Properties

Label 70.2.k
Level $70$
Weight $2$
Character orbit 70.k
Rep. character $\chi_{70}(3,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $16$
Newform subspaces $1$
Sturm bound $24$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 70.k (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(24\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(70, [\chi])\).

Total New Old
Modular forms 64 16 48
Cusp forms 32 16 16
Eisenstein series 32 0 32

Trace form

\( 16q - 12q^{5} + 8q^{7} + O(q^{10}) \) \( 16q - 12q^{5} + 8q^{7} - 12q^{10} - 12q^{11} + 16q^{15} + 8q^{16} - 36q^{17} - 8q^{18} - 28q^{21} - 8q^{22} - 4q^{23} + 12q^{25} + 12q^{26} + 4q^{28} + 20q^{30} + 24q^{31} + 48q^{33} + 8q^{35} - 8q^{36} + 4q^{37} + 24q^{38} + 36q^{42} - 8q^{43} - 12q^{45} - 8q^{46} + 12q^{47} - 32q^{50} - 16q^{51} - 28q^{53} - 4q^{56} + 8q^{57} - 32q^{58} + 8q^{60} - 12q^{61} - 36q^{63} - 8q^{65} + 32q^{67} - 36q^{68} - 12q^{70} + 16q^{71} - 8q^{72} - 12q^{73} - 48q^{75} + 16q^{77} + 16q^{78} - 12q^{80} - 48q^{82} + 24q^{85} + 12q^{86} - 24q^{87} - 4q^{88} - 16q^{91} + 8q^{92} + 28q^{93} + 20q^{95} + 12q^{96} + 40q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(70, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
70.2.k.a \(16\) \(0.559\) \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None \(0\) \(0\) \(-12\) \(8\) \(q+(-\beta _{7}-\beta _{15})q^{2}+(-\beta _{4}+\beta _{13})q^{3}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(70, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(70, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)