 0.159659i $$-0.948961\pi$$
0.355318 0.934746i $$-0.384373\pi$$
$$90$$ −6.49307 + 0.597426i −0.684429 + 0.0629742i
$$91$$ 3.59749 + 3.95871i 0.377120 + 0.414986i
$$92$$ −0.794732 + 0.794732i −0.0828566 + 0.0828566i
$$93$$ −0.288594 + 1.07705i −0.0299258 + 0.111685i
$$94$$ 2.94782 5.10577i 0.304044 0.526620i
$$95$$ −3.01302 8.16409i −0.309129 0.837618i
$$96$$ −0.250919 + 0.144868i −0.0256094 + 0.0147856i
$$97$$ −6.63103 6.63103i −0.673279 0.673279i 0.285191 0.958471i $$-0.407943\pi$$
−0.958471 + 0.285191i $$0.907943\pi$$
$$98$$ 6.55783 + 2.44845i 0.662440 + 0.247331i
$$99$$ 16.4050i 1.64877i
$$100$$ 3.24817 + 3.80124i 0.324817 + 0.380124i
$$101$$ 13.9423 + 8.04960i 1.38731 + 0.800965i 0.993012 0.118016i $$-0.0376535\pi$$
0.394301 + 0.918981i $$0.370987\pi$$
$$102$$ −0.398099 1.48572i −0.0394176 0.147109i
$$103$$ 18.9993 + 5.09084i 1.87206 + 0.501616i 0.999924 + 0.0123445i $$0.00392947\pi$$
0.872132 + 0.489271i $$0.162737\pi$$
$$104$$ 2.02179 0.198253
$$105$$ −1.71245 + 0.0753683i −0.167118 + 0.00735519i
$$106$$ −1.38312 −0.134340
$$107$$ −2.70557 0.724955i −0.261557 0.0700840i 0.125657 0.992074i $$-0.459896\pi$$
−0.387214 + 0.921990i $$0.626563\pi$$
$$108$$ −0.443641 1.65569i −0.0426894 0.159319i
$$109$$ −5.11895 2.95543i −0.490306 0.283078i 0.234395 0.972141i $$-0.424689\pi$$
−0.724701 + 0.689063i $$0.758022\pi$$
$$110$$ 10.2721 7.26150i 0.979409 0.692356i
$$111$$ 1.46027i 0.138602i
$$112$$ 2.35184 1.21196i 0.222228 0.114519i
$$113$$ −13.5818 13.5818i −1.27767 1.27767i −0.941970 0.335697i $$-0.891028\pi$$
−0.335697 0.941970i $$-0.608972\pi$$
$$114$$ 0.976529 0.563800i 0.0914604 0.0528047i
$$115$$ −1.05188 + 2.28244i −0.0980886 + 0.212839i
$$116$$ −1.57751 + 2.73232i −0.146468 + 0.253690i
$$117$$ −1.52590 + 5.69475i −0.141070 + 0.526480i
$$118$$ −3.87385 + 3.87385i −0.356617 + 0.356617i
$$119$$ 2.98330 + 13.7251i 0.273478 + 1.25818i
$$120$$ −0.414214 + 0.498161i −0.0378124 + 0.0454757i
$$121$$ −10.3246 17.8827i −0.938599 1.62570i
$$122$$ 4.45219 1.19296i 0.403082 0.108006i
$$123$$ −2.01796 + 0.540712i −0.181954 + 0.0487543i
$$124$$ −1.92423 3.33287i −0.172801 0.299300i
$$125$$ 9.75680 + 5.45939i 0.872674 + 0.488303i
$$126$$ 1.63871 + 7.53911i 0.145988 + 0.671637i
$$127$$ 4.63487 4.63487i 0.411278 0.411278i −0.470906 0.882184i $$-0.656073\pi$$
0.882184 + 0.470906i $$0.156073\pi$$
$$128$$ 0.258819 0.965926i 0.0228766 0.0853766i
$$129$$ 0.380390 0.658854i 0.0334915 0.0580089i
$$130$$ 4.24124 1.56526i 0.371981 0.137282i
$$131$$ −6.66437 + 3.84768i −0.582269 + 0.336173i −0.762035 0.647536i $$-0.775799\pi$$
0.179766 + 0.983709i $$0.442466\pi$$
$$132$$ 1.15258 + 1.15258i 0.100319 + 0.100319i
$$133$$ −9.15290 + 4.71670i −0.793657 + 0.408990i
$$134$$ 0.844985i 0.0729956i
$$135$$ −2.21249 3.12979i −0.190421 0.269369i
$$136$$ 4.59749 + 2.65436i 0.394232 + 0.227610i
$$137$$ −2.28687 8.53471i −0.195380 0.729170i −0.992168 0.124910i $$-0.960136\pi$$
0.796788 0.604259i $$-0.206531\pi$$
$$138$$ −0.314545 0.0842822i −0.0267759 0.00717458i
$$139$$ 11.0631 0.938361 0.469180 0.883102i $$-0.344549\pi$$
0.469180 + 0.883102i $$0.344549\pi$$
$$140$$ 3.99532 4.36319i 0.337666 0.368757i
$$141$$ 1.70818 0.143855
$$142$$ −4.61432 1.23640i −0.387225 0.103757i
$$143$$ −2.94383 10.9865i −0.246176 0.918740i
$$144$$ 2.52538 + 1.45803i 0.210448 + 0.121502i
$$145$$ −1.19389 + 6.95307i −0.0991468 + 0.577421i
$$146$$ 5.61227i 0.464475i
$$147$$ 0.335657 + 2.00019i 0.0276846 + 0.164973i
$$148$$ 3.56380 + 3.56380i 0.292943 + 0.292943i
$$149$$ −4.37243 + 2.52443i −0.358204 + 0.206809i −0.668293 0.743899i $$-0.732975\pi$$
0.310089 + 0.950708i $$0.399641\pi$$
$$150$$ −0.483248 + 1.36571i −0.0394571 + 0.111510i
$$151$$ −6.72142 + 11.6418i −0.546981 + 0.947399i 0.451498 + 0.892272i $$0.350890\pi$$
−0.998479 + 0.0551270i $$0.982444\pi$$
$$152$$ −1.00727 + 3.75919i −0.0817006 + 0.304911i
$$153$$ −10.9464 + 10.9464i −0.884963 + 0.884963i
$$154$$ −10.0103 11.0154i −0.806651 0.887645i
$$155$$ −6.61688 5.50184i −0.531481 0.441918i
$$156$$ 0.292893 + 0.507306i 0.0234502 + 0.0406170i
$$157$$ −1.06529 + 0.285443i −0.0850191 + 0.0227808i −0.301078 0.953600i $$-0.597346\pi$$
0.216059 + 0.976380i $$0.430680\pi$$
$$158$$ −6.03495 + 1.61706i −0.480115 + 0.128646i
$$159$$ −0.200370 0.347052i −0.0158904 0.0275230i
$$160$$ −0.204875 2.22666i −0.0161968 0.176033i
$$161$$ 2.83227 + 0.905902i 0.223214 + 0.0713951i
$$162$$ −5.83471 + 5.83471i −0.458418 + 0.458418i
$$163$$ −3.42705 + 12.7899i −0.268428 + 1.00179i 0.691691 + 0.722193i $$0.256866\pi$$
−0.960119 + 0.279592i $$0.909801\pi$$
$$164$$ 3.60525 6.24448i 0.281523 0.487612i
$$165$$ 3.31016 + 1.52551i 0.257695 + 0.118761i
$$166$$ −6.94775 + 4.01128i −0.539250 + 0.311336i
$$167$$ −4.70680 4.70680i −0.364223 0.364223i 0.501142 0.865365i $$-0.332913\pi$$
−0.865365 + 0.501142i $$0.832913\pi$$
$$168$$ 0.644812 + 0.414548i 0.0497483 + 0.0319831i
$$169$$ 8.91237i 0.685567i
$$170$$ 11.6995 + 2.00887i 0.897308 + 0.154073i
$$171$$ −9.82827 5.67435i −0.751586 0.433929i
