Properties

Label 7.8.a
Level $7$
Weight $8$
Character orbit 7.a
Rep. character $\chi_{7}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $2$
Sturm bound $5$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 7.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(5\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(7))\).

Total New Old
Modular forms 5 3 2
Cusp forms 3 3 0
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(7\)Dim
\(+\)\(2\)
\(-\)\(1\)

Trace form

\( 3 q - 9 q^{2} + 52 q^{3} + 89 q^{4} + 246 q^{5} - 754 q^{6} - 343 q^{7} + 135 q^{8} + 1351 q^{9} - 4316 q^{10} - 2724 q^{11} + 14966 q^{12} - 2618 q^{13} - 1029 q^{14} + 27688 q^{15} - 31807 q^{16} - 15474 q^{17}+ \cdots - 4554068 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(7))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 7
7.8.a.a 7.a 1.a $1$ $2.187$ \(\Q\) None 7.8.a.a \(-6\) \(-42\) \(-84\) \(343\) $-$ $\mathrm{SU}(2)$ \(q-6q^{2}-42q^{3}-92q^{4}-84q^{5}+252q^{6}+\cdots\)
7.8.a.b 7.a 1.a $2$ $2.187$ \(\Q(\sqrt{865}) \) None 7.8.a.b \(-3\) \(94\) \(330\) \(-686\) $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{2}+(46+2\beta )q^{3}+(89+3\beta )q^{4}+\cdots\)