Properties

Label 70.2.e.d
Level $70$
Weight $2$
Character orbit 70.e
Analytic conductor $0.559$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [70,2,Mod(11,70)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(70, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("70.11");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 70.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.558952814149\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{6} q^{2} + ( - 2 \zeta_{6} + 2) q^{3} + (\zeta_{6} - 1) q^{4} - \zeta_{6} q^{5} + 2 q^{6} + (2 \zeta_{6} - 3) q^{7} - q^{8} - \zeta_{6} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \zeta_{6} q^{2} + ( - 2 \zeta_{6} + 2) q^{3} + (\zeta_{6} - 1) q^{4} - \zeta_{6} q^{5} + 2 q^{6} + (2 \zeta_{6} - 3) q^{7} - q^{8} - \zeta_{6} q^{9} + ( - \zeta_{6} + 1) q^{10} + (3 \zeta_{6} - 3) q^{11} + 2 \zeta_{6} q^{12} - q^{13} + ( - \zeta_{6} - 2) q^{14} - 2 q^{15} - \zeta_{6} q^{16} + ( - 6 \zeta_{6} + 6) q^{17} + ( - \zeta_{6} + 1) q^{18} + \zeta_{6} q^{19} + q^{20} + (6 \zeta_{6} - 2) q^{21} - 3 q^{22} - 9 \zeta_{6} q^{23} + (2 \zeta_{6} - 2) q^{24} + (\zeta_{6} - 1) q^{25} - \zeta_{6} q^{26} + 4 q^{27} + ( - 3 \zeta_{6} + 1) q^{28} + 6 q^{29} - 2 \zeta_{6} q^{30} + (8 \zeta_{6} - 8) q^{31} + ( - \zeta_{6} + 1) q^{32} + 6 \zeta_{6} q^{33} + 6 q^{34} + (\zeta_{6} + 2) q^{35} + q^{36} + 7 \zeta_{6} q^{37} + (\zeta_{6} - 1) q^{38} + (2 \zeta_{6} - 2) q^{39} + \zeta_{6} q^{40} + 3 q^{41} + (4 \zeta_{6} - 6) q^{42} + 2 q^{43} - 3 \zeta_{6} q^{44} + (\zeta_{6} - 1) q^{45} + ( - 9 \zeta_{6} + 9) q^{46} - 9 \zeta_{6} q^{47} - 2 q^{48} + ( - 8 \zeta_{6} + 5) q^{49} - q^{50} - 12 \zeta_{6} q^{51} + ( - \zeta_{6} + 1) q^{52} + (9 \zeta_{6} - 9) q^{53} + 4 \zeta_{6} q^{54} + 3 q^{55} + ( - 2 \zeta_{6} + 3) q^{56} + 2 q^{57} + 6 \zeta_{6} q^{58} + ( - 2 \zeta_{6} + 2) q^{60} - 8 \zeta_{6} q^{61} - 8 q^{62} + (\zeta_{6} + 2) q^{63} + q^{64} + \zeta_{6} q^{65} + (6 \zeta_{6} - 6) q^{66} + (8 \zeta_{6} - 8) q^{67} + 6 \zeta_{6} q^{68} - 18 q^{69} + (3 \zeta_{6} - 1) q^{70} + \zeta_{6} q^{72} + ( - 4 \zeta_{6} + 4) q^{73} + (7 \zeta_{6} - 7) q^{74} + 2 \zeta_{6} q^{75} - q^{76} + ( - 9 \zeta_{6} + 3) q^{77} - 2 q^{78} + 10 \zeta_{6} q^{79} + (\zeta_{6} - 1) q^{80} + ( - 11 \zeta_{6} + 11) q^{81} + 3 \zeta_{6} q^{82} + ( - 2 \zeta_{6} - 4) q^{84} - 6 q^{85} + 2 \zeta_{6} q^{86} + ( - 12 \zeta_{6} + 12) q^{87} + ( - 3 \zeta_{6} + 3) q^{88} - 6 \zeta_{6} q^{89} - q^{90} + ( - 2 \zeta_{6} + 3) q^{91} + 9 q^{92} + 16 \zeta_{6} q^{93} + ( - 9 \zeta_{6} + 9) q^{94} + ( - \zeta_{6} + 1) q^{95} - 2 \zeta_{6} q^{96} - 10 q^{97} + ( - 3 \zeta_{6} + 8) q^{98} + 3 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 2 q^{3} - q^{4} - q^{5} + 4 q^{6} - 4 q^{7} - 2 q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} + 2 q^{3} - q^{4} - q^{5} + 4 q^{6} - 4 q^{7} - 2 q^{8} - q^{9} + q^{10} - 3 q^{11} + 2 q^{12} - 2 q^{13} - 5 q^{14} - 4 q^{15} - q^{16} + 6 q^{17} + q^{18} + q^{19} + 2 q^{20} + 2 q^{21} - 6 q^{22} - 9 q^{23} - 2 q^{24} - q^{25} - q^{26} + 8 q^{27} - q^{28} + 12 q^{29} - 2 q^{30} - 8 q^{31} + q^{32} + 6 q^{33} + 12 q^{34} + 5 q^{35} + 2 q^{36} + 7 q^{37} - q^{38} - 2 q^{39} + q^{40} + 6 q^{41} - 8 q^{42} + 4 q^{43} - 3 