$$172$$ 0.679597 + 2.53629i 0.0518188 + 0.193390i
$$173$$ −6.81421 1.82586i −0.518075 0.138818i −0.00969875 0.999953i $$-0.503087\pi$$
−0.508376 + 0.861135i $$0.669754\pi$$
$$174$$ −0.914124 −0.0692996
$$175$$ 5.00327 12.2461i 0.378212 0.925719i
$$176$$ −5.62576 −0.424058
$$177$$ −1.53322 0.410826i −0.115244 0.0308796i
$$178$$ 3.08559 + 11.5156i 0.231275 + 0.863129i
$$179$$ 1.91075 + 1.10317i 0.142816 + 0.0824550i 0.569706 0.821849i $$-0.307057\pi$$
−0.426889 + 0.904304i $$0.640391\pi$$
$$180$$ 6.42644 + 1.10346i 0.478999 + 0.0822470i
$$181$$ 4.11867i 0.306139i 0.988215 + 0.153069i $$0.0489158\pi$$
−0.988215 + 0.153069i $$0.951084\pi$$
$$182$$ −2.45032 4.75492i −0.181630 0.352458i
$$183$$ 0.944318 + 0.944318i 0.0698060 + 0.0698060i
$$184$$ 0.973344 0.561961i 0.0717559 0.0414283i
$$185$$ 10.2351 + 4.71693i 0.752499 + 0.346796i
$$186$$ 0.557521 0.965654i 0.0408794 0.0708052i
$$187$$ 7.72980 28.8480i 0.565259 2.10957i
$$188$$ −4.16885 + 4.16885i −0.304044 + 0.304044i
$$189$$ −3.35625 + 3.05000i −0.244131 + 0.221855i
$$190$$ 0.797333 + 8.66573i 0.0578446 + 0.628678i
$$191$$ 8.60117 + 14.8977i 0.622359 + 1.07796i 0.989045 + 0.147613i $$0.0471589\pi$$
−0.366686 + 0.930345i $$0.619508\pi$$
$$192$$ 0.279864 0.0749894i 0.0201975 0.00541190i
$$193$$ 11.6562 3.12327i 0.839032 0.224818i 0.186382 0.982477i $$-0.440324\pi$$
0.652650 + 0.757659i $$0.273657\pi$$
$$194$$ 4.68885 + 8.12132i 0.336640 + 0.583077i
$$195$$ 1.00718 + 0.837452i 0.0721254 + 0.0599712i
$$196$$ −5.70067 4.06231i −0.407190 0.290165i
$$197$$ 14.3135 14.3135i 1.01979 1.01979i 0.0199932 0.999800i $$-0.493636\pi$$
0.999800 0.0199932i $$-0.00636444\pi$$
$$198$$ 4.24593 15.8460i 0.301745 1.12613i
$$199$$ −3.76653 + 6.52383i −0.267002 + 0.462462i −0.968086 0.250617i $$-0.919367\pi$$
0.701084 + 0.713079i $$0.252700\pi$$
$$200$$ −2.15365 4.51240i −0.152286 0.319075i
$$201$$ 0.212023 0.122412i 0.0149550 0.00863425i
$$202$$ −11.3839 11.3839i −0.800965 0.800965i
$$203$$ 8.33786 + 0.398585i 0.585203 + 0.0279752i
$$204$$ 1.53813i 0.107691i
$$205$$ 2.72852 15.8906i 0.190568 1.10985i
$$206$$ −17.0343 9.83476i −1.18684 0.685220i
$$207$$ 0.848257 + 3.16574i 0.0589579 + 0.220034i
$$208$$ −1.95290 0.523277i −0.135409 0.0362827i
$$209$$ 21.8944 1.51446
$$210$$ 1.67361 + 0.370414i 0.115490 + 0.0255610i
$$211$$ 19.5766 1.34771 0.673854 0.738865i $$-0.264638\pi$$
0.673854 + 0.738865i $$0.264638\pi$$
$$212$$ 1.33599 + 0.357978i 0.0917562 + 0.0245860i
$$213$$ −0.358232 1.33694i −0.0245456 0.0916056i
$$214$$ 2.42575 + 1.40051i 0.165821 + 0.0957366i
$$215$$ 3.38922 + 4.79440i 0.231143 + 0.326975i
$$216$$ 1.71410i 0.116630i
$$217$$ −5.50629 + 8.56478i −0.373791 + 0.581415i
$$218$$ 4.17960 + 4.17960i 0.283078 + 0.283078i
$$219$$ 1.40823 0.813041i 0.0951593 0.0549402i
$$220$$ −11.8015 + 4.35544i −0.795659 + 0.293644i
$$221$$ 5.36656 9.29516i 0.360994 0.625260i
$$222$$ −0.377945 + 1.41051i −0.0253660 + 0.0946672i
$$223$$ 1.46027 1.46027i 0.0977867 0.0977867i −0.656521 0.754308i $$-0.727973\pi$$
0.754308 + 0.656521i $$0.227973\pi$$
$$224$$ −2.58538 + 0.561961i −0.172743 + 0.0375476i
$$225$$ 14.3355 2.66053i 0.955698 0.177369i
$$226$$ 9.60377 + 16.6342i 0.638833 + 1.10649i
$$227$$ −18.0081 + 4.82525i −1.19524 + 0.320263i −0.800954 0.598726i $$-0.795674\pi$$
−0.394283 + 0.918989i $$0.629007\pi$$
$$228$$ −1.08918 + 0.291844i −0.0721325 + 0.0193278i
$$229$$ −2.00384 3.47074i −0.132417 0.229353i 0.792191 0.610274i $$-0.208941\pi$$
−0.924608 + 0.380920i $$0.875607\pi$$
$$230$$ 1.60678 1.93242i 0.105948 0.127420i
$$231$$ 1.31380 4.10755i 0.0864419 0.270257i
$$232$$ 2.23093 2.23093i 0.146468 0.146468i
$$233$$ −3.55400 + 13.2637i −0.232830 + 0.868934i 0.746285 + 0.665627i $$0.231836\pi$$
−0.979115 + 0.203307i $$0.934831\pi$$
$$234$$ 2.94782 5.10577i 0.192705 0.333775i
$$235$$ −5.51775 + 11.9728i −0.359939 + 0.781017i
$$236$$ 4.74448 2.73923i 0.308839 0.178308i
$$237$$ −1.28003 1.28003i −0.0831466 0.0831466i
$$238$$ 0.670673 14.0296i 0.0434732 0.909401i
$$239$$ 19.6621i 1.27183i −0.771758 0.635916i $$-0.780622\pi$$
0.771758 0.635916i $$-0.219378\pi$$
$$240$$ 0.529033 0.373980i 0.0341489 0.0241403i
$$241$$ −5.09667 2.94256i −0.328305 0.189547i 0.326783 0.945099i $$-0.394035\pi$$
−0.655088 + 0.755552i $$0.727369\pi$$
$$242$$ 5.34440 + 19.9456i 0.343551 + 1.28215i
$$243$$ −7.27638 1.94970i −0.466780 0.125073i
$$244$$ −4.60924 −0.295077
$$245$$ −15.1037 4.10834i −0.964939 0.262473i
$$246$$ 2.08915 0.133199
$$247$$ 7.60029 + 2.03649i 0.483595 + 0.129579i
$$248$$ 0.996056 + 3.71733i 0.0632496 + 0.236051i
$$249$$ −2.01302 1.16222i −0.127570 0.0736525i
$$250$$ −8.01135 7.79861i −0.506682 0.493227i
$$251$$ 7.09950i 0.448116i 0.974576 + 0.224058i $$0.0719306\pi$$
−0.974576 + 0.224058i $$0.928069\pi$$
$$252$$ 0.368396 7.70635i 0.0232068 0.485454i
$$253$$ −4.47097 4.47097i −0.281088 0.281088i
$$254$$ −5.67653 + 3.27735i −0.356177 + 0.205639i
$$255$$ 1.19082 + 3.22665i 0.0745720 + 0.202060i
