Properties

Label 70.2
Level 70
Weight 2
Dimension 45
Nonzero newspaces 6
Newform subspaces 10
Sturm bound 576
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 10 \)
Sturm bound: \(576\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(70))\).

Total New Old
Modular forms 192 45 147
Cusp forms 97 45 52
Eisenstein series 95 0 95

Trace form

\( 45 q + q^{2} - 3 q^{4} - 5 q^{5} - 8 q^{6} - 9 q^{7} + q^{8} - 15 q^{9} - 5 q^{10} - 12 q^{11} - 6 q^{13} - 5 q^{14} - 20 q^{15} - 3 q^{16} - 30 q^{17} - 11 q^{18} - 24 q^{19} - 5 q^{20} - 24 q^{21} - 12 q^{22}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(70))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
70.2.a \(\chi_{70}(1, \cdot)\) 70.2.a.a 1 1
70.2.c \(\chi_{70}(29, \cdot)\) 70.2.c.a 4 1
70.2.e \(\chi_{70}(11, \cdot)\) 70.2.e.a 2 2
70.2.e.b 2
70.2.e.c 2
70.2.e.d 2
70.2.g \(\chi_{70}(13, \cdot)\) 70.2.g.a 8 2
70.2.i \(\chi_{70}(9, \cdot)\) 70.2.i.a 4 2
70.2.i.b 4
70.2.k \(\chi_{70}(3, \cdot)\) 70.2.k.a 16 4

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(70))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(70)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 2}\)