q^{44} - q^{45} + 9 q^{46} - 9 q^{47} - 4 q^{48} + 2 q^{49} - 2 q^{50} - 12 q^{51} + q^{52} - 9 q^{53} + 4 q^{54} + 6 q^{55} + 4 q^{56} + 4 q^{57} + 6 q^{58} + 2 q^{60} - 8 q^{61} - 16 q^{62} + 5 q^{63} + 2 q^{64} + q^{65} - 6 q^{66} - 8 q^{67} + 6 q^{68} - 36 q^{69} + q^{70} + q^{72} + 4 q^{73} - 7 q^{74} + 2 q^{75} - 2 q^{76} - 3 q^{77} - 4 q^{78} + 10 q^{79} - q^{80} + 11 q^{81} + 3 q^{82} - 10 q^{84} - 12 q^{85} + 2 q^{86} + 12 q^{87} + 3 q^{88} - 6 q^{89} - 2 q^{90} + 4 q^{91} + 18 q^{92} + 16 q^{93} + 9 q^{94} + q^{95} - 2 q^{96} - 20 q^{97} + 13 q^{98} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/70\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(57\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
11.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 + 0.866025i 1.00000 1.73205i −0.500000 + 0.866025i −0.500000 0.866025i 2.00000 −2.00000 + 1.73205i −1.00000 −0.500000 0.866025i 0.500000 0.866025i
51.1 0.500000 0.866025i 1.00000 + 1.73205i −0.500000 0.866025i −0.500000 + 0.866025i 2.00000 −2.00000 1.73205i −1.00000 −0.500000 + 0.866025i 0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 70.2.e.d 2
3.b odd 2 1 630.2.k.d 2
4.b odd 2 1 560.2.q.b 2
5.b even 2 1 350.2.e.b 2
5.c odd 4 2 350.2.j.d 4
7.b odd 2 1 490.2.e.g 2
7.c even 3 1 inner 70.2.e.d 2
7.c even 3 1 490.2.a.a 1
7.d odd 6 1 490.2.a.d 1
7.d odd 6 1 490.2.e.g 2
21.g even 6 1 4410.2.a.bg 1
21.h odd 6 1 630.2.k.d 2
21.h odd 6 1 4410.2.a.x 1
28.f even 6 1 3920.2.a.e 1
28.g odd 6 1 560.2.q.b 2
28.g odd 6 1 3920.2.a.bh 1
35.i odd 6 1 2450.2.a.v 1
35.j even 6 1 350.2.e.b 2
35.j even 6 1 2450.2.a.bf 1
35.k even 12 2 2450.2.c.e 2
35.l odd 12 2 350.2.j.d 4
35.l odd 12 2 2450.2.c.q 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.2.e.d 2 1.a even 1 1 trivial
70.2.e.d 2 7.c even 3 1 inner
350.2.e.b 2 5.b even 2 1
350.2.e.b 2 35.j even 6 1
350.2.j.d 4 5.c odd 4 2
350.2.j.d 4 35.l odd 12 2
490.2.a.a 1 7.c even 3 1
490.2.a.d 1 7.d odd 6 1
490.2.e.g 2 7.b odd 2 1
490.2.e.g 2 7.d odd 6 1
560.2.q.b 2 4.b odd 2 1
560.2.q.b 2 28.g odd 6 1
630.2.k.d 2 3.b odd 2 1
630.2.k.d 2 21.h odd 6 1
2450.2.a.v 1 35.i odd 6 1
2450.2.a.bf 1 35.j even 6 1
2450.2.c.e 2 35.k even 12 2
2450.2.c.q 2 35.l odd 12 2
3920.2.a.e 1 28.f even 6 1
3920.2.a.bh 1 28.g odd 6 1
4410.2.a.x 1 21.h odd 6 1
4410.2.a.bg 1 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(70, [\chi])\):

\( T_{3}^{2} - 2T_{3} + 4 \) Copy content Toggle raw display
\( T_{13} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$5$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} + 4T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$13$ \( (T + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$19$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$23$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$37$ \( T^{2} - 7T + 49 \) Copy content Toggle raw display
$41$ \( (T - 3)^{2} \) Copy content Toggle raw display
$43$ \( (T - 2)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$53$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$67$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$79$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$97$ \( (T + 10)^{2} \) Copy content Toggle raw display
show more
show less