$$256$$ −0.500000 + 0.866025i −0.0312500 + 0.0541266i
$$257$$ −2.55891 + 9.54998i −0.159620 + 0.595711i 0.839045 + 0.544062i $$0.183114\pi$$
−0.998665 + 0.0516491i $$0.983552\pi$$
$$258$$ −0.537952 + 0.537952i −0.0334915 + 0.0334915i
$$259$$ 4.06231 12.7007i 0.252420 0.789181i
$$260$$ −4.50184 + 0.414214i −0.279192 + 0.0256884i
$$261$$ 4.60010 + 7.96760i 0.284739 + 0.493182i
$$262$$ 7.43314 1.99170i 0.459221 0.123048i
$$263$$ −13.2797 + 3.55829i −0.818861 + 0.219413i −0.643849 0.765153i $$-0.722663\pi$$
−0.175013 + 0.984566i $$0.555997\pi$$
$$264$$ −0.814995 1.41161i −0.0501595 0.0868788i
$$265$$ 3.07974 0.283366i 0.189187 0.0174071i
$$266$$ 10.0618 2.18704i 0.616929 0.134096i
$$267$$ −2.44248 + 2.44248i −0.149477 + 0.149477i
$$268$$ −0.218698 + 0.816193i −0.0133591 + 0.0498569i
$$269$$ −13.2510 + 22.9514i −0.807928 + 1.39937i 0.106368 + 0.994327i $$0.466078\pi$$
−0.914296 + 0.405046i $$0.867255\pi$$
$$270$$ 1.32705 + 3.59578i 0.0807617 + 0.218832i
$$271$$ −11.0824 + 6.39844i −0.673209 + 0.388678i −0.797292 0.603594i $$-0.793735\pi$$
0.124082 + 0.992272i $$0.460401\pi$$
$$272$$ −3.75384 3.75384i −0.227610 0.227610i
$$273$$ 0.838129 1.30367i 0.0507259 0.0789018i
$$274$$ 8.83578i 0.533789i
$$275$$ −21.3849 + 18.2734i −1.28956 + 1.10193i
$$276$$ 0.282014 + 0.162821i 0.0169752 + 0.00980065i
$$277$$ 5.20313 + 19.4184i 0.312626 + 1.16674i 0.926180 + 0.377083i $$0.123073\pi$$
−0.613554 + 0.789653i $$0.710261\pi$$
$$278$$ −10.6861 2.86334i −0.640912 0.171732i
$$279$$ −11.2223 −0.671863
$$280$$ −4.98846 + 3.18046i −0.298117 + 0.190069i
$$281$$ −14.1498 −0.844107 −0.422054 0.906571i $$-0.638691\pi$$
−0.422054 + 0.906571i $$0.638691\pi$$
$$282$$ −1.64998 0.442111i −0.0982548 0.0263273i
$$283$$ −7.00563 26.1454i −0.416442 1.55418i −0.781930 0.623366i $$-0.785765\pi$$
0.365489 0.930816i $$-0.380902\pi$$
$$284$$ 4.13709 + 2.38855i 0.245491 + 0.141734i
$$285$$ −2.05889 + 1.45546i −0.121958 + 0.0862139i
$$286$$ 11.3741i 0.672564i
$$287$$ −19.0554 0.910931i −1.12481 0.0537706i
$$288$$ −2.06196 2.06196i −0.121502 0.121502i
$$289$$ 9.68442 5.59130i 0.569672 0.328900i
$$290$$ 2.95279 6.40715i 0.173394 0.376241i
$$291$$ −1.35853 + 2.35305i −0.0796385 + 0.137938i
$$292$$ −1.45256 + 5.42104i −0.0850048 + 0.317242i
$$293$$ 17.1191 17.1191i 1.00011 1.00011i 0.000106876 1.00000i $$-0.499966\pi$$
1.00000 0.000106876i $$-3.40197e-5\pi$$
$$294$$ 0.193467 2.01891i 0.0112832 0.117745i
$$295$$ 7.83211 9.41941i 0.456003 0.548420i
$$296$$ −2.51999 4.36475i −0.146471 0.253696i
$$297$$ 9.31453 2.49582i 0.540484 0.144822i
$$298$$ 4.87682 1.30674i 0.282506 0.0756974i
$$299$$ −1.13616 1.96790i −0.0657061 0.113806i
$$300$$ 0.820253 1.19410i 0.0473573 0.0689413i
$$301$$ 5.14131 4.67218i 0.296340 0.269300i
$$302$$ 9.50552 9.50552i 0.546981 0.546981i
$$303$$ 1.20727 4.50559i 0.0693558 0.258840i
$$304$$ 1.94590 3.37040i 0.111605 0.193306i
$$305$$ −9.66911 + 3.56846i −0.553652 + 0.204329i
$$306$$ 13.4065 7.74027i 0.766401 0.442482i
$$307$$ 17.2974 + 17.2974i 0.987217 + 0.987217i 0.999919 0.0127019i $$-0.00404326\pi$$
−0.0127019 + 0.999919i $$0.504043\pi$$
$$308$$ 6.81819 + 13.2309i 0.388502 + 0.753900i
$$309$$ 5.69898i 0.324204i
$$310$$ 4.96744 + 7.02694i 0.282131 + 0.399104i
$$311$$ −9.51095 5.49115i −0.539316 0.311374i 0.205486 0.978660i $$-0.434123\pi$$
−0.744802 + 0.667286i $$0.767456\pi$$
$$312$$ −0.151613 0.565826i −0.00858338 0.0320336i
$$313$$ 28.4088 + 7.61212i 1.60576 + 0.430262i 0.946776 0.321893i $$-0.104319\pi$$
0.658985 + 0.752156i $$0.270986\pi$$
$$314$$ 1.10287 0.0622383
$$315$$ −5.19342 16.4513i −0.292616 0.926927i
$$316$$ 6.24784 0.351469
$$317$$ −4.14766 1.11136i −0.232956 0.0624203i 0.140453 0.990087i $$-0.455144\pi$$
−0.373408 + 0.927667i $$0.621811\pi$$
$$318$$ 0.103719 + 0.387086i 0.00581629 + 0.0217067i
$$319$$ −15.3714 8.87468i −0.860633 0.496887i
$$320$$ −0.378409 + 2.20382i −0.0211537 + 0.123197i
$$321$$ 0.811556i 0.0452966i
$$322$$ −2.50129 1.60808i −0.139392 0.0896147i
$$323$$ 14.6092 + 14.6092i 0.812878 + 0.812878i
$$324$$ 7.14603 4.12576i 0.397001 0.229209i
$$325$$ −9.12312 + 4.35423i −0.506060 + 0.241529i
$$326$$ 6.62056 11.4671i 0.366679 0.635106i
$$327$$ −0.443251 + 1.65424i −0.0245119 + 0.0914795i
$$328$$ −5.09860 + 5.09860i −0.281523 + 0.281523i
$$329$$ 14.8569 + 4.75200i 0.819089 + 0.261986i
$$330$$ −2.80253 2.33027i −0.154274 0.128277i
$$331$$ −17.7249 30.7005i −0.974250 1.68745i −0.682387 0.730991i $$-0.739058\pi$$
−0.291863 0.956460i $$-0.594275\pi$$
$$332$$ 7.74921 2.07639i 0.425293 0.113957i
$$333$$ 14.1960 3.80382i 0.777939 0.208448i
$$334$$ 3.32821 + 5.76463i 0.182112 + 0.315426i
$$335$$ 0.173116 + 1.88150i 0.00945835 + 0.102797i
$$336$$ −0.515547 0.567312i −0.0281254 0.0309494i
$$337$$ −12.1473 + 12.1473i −0.661708 + 0.661708i −0.955782 0.294075i $$-0.904989\pi$$
0.294075 + 0.955782i $$0.404989\pi$$
$$338$$ 2.30669 8.60869i 0.125468 0.468251i
$$339$$ −2.78257 + 4.81955i −0.151128 + 0.261762i
$$340$$ −10.7809 4.96846i −0.584675 0.269453i
$$341$$ 18.7499 10.8253i 1.01536 0.586221i
$$342$$ 8.02475 + 8.02475i 0.433929 + 0.433929i
$$343$$ −2.64495 + 18.3304i −0.142814 + 0.989750i
$$344$$ 2.62576i 0.141571i
$$345$$ 0.717654 + 0.123226i 0.0386372 + 0.00663424i
$$346$$ 6.10945 + 3.52729i 0.328446 + 0.189628i
$$347$$ 2.32323 + 8.67040i 0.124717 + 0.465452i 0.999829 0.0184687i $$-0.00587911\pi$$
−0.875112 + 0.483920i $$0.839212\pi$$
$$348$$ 0.882976 + 0.236593i 0.0473325 + 0.0126827i
$$349$$ −26.0251 −1.39309 −0.696546 0.717512i $$-0.745281\pi$$
−0.696546 + 0.717512i $$0.745281\pi$$
$$350$$ −8.00231 + 10.5339i −0.427742 + 0.563060i
$$351$$ 3.46554 0.184977
$$352$$ 5.43407 + 1.45605i 0.289637 + 0.0776079i
$$353$$ 2.57944 + 9.62659i 0.137290 + 0.512372i 0.999978 + 0.00663577i $$0.00211225\pi$$
−0.862688 + 0.505736i $$0.831221\pi$$
$$354$$ 1.37465 + 0.793655i 0.0730619 + 0.0421823i
$$355$$ 10.5278 + 1.80770i 0.558760 + 0.0959425i
$$356$$ 11.9218i 0.631855i
$$357$$ 3.61745 1.86416i 0.191456 0.0986615i
$$358$$ −1.56012 1.56012i −0.0824550 0.0824550i
$$359$$ 10.0235 5.78705i 0.529019 0.305429i −0.211598 0.977357i $$-0.567867\pi$$
0.740617 + 0.671928i $$0.234533\pi$$
$$360$$ −5.92187 2.72915i −0.312110 0.143839i
$$361$$ 1.92693 3.33754i 0.101417 0.175660i
$$362$$ 1.06599 3.97833i 0.0560273 0.209097i
$$363$$ −4.23050 + 4.23050i −0.222044 + 0.222044i
$$364$$ 1.13616 + 5.22709i 0.0595512 + 0.273974i
$$365$$ 1.14981 + 12.4966i 0.0601840 + 0.654104i
$$366$$ −0.667734 1.15655i −0.0349030 0.0604538i
$$367$$ 16.1256 4.32083i 0.841747 0.225545i 0.187915 0.982185i $$-0.439827\pi$$
0.653832 + 0.756640i $$0.273160\pi$$
$$368$$ −1.08562 + 0.290892i −0.0565921 + 0.0151638i
$$369$$ −10.5131 18.2092i −0.547290 0.947935i
$$370$$ −8.66551 7.20525i −0.450499 0.374583i
$$371$$ −0.777258 3.57589i −0.0403532 0.185651i
$$372$$ −0.788454 + 0.788454i −0.0408794 + 0.0408794i
$$373$$ 0.822767 3.07061i 0.0426013 0.158990i −0.941348 0.337436i $$-0.890440\pi$$
0.983950 + 0.178446i $$0.0571070\pi$$
$$374$$ −14.9328 + 25.8644i −0.772158 + 1.33742i
$$375$$ 0.796232 3.13998i 0.0411172 0.162148i
$$376$$ 5.10577 2.94782i 0.263310 0.152022i
$$377$$ −4.51047 4.51047i −0.232301 0.232301i
$$378$$ 4.03129 2.07742i 0.207347 0.106851i
$$379$$ 7.15349i 0.367450i −0.982978 0.183725i $$-0.941184\pi$$
0.982978 0.183725i $$-0.0588156\pi$$
$$380$$ 1.47269 8.57682i 0.0755475 0.439982i
$$381$$ −1.64470 0.949568i −0.0842605 0.0486478i
$$382$$ −4.45229 16.6162i −0.227799 0.850158i
$$383$$ −14.0961 3.77704i −0.720278 0.192998i −0.119982 0.992776i $$-0.538284\pi$$
−0.600296 + 0.799778i $$0.704950\pi$$
$$384$$ −0.289737 −0.0147856
$$385$$ 24.5463 + 22.4767i 1.25099 + 1.14552i
$$386$$ −12.0674 −0.614214
$$387$$ 7.39595 + 1.98174i 0.375957 + 0.100737i
$$388$$ −2.42713 9.05816i −0.123219 0.459858i
$$389$$ 5.36634 + 3.09826i 0.272084 + 0.157088i 0.629834 0.776729i $$-0.283123\pi$$
−0.357750 + 0.933817i $$0.616456\pi$$
$$390$$ −0.756109 1.06959i −0.0382870 0.0541609i
$$391$$ 5.96659i 0.301744i
$$392$$ 4.45502 + 5.39934i 0.225012 + 0.272708i
$$393$$ 1.57658 + 1.57658i 0.0795282 + 0.0795282i
$$394$$ −17.5304 + 10.1212i −0.883167 + 0.509897i
$$395$$ 13.1065 4.83706i 0.659460 0.243379i
$$396$$ −8.20251 + 14.2072i −0.412191 + 0.713937i
$$397$$ 0.754685 2.81652i 0.0378766 0.141357i −0.944398 0.328804i $$-0.893354\pi$$
0.982275 + 0.187447i $$0.0600212\pi$$
$$398$$ 5.32668 5.32668i 0.267002 0.267002i
$$399$$ 2.00641 + 2.20787i 0.100446 + 0.110532i
$$400$$ 0.912375 + 4.91605i 0.0456187 + 0.245803i
$$401$$ 9.98528 + 17.2950i 0.498641 + 0.863672i 0.999999 0.00156835i $$-0.000499221\pi$$
−0.501358 + 0.865240i $$0.667166\pi$$
$$402$$ −0.236481 + 0.0633649i −0.0117946 + 0.00316035i
$$403$$ 7.51565 2.01381i 0.374381 0.100315i
$$404$$ 8.04960 + 13.9423i 0.400483 + 0.693656i
$$405$$ 11.7965 14.1873i 0.586175 0.704973i
$$406$$ −7.95060 2.54300i −0.394581 0.126207i
$$407$$ −20.0491 + 20.0491i −0.993796 + 0.993796i
$$408$$ 0.398099 1.48572i 0.0197088 0.0735543i
$$409$$ 17.1791 29.7550i 0.849451 1.47129i −0.0322484 0.999480i $$-0.510267\pi$$
0.881699 0.471812i $$-0.156400\pi$$
$$410$$ −6.74834 + 14.6430i −0.333277 + 0.723165i
$$411$$ −2.21707 + 1.28003i −0.109360 + 0.0631390i
$$412$$ 13.9084 + 13.9084i 0.685220 + 0.685220i
$$413$$ −12.1923 7.83843i −0.599946 0.385704i
$$414$$ 3.27741i 0.161076i
$$415$$ 14.6485 10.3552i 0.719065 0.508317i
$$416$$ 1.75092 + 1.01089i 0.0858459 + 0.0495631i
$$417$$ −0.829616 3.09617i −0.0406265 0.151620i
$$418$$ −21.1483 5.66668i −1.03440 0.277166i
$$419$$ −31.1360 −1.52109 −0.760547 0.649283i $$-0.775069\pi$$
−0.760547 + 0.649283i $$0.775069\pi$$
$$420$$ −1.52071 0.790953i −0.0742030 0.0385946i
$$421$$ −33.6728 −1.64111 −0.820555 0.571567i $$-0.806336\pi$$
−0.820555 + 0.571567i $$0.806336\pi$$
$$422$$ −18.9095 5.06679i −0.920501 0.246648i
$$423$$ 4.44962 + 16.6062i 0.216348 + 0.807421i
$$424$$ −1.19782 0.691560i −0.0581711 0.0335851i
$$425$$ −26.4623 2.07615i −1.28361 0.100708i
$$426$$ 1.38410i 0.0670599i
$$427$$ 5.58621 + 10.8402i 0.270336 + 0.524594i
$$428$$ −1.98061 1.98061i −0.0957366 0.0957366i
$$429$$ −2.85398 + 1.64775i −0.137792 + 0.0795540i
$$430$$ −2.03285 5.50823i −0.0980330 0.265630i
$$431$$ 7.37284 12.7701i 0.355137 0.615116i −0.632004 0.774965i $$-0.717767\pi$$
0.987141 + 0.159849i $$0.0511008\pi$$
$$432$$ 0.443641 1.65569i 0.0213447 0.0796595i
$$433$$ −9.98256 + 9.98256i −0.479731 + 0.479731i −0.905046 0.425315i $$-0.860163\pi$$
0.425315 + 0.905046i $$0.360163\pi$$
$$434$$ 7.53539 6.84781i 0.361710 0.328706i
$$435$$ 2.03545 0.187281i 0.0975922 0.00897944i
$$436$$ −2.95543 5.11895i −0.141539 0.245153i
$$437$$ 4.22504 1.13210i 0.202111 0.0541555i
$$438$$ −1.57067 + 0.420861i −0.0750498 + 0.0201095i
$$439$$ 19.2142 + 33.2800i 0.917046 + 1.58837i 0.803878 + 0.594794i $$0.202766\pi$$
0.113167 + 0.993576i $$0.463900\pi$$
$$440$$ 12.5267 1.15258i 0.597186 0.0549470i
$$441$$ −18.5706 + 8.47336i −0.884314 + 0.403494i
$$442$$ −7.58946 + 7.58946i −0.360994 + 0.360994i
$$443$$ 1.48448 5.54016i 0.0705299 0.263221i −0.921653 0.388016i $$-0.873161\pi$$
0.992183 + 0.124795i $$0.0398272\pi$$
$$444$$ 0.730133 1.26463i 0.0346506 0.0600166i
$$445$$ −9.22982 25.0092i −0.437536 1.18555i
$$446$$ −1.78845 + 1.03256i −0.0846857 + 0.0488933i
$$447$$ 1.03438 + 1.03438i 0.0489247 + 0.0489247i
$$448$$ 2.64273 + 0.126334i 0.124857 + 0.00596872i
$$449$$ 7.30267i 0.344635i −0.985042 0.172317i $$-0.944875\pi$$
0.985042 0.172317i $$-0.0551254\pi$$
$$450$$ −14.5356 1.14042i −0.685215 0.0537597i
$$451$$ 35.1299 + 20.2823i 1.65420 + 0.955055i
$$452$$ −4.97128 18.5531i −0.233829 0.872663i
$$453$$ 3.76217 + 1.00807i 0.176762 + 0.0473633i
$$454$$ 18.6433 0.874974
$$455$$ 6.43021 + 10.0856i 0.301453 + 0.472820i
$$456$$ 1.12760 0.0528047
$$457$$ −4.97047 1.33183i −0.232509 0.0623006i 0.140683 0.990055i $$-0.455070\pi$$
−0.373192 + 0.927754i $$0.621737\pi$$
$$458$$ 1.03726 + 3.87111i 0.0484680 + 0.180885i
$$459$$ 7.88056 + 4.54984i 0.367833 + 0.212368i
$$460$$ −2.05218 + 1.45071i −0.0956833 + 0.0676397i
$$461$$ 29.4110i 1.36981i 0.728634 + 0.684903i $$0.240155\pi$$
−0.728634 + 0.684903i $$0.759845\pi$$
$$462$$ −2.33215 + 3.62755i −0.108501 + 0.168769i
$$463$$ −4.04625 4.04625i −0.188045 0.188045i 0.606805 0.794851i $$-0.292451\pi$$
−0.794851 + 0.606805i $$0.792451\pi$$
$$464$$ −2.73232 + 1.57751i −0.126845 + 0.0732340i
$$465$$ −1.04357 + 2.26441i −0.0483945 + 0.105009i
$$466$$ 6.86580 11.8919i 0.318052 0.550882i
$$467$$ 4.30747 16.0757i 0.199326 0.743894i −0.791779 0.610808i $$-0.790845\pi$$
0.991105 0.133086i $$-0.0424886\pi$$
$$468$$ −4.16885 + 4.16885i −0.192705 + 0.192705i
$$469$$ 2.18461 0.474848i 0.100876 0.0219264i
$$470$$ 8.42852 10.1367i 0.388779 0.467571i
$$471$$ 0.159770 + 0.276731i 0.00736184 + 0.0127511i
$$472$$ −5.29178 + 1.41793i −0.243574 + 0.0652654i
$$473$$ −14.2686 + 3.82325i −0.656069 + 0.175793i
$$474$$ 0.905115 + 1.56771i 0.0415733 + 0.0720071i
$$475$$ −3.55078 19.1323i −0.162921 0.877851i
$$476$$ −4.27894 + 13.3779i −0.196125 + 0.613176i
$$477$$ 2.85194 2.85194i 0.130581 0.130581i
$$478$$ −5.08891 + 18.9921i −0.232762 + 0.868678i
$$479$$ 7.69460 13.3274i 0.351575 0.608946i −0.634950 0.772553i $$-0.718979\pi$$
0.986526 + 0.163607i $$0.0523128\pi$$
$$480$$ −0.607800 + 0.224313i −0.0277421 + 0.0102385i
$$481$$ −8.82459 + 5.09488i −0.402367 + 0.232306i
$$482$$ 4.16141 + 4.16141i 0.189547 + 0.189547i
$$483$$ 0.0411396 0.860583i 0.00187191 0.0391579i
$$484$$ 20.6492i 0.938599i
$$485$$ −12.1043 17.1228i −0.549629 0.777507i
$$486$$ 6.52383 + 3.76653i 0.295927 + 0.170853i
$$487$$ −9.31541 34.7656i −0.422122 1.57538i −0.770129 0.637888i $$-0.779808\pi$$
0.348007 0.937492i $$-0.386858\pi$$
$$488$$ 4.45219 + 1.19296i 0.201541 + 0.0540028i
$$489$$ 3.83644 0.173490
$$490$$ 13.5257 + 7.87748i 0.611030 + 0.355868i
$$491$$ −15.2823 −0.689680 −0.344840 0.938661i $$-0.612067\pi$$
−0.344840 + 0.938661i $$0.612067\pi$$
$$492$$ −2.01796 0.540712i −0.0909768 0.0243772i
$$493$$ −4.33499 16.1784i −0.195238 0.728639i
$$494$$ −6.81423 3.93420i −0.306587 0.177008i
$$495$$ −6.20780 + 36.1536i −0.279020 + 1.62499i
$$496$$ 3.84846i 0.172801i
$$497$$ 0.603509 12.6246i 0.0270711 0.566290i
$$498$$ 1.64362 + 1.64362i 0.0736525 + 0.0736525i
$$499$$ −27.3534 + 15.7925i −1.22451 + 0.706969i −0.965875 0.259008i $$-0.916604\pi$$
−0.258630 + 0.965976i $$0.583271\pi$$
$$500$$ 5.71994 + 9.60637i 0.255803 + 0.429610i
$$501$$ −0.964305 + 1.67023i −0.0430820 + 0.0746202i
$$502$$ 1.83749 6.85759i 0.0820110 0.306069i
$$503$$ 16.9777 16.9777i 0.756997 0.756997i −0.218778 0.975775i $$-0.570207\pi$$
0.975775 + 0.218778i $$0.0702070\pi$$
$$504$$ −2.35039 + 7.34841i −0.104695 + 0.327324i
$$505$$ 27.6803 + 23.0157i 1.23176 + 1.02419i
$$506$$ 3.16146 + 5.47580i 0.140544 + 0.243429i
$$507$$ 2.49426 0.668334i 0.110774 0.0296817i
$$508$$ 6.33135 1.69648i 0.280908 0.0752691i
$$509$$ 10.7571 + 18.6318i 0.476799 + 0.825840i 0.999647 0.0265865i $$-0.00846373\pi$$
−0.522848 + 0.852426i $$0.675130\pi$$
$$510$$ −0.315125 3.42491i −0.0139540 0.151657i
$$511$$ 14.5099 3.15388i 0.641879 0.139519i
$$512$$ 0.707107 0.707107i 0.0312500 0.0312500i
$$513$$ −1.72657 + 6.44363i −0.0762297 + 0.284493i
$$514$$ 4.94343 8.56228i 0.218045 0.377666i
$$515$$ 39.9445 + 18.4088i 1.76017 + 0.811188i
$$516$$ 0.658854 0.380390i 0.0290044 0.0167457i
$$517$$ −23.4529 23.4529i −1.03146 1.03146i
$$518$$ −7.21107 + 11.2165i −0.316836 + 0.492825i
$$519$$ 2.04397i 0.0897205i
$$520$$ 4.45565 + 0.765062i 0.195393 + 0.0335502i
$$521$$ 11.4657 + 6.61973i 0.502322 + 0.290016i 0.729672 0.683798i $$-0.239673\pi$$
−0.227350 + 0.973813i $$0.573006\pi$$
$$522$$ −2.38118 8.88670i −0.104222 0.388960i
$$523$$ −26.0126 6.97006i −1.13745 0.304779i −0.359526 0.933135i $$-0.617062\pi$$
−0.777926 + 0.628356i $$0.783728\pi$$
$$524$$ −7.69535 −0.336173
$$525$$ −3.80244 0.481908i −0.165952 0.0210322i
$$526$$ 13.7482 0.599448
$$527$$ 19.7343 + 5.28779i 0.859640 + 0.230340i
$$528$$ 0.421872 + 1.57445i 0.0183596 + 0.0685191i
$$529$$ 18.8246 + 10.8684i 0.818462 + 0.472539i
$$530$$ −3.04814 0.523384i −0.132403 0.0227344i
$$531$$ 15.9755i 0.693276i
$$532$$ −10.2850 0.491667i −0.445911 0.0213165i
$$533$$ 10.3083 + 10.3083i 0.446501 + 0.446501i
$$534$$ 2.99141 1.72709i 0.129451 0.0747386i
$$535$$ −5.68825 2.62148i −0.245924 0.113336i
$$536$$ 0.422492 0.731778i 0.0182489 0.0316080i
$$537$$ 0.165453 0.617477i 0.00713980 0.0266461i
$$538$$ 18.7398 18.7398i 0.807928 0.807928i
$$539$$ 22.8536 32.0706i 0.984374 1.38138i
$$540$$ −0.351176 3.81672i −0.0151122 0.164245i
$$541$$ 5.66491 + 9.81190i 0.243553 + 0.421847i 0.961724 0.274020i $$-0.0883536\pi$$
−0.718171 + 0.695867i $$0.755020\pi$$
$$542$$ 12.3608 3.31208i 0.530943 0.142266i
$$543$$ 1.15267 0.308857i 0.0494658 0.0132543i
$$544$$ 2.65436 + 4.59749i 0.113805 + 0.197116i
$$545$$ −10.1629 8.45027i −0.435329 0.361970i
$$546$$ −1.14699 + 1.04233i −0.0490864 + 0.0446075i
$$547$$ −30.9149 + 30.9149i −1.32182 + 1.32182i −0.409527 + 0.912298i $$0.634306\pi$$
−0.912298 + 0.409527i $$0.865694\pi$$
$$548$$ 2.28687 8.53471i 0.0976902 0.364585i
$$549$$ −6.72040 + 11.6401i −0.286820 + 0.496786i
$$550$$ 25.3857 12.1159i 1.08245 0.516625i
$$551$$ 10.6337 6.13935i 0.453009 0.261545i
$$552$$ −0.230263 0.230263i −0.00980065 0.00980065i
$$553$$ −7.57212 14.6939i −0.321999 0.624850i
$$554$$ 20.1034i 0.854110i
$$555$$ 0.552577 3.21816i 0.0234556 0.136603i
$$556$$ 9.58094 + 5.53156i 0.406322 + 0.234590i
$$557$$ −6.83277 25.5003i −0.289514 1.08048i −0.945477 0.325688i $$-0.894404\pi$$
0.655963 0.754793i $$-0.272263\pi$$
$$558$$ 10.8399 + 2.90455i 0.458891 + 0.122959i
$$559$$ −5.30873 −0.224535
$$560$$ 5.64164 1.78098i 0.238403 0.0752600i
$$561$$ −8.65318 −0.365337
$$562$$ 13.6677 + 3.66224i 0.576536 + 0.154482i
$$563$$ 5.22648 + 19.5055i 0.220270 + 0.822058i 0.984245 + 0.176812i $$0.0565784\pi$$
−0.763975 + 0.645246i $$0.776755\pi$$
$$564$$ 1.47933 + 0.854092i 0.0622911 + 0.0359638i
$$565$$ −24.7923 35.0712i −1.04302 1.47546i
$$566$$ 27.0677i 1.13774i
$$567$$ −18.3638 11.8061i −0.771208 0.495808i
$$568$$ −3.37792 3.37792i −0.141734 0.141734i
$$569$$ 21.4890 12.4067i 0.900867 0.520116i 0.0233856 0.999727i $$-0.492555\pi$$
0.877481 + 0.479611i $$0.159222\pi$$
$$570$$ 2.36544 0.872983i 0.0990773 0.0365653i
$$571$$ −2.29029 + 3.96690i −0.0958458 + 0.166010i −0.909961 0.414693i $$-0.863889\pi$$
0.814116 + 0.580703i $$0.197222\pi$$
$$572$$ 2.94383 10.9865i 0.123088 0.459370i
$$573$$ 3.52433 3.52433i 0.147231 0.147231i
$$574$$ 18.1704 + 5.81180i 0.758417 + 0.242580i
$$575$$ −3.18185 + 4.63204i −0.132692 + 0.193169i
$$576$$ 1.45803 + 2.52538i 0.0607511 + 0.105224i
$$577$$ −19.1065 + 5.11957i −0.795414 + 0.213131i −0.633570 0.773686i $$-0.718411\pi$$
−0.161845 + 0.986816i $$0.551744\pi$$
$$578$$ −10.8016 + 2.89427i −0.449286 + 0.120386i
$$579$$ −1.74818 3.02794i −0.0726520 0.125837i
$$580$$ −4.51047 + 5.42460i −0.187287 + 0.225244i
$$581$$ −14.2751 15.7084i −0.592229 0.651694i
$$582$$ 1.92125 1.92125i 0.0796385 0.0796385i
$$583$$ −2.01390 + 7.51596i −0.0834071 + 0.311279i
$$584$$ 2.80614 4.86037i 0.116119 0.201124i
$$585$$ −5.51775 + 11.9728i −0.228131 + 0.495013i
$$586$$ −20.9665 + 12.1050i −0.866118 + 0.500053i
$$587$$ 19.3782 + 19.3782i 0.799824 + 0.799824i 0.983068 0.183244i $$-0.0586597\pi$$
−0.183244 + 0.983068i $$0.558660\pi$$
$$588$$ −0.709407 + 1.90004i −0.0292555 + 0.0783565i
$$589$$ 14.9775i 0.617136i
$$590$$ −10.0032 + 7.07136i −0.411823 + 0.291123i
$$591$$ −5.07919 2.93247i −0.208930 0.120626i
$$592$$ 1.30444 + 4.86824i 0.0536122 + 0.200083i
$$593$$ 3.12741 + 0.837988i 0.128428 + 0.0344121i 0.322460 0.946583i $$-0.395490\pi$$
−0.194033 + 0.980995i $$0.562157\pi$$
$$594$$ −9.64311 −0.395661
$$595$$ 1.38094 + 31.3765i 0.0566131 + 1.28631i
$$596$$ −5.04885 −0.206809
$$597$$ 2.10824 + 0.564900i 0.0862844 + 0.0231198i
$$598$$ 0.588122 + 2.19490i 0.0240501 + 0.0897562i
$$599$$ 6.75802 + 3.90174i 0.276125 + 0.159421i 0.631668 0.775239i $$-0.282371\pi$$
−0.355543 + 0.934660i $$0.615704\pi$$
$$600$$ −1.10136 + 0.941113i −0.0449628 + 0.0384208i
$$601$$ 31.7170i 1.29377i 0.762590 + 0.646883i $$0.223928\pi$$
−0.762590 + 0.646883i $$0.776072\pi$$
$$602$$ −6.17537 + 3.18231i −0.251689 + 0.129701i
$$603$$ 1.74233 + 1.74233i 0.0709530 + 0.0709530i
$$604$$ −11.6418 + 6.72142i −0.473699 + 0.273491i
$$605$$ −15.9865 43.3171i −0.649945 1.76109i
$$606$$ −2.33227 + 4.03960i −0.0947418 + 0.164098i
$$607$$ 0.199219 0.743495i 0.00808604 0.0301775i −0.961765 0.273876i $$-0.911694\pi$$
0.969851 + 0.243699i $$0.0783608\pi$$
$$608$$ −2.75192 + 2.75192i −0.111605 + 0.111605i
$$609$$ −0.513702 2.36336i −0.0208162 0.0957682i
$$610$$ 10.2632 0.944318i 0.415546 0.0382343i
$$611$$ −5.95987 10.3228i −0.241110 0.417615i
$$612$$ −14.9530 + 4.00666i −0.604441 + 0.161960i
$$613$$ −33.8086 + 9.05898i −1.36552 + 0.365889i −0.865839 0.500323i $$-0.833214\pi$$
−0.499676 + 0.866212i $$0.666548\pi$$
$$614$$ −12.2311 21.1850i −0.493609 0.854955i
$$615$$ −4.65183 + 0.428014i −0.187580 + 0.0172592i
$$616$$ −3.16146 14.5447i −0.127379 0.586024i
$$617$$ 21.5403 21.5403i 0.867179 0.867179i −0.124980 0.992159i $$-0.539887\pi$$
0.992159 + 0.124980i $$0.0398866\pi$$
$$618$$ −1.47501 + 5.50479i −0.0593334 + 0.221435i
$$619$$ −21.6707 + 37.5348i −0.871021 + 1.50865i −0.0100783 + 0.999949i $$0.503208\pi$$
−0.860942 + 0.508703i $$0.830125\pi$$
$$620$$ −2.97947 8.07317i −0.119658 0.324226i
$$621$$ 1.66841 0.963256i 0.0669509 0.0386541i
$$622$$ 7.76566 + 7.76566i 0.311374 + 0.311374i
$$623$$ −28.0382 + 14.4487i −1.12333 + 0.578876i
$$624$$ 0.585786i 0.0234502i
$$625$$ 19.4363 + 15.7235i 0.777452 + 0.628942i
$$626$$ −25.4707 14.7055i −1.01801 0.587749i
$$627$$ −1.64184 6.12745i −0.0655690 0.244707i
$$628$$ −1.06529 0.285443i −0.0425096 0.0113904i
$$629$$ −26.7559 −1.06683
$$630$$ 0.758543 + 17.2349i 0.0302211 + 0.686655i
$$631$$ 7.53463 0.299949 0.149974 0.988690i $$-0.452081\pi$$
0.149974 + 0.988690i $$0.452081\pi$$
$$632$$ −6.03495 1.61706i −0.240058 0.0643232i
$$633$$ −1.46804 5.47879i −0.0583492 0.217762i
$$634$$ 3.71869 + 2.14699i 0.147688 + 0.0852677i
$$635$$ 11.9683 8.46052i 0.474946 0.335746i
$$636$$ 0.400741i 0.0158904i
$$637$$ 10.9163 9.00710i 0.432520 0.356874i
$$638$$ 12.5507 + 12.5507i 0.496887 + 0.496887i
$$639$$ 12.0640 6.96513i 0.477243 0.275536i
$$640$$ 0.935904 2.03078i 0.0369949 0.0802738i
$$641$$ −12.1657 + 21.0717i −0.480518 + 0.832281i −0.999750 0.0223521i $$-0.992885\pi$$
0.519233 + 0.854633i $$0.326218\pi$$
$$642$$ 0.210046 0.783903i 0.00828986 0.0309382i
$$643$$ −6.21713 + 6.21713i −0.245180 + 0.245180i −0.818989 0.573809i $$-0.805465\pi$$
0.573809 + 0.818989i $$0.305465\pi$$
$$644$$ 1.99986 + 2.20067i 0.0788057 + 0.0867184i
$$645$$ 1.08763 1.30805i 0.0428252 0.0515045i
$$646$$ −10.3303 17.8925i −0.406439 0.703973i
$$647$$ 19.9243 5.33869i 0.783304 0.209886i 0.155063 0.987905i $$-0.450442\pi$$
0.628241 + 0.778019i $$0.283775\pi$$
$$648$$ −7.97036 + 2.13565i −0.313105 + 0.0838963i
$$649$$ 15.4102 + 26.6913i 0.604905 + 1.04773i
$$650$$ 9.93921 1.84463i 0.389848 0.0723523i
$$651$$ 2.80989 + 0.898745i 0.110128 + 0.0352246i
$$652$$ −9.36288 + 9.36288i −0.366679 + 0.366679i
$$653$$ 6.76544 25.2490i 0.264752 0.988069i −0.697650 0.716439i $$-0.745771\pi$$
0.962402 0.271630i $$-0.0875625\pi$$
$$654$$ 0.856296 1.48315i 0.0334838 0.0579957i
$$655$$ −16.1430 + 5.95772i −0.630761 + 0.232787i
$$656$$ 6.24448 3.60525i 0.243806 0.140761i
$$657$$ 11.5723 + 11.5723i 0.451478 + 0.451478i
$$658$$ −13.1208 8.43533i −0.511502 0.328844i
$$659$$ 24.2448i 0.944443i −0.881480 0.472222i $$-0.843452\pi$$
0.881480 0.472222i $$-0.156548\pi$$
$$660$$ 2.10392 + 2.97621i 0.0818951 + 0.115849i
$$661$$ 15.5301 + 8.96630i 0.604050 + 0.348749i 0.770633 0.637279i $$-0.219940\pi$$
−0.166583 + 0.986027i $$0.553273\pi$$
$$662$$ 9.17510 + 34.2419i 0.356600 + 1.33085i
$$663$$ −3.00382 0.804871i −0.116659 0.0312586i
$$664$$ −8.02257 −0.311336
$$665$$ −21.9562 + 6.93121i −0.851423 + 0.268781i
$$666$$ −14.6968 −0.569491
$$667$$ −3.42516 0.917769i −0.132623 0.0355362i
$$668$$ −1.72281 6.42961i −0.0666574 0.248769i
$$669$$ −0.518181 0.299172i −0.0200340 0.0115667i
$$670$$ 0.319750 1.86219i 0.0123530 0.0719427i
$$671$$ 25.9305i 1.00104i
$$672$$ 0.351149 + 0.681415i 0.0135459 + 0.0262862i
$$673$$ −4.85386 4.85386i −0.187103 0.187103i 0.607340 0.794442i $$-0.292237\pi$$
−0.794442 + 0.607340i $$0.792237\pi$$
$$674$$ 14.8774 8.58946i 0.573056 0.330854i
$$675$$ −3.69158 7.73470i −0.142089 0.297709i
$$676$$ −4.45619 + 7.71834i −0.171392 + 0.296859i
$$677$$ −4.78306 + 17.8506i −0.183828 + 0.686055i 0.811051 + 0.584976i $$0.198896\pi$$
−0.994878 + 0.101079i $$0.967771\pi$$
$$678$$ 3.93514 3.93514i 0.151128 0.151128i
$$679$$ −18.3618 + 16.6863i −0.704660 + 0.640362i
$$680$$ 9.12760 + 7.58946i 0.350027 + 0.291043i
$$681$$ 2.70083 + 4.67797i 0.103496 + 0.179260i
$$682$$ −20.9128 + 5.60357i −0.800793 + 0.214572i
$$683$$ 25.8878 6.93661i 0.990569 0.265422i 0.273079 0.961992i $$-0.411958\pi$$
0.717489 + 0.696569i $$0.245291\pi$$
$$684$$ −5.67435 9.82827i −0.216964 0.375793i
$$685$$ −1.81023 19.6743i −0.0691653 0.751717i
$$686$$ 7.29908 17.0213i 0.278680 0.649875i
$$687$$ −0.821071 + 0.821071i −0.0313258 + 0.0313258i
$$688$$ −0.679597 + 2.53629i −0.0259094 + 0.0966951i
$$689$$ −1.39819 + 2.42173i −0.0532667 + 0.0922606i
$$690$$ −0.661307 0.304769i −0.0251755 0.0116024i
$$691$$ 25.1773 14.5361i 0.957790 0.552980i 0.0622976 0.998058i $$-0.480157\pi$$
0.895492 + 0.445077i $$0.146824\pi$$
$$692$$ −4.98835 4.98835i −0.189628 0.189628i
$$693$$ 43.3541 + 2.07251i 1.64689 + 0.0787281i
$$694$$ 8.97626i 0.340734i
$$695$$ 24.3811 + 4.18638i 0.924827 + 0.158798i
$$696$$ −0.791655 0.457062i −0.0300076 0.0173249i
$$697$$ 9.90723 + 36.9743i 0.375263 + 1.40050i
$$698$$ 25.1383 + 6.73580i 0.951500 + 0.254954i
$$699$$ 3.97855 0.150483
$$700$$ 10.4560 8.10381i 0.395200 0.306295i
$$701$$ 25.4462 0.961089 0.480545 0.876970i $$-0.340439\pi$$
0.480545 + 0.876970i $$0.340439\pi$$
$$702$$ −3.34746 0.896949i −0.126342 0.0338531i
$$703$$ −5.07663 18.9462i −0.191469 0.714571i
$$704$$ −4.87205 2.81288i −0.183622 0.106014i
$$705$$ 3.76452 + 0.646392i 0.141780 + 0.0243445i
$$706$$ 9.96618i 0.375082i
$$707$$ 23.0343 35.8289i 0.866295 1.34748i
$$708$$ −1.12240 1.12240i −0.0421823 0.0421823i
$$709$$ −27.1994 + 15.7036i −1.02150 + 0.589760i −0.914537 0.404503i $$-0.867445\pi$$
−0.106958 + 0.994263i $$0.534111\pi$$
$$710$$ −9.70125 4.47091i −0.364081 0.167790i
$$711$$ 9.10952 15.7781i 0.341634 0.591727i
$$712$$ −3.08559 + 11.5156i −0.115637 + 0.431565i
$$713$$ 3.05850 3.05850i 0.114542 0.114542i
$$714$$ −3.97667 + 0.864371i −0.148823 + 0.0323483i
$$715$$ −2.33027 25.3263i −0.0871470 0.947149i
$$716$$ 1.10317 + 1.91075i 0.0412275 + 0.0714081i
$$717$$ −5.50271 + 1.47445i −0.205502 + 0.0550642i
$$718$$ −11.1797 + 2.99560i −0.417224 + 0.111795i
$$719$$ −5.40214 9.35678i −0.201466 0.348949i 0.747535 0.664222i $$-0.231237\pi$$
−0.949001 + 0.315273i $$0.897904\pi$$
$$720$$ 5.01373 + 4.16885i 0.186851 + 0.155364i
$$721$$ 15.8540 49.5669i 0.590434 1.84597i
$$722$$ −2.72509 + 2.72509i −0.101417 + 0.101417i
$$723$$ −0.441322 + 1.64704i −0.0164129 + 0.0612539i
$$724$$ −2.05934 + 3.56688i −0.0765347 + 0.132562i
$$725$$ −5.26221 + 14.8715i −0.195433 + 0.552315i
$$726$$ 5.18128 2.99141i 0.192295 0.111022i
$$727$$ 33.6108 + 33.6108i 1.24656 + 1.24656i 0.957231 + 0.289326i $$0.0934311\pi$$
0.289326 + 0.957231i $$0.406569\pi$$
$$728$$ 0.255420 5.34305i 0.00946651 0.198026i
$$729$$ 22.5720i 0.835998i
$$730$$ 2.12373 12.3684i 0.0786029 0.457776i
$$731$$ −12.0719 6.96972i −0.446496 0.257785i
$$732$$ 0.345644 + 1.28996i 0.0127754 + 0.0476784i
$$733$$ 24.8800 + 6.66658i 0.918964 + 0.246236i 0.687143 0.726523i $$-0.258865\pi$$
0.231822 + 0.972758i $$0.425531\pi$$
$$734$$ −16.6944 −0.616202
$$735$$ −0.0171620 + 4.53507i −0.000633031 + 0.167278i
$$736$$ 1.12392 0.0414283
$$737$$ −4.59170 1.23034i −0.169138 0.0453203i
$$738$$ 5.44198 + 20.3098i 0.200322 + 0.747613i
$$739$$ 10.4948 + 6.05920i 0.386059 + 0.222891i 0.680451 0.732793i $$-0.261784\pi$$
−0.294392 + 0.955685i $$0.595117\pi$$
$$740$$ 6.50539 + 9.20253i 0.239143 + 0.338292i
$$741$$ 2.27977i 0.0837493i
$$742$$ −0.174735 + 3.65522i −0.00641472 + 0.134187i
$$743$$ 23.2618 + 23.2618i 0.853393 + 0.853393i 0.990549 0.137157i $$-0.0437964\pi$$
−0.137157 + 0.990549i $$0.543796\pi$$
$$744$$ 0.965654 0.557521i 0.0354026 0.0204397i
$$745$$ −10.5913 + 3.90881i −0.388036 + 0.143208i
$$746$$ −1.58946 + 2.75303i −0.0581944 + 0.100796i
$$747$$ 6.05487 22.5971i 0.221536 0.826784i
$$748$$ 21.1182 21.1182i 0.772158 0.772158i
$$749$$ −2.25767 + 7.05851i −0.0824934 + 0.257912i
$$750$$ −1.58179 + 2.82690i −0.0577587 + 0.103224i
$$751$$ −6.98887 12.1051i −0.255028 0.441721i 0.709875 0.704327i $$-0.248751\pi$$
−0.964903 + 0.262607i $$0.915418\pi$$
$$752$$ −5.69475 + 1.52590i −0.207666 + 0.0556440i
$$753$$ 1.98690 0.532387i 0.0724065 0.0194013i
$$754$$ 3.18939 + 5.52418i 0.116151 + 0.201179i
$$755$$ −19.2181 + 23.1130i −0.699420 + 0.841169i
$$756$$ −4.43160 + 0.963256i −0.161176 + 0.0350333i
$$757$$ 17.5547 17.5547i 0.638036 0.638036i −0.312035 0.950071i $$-0.601010\pi$$
0.950071 + 0.312035i $$0.101010\pi$$
$$758$$ −1.85146 + 6.90974i −0.0672481 + 0.250973i
$$759$$ −0.915990 + 1.58654i −0.0332483 + 0.0575878i
$$760$$ −3.64236 + 7.90341i −0.132122 + 0.286687i
$$761$$ 18.9372 10.9334i 0.686471 0.396334i −0.115817 0.993271i $$-0.536949\pi$$
0.802289 + 0.596936i $$0.203615\pi$$
$$762$$ 1.34289 + 1.34289i 0.0486478 + 0.0486478i
$$763$$ −8.45710 + 13.1546i −0.306168 + 0.476230i
$$764$$ 17.2023i 0.622359i
$$765$$ −28.2660 + 19.9816i −1.02196 + 0.722437i
$$766$$ 12.6382 + 7.29669i 0.456638 + 0.263640i
$$767$$ 2.86675 + 10.6989i 0.103512 + 0.386313i
$$768$$ 0.279864 + 0.0749894i 0.0100987 + 0.00270595i
$$769$$ 31.0506 1.11971 0.559857 0.828589i $$-0.310856\pi$$
0.559857 + 0.828589i $$0.310856\pi$$
$$770$$ −17.8925 28.0639i −0.644800 1.01135i
$$771$$ 2.86459 0.103166