Properties

Label 7.6.c.a
Level $7$
Weight $6$
Character orbit 7.c
Analytic conductor $1.123$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7,6,Mod(2,7)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7.2");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 7.c (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.12268673869\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{37})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 10x^{2} + 9x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - \beta_1) q^{2} + ( - \beta_{3} - \beta_{2} - 4 \beta_1 + 4) q^{3} + (2 \beta_{3} + 2 \beta_{2} + 6 \beta_1 - 6) q^{4} + (10 \beta_{2} + 19 \beta_1) q^{5} + (5 \beta_{3} - 41) q^{6} + ( - 21 \beta_{3} - 14 \beta_{2} - 56 \beta_1 - 14) q^{7} + (24 \beta_{3} + 48) q^{8} + ( - 8 \beta_{2} + 190 \beta_1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{2} - \beta_1) q^{2} + ( - \beta_{3} - \beta_{2} - 4 \beta_1 + 4) q^{3} + (2 \beta_{3} + 2 \beta_{2} + 6 \beta_1 - 6) q^{4} + (10 \beta_{2} + 19 \beta_1) q^{5} + (5 \beta_{3} - 41) q^{6} + ( - 21 \beta_{3} - 14 \beta_{2} - 56 \beta_1 - 14) q^{7} + (24 \beta_{3} + 48) q^{8} + ( - 8 \beta_{2} + 190 \beta_1) q^{9} + ( - 29 \beta_{3} - 29 \beta_{2} - 389 \beta_1 + 389) q^{10} + (23 \beta_{3} + 23 \beta_{2} + 212 \beta_1 - 212) q^{11} + (14 \beta_{2} + 98 \beta_1) q^{12} + ( - 28 \beta_{3} - 462) q^{13} + (70 \beta_{3} + 63 \beta_{2} - 189 \beta_1 - 574) q^{14} + ( - 59 \beta_{3} + 446) q^{15} + (40 \beta_{2} + 1032 \beta_1) q^{16} + (132 \beta_{3} + 132 \beta_{2} - 1173 \beta_1 + 1173) q^{17} + ( - 182 \beta_{3} - 182 \beta_{2} + 106 \beta_1 - 106) q^{18} + ( - 277 \beta_{2} + 180 \beta_1) q^{19} + (98 \beta_{3} - 854) q^{20} + (42 \beta_{3} - 70 \beta_{2} - 721 \beta_1 - 21) q^{21} + ( - 235 \beta_{3} + 1063) q^{22} + (69 \beta_{2} + 6 \beta_1) q^{23} + (48 \beta_{3} + 48 \beta_{2} + 696 \beta_1 - 696) q^{24} + (380 \beta_{3} + 380 \beta_{2} + 936 \beta_1 - 936) q^{25} + (434 \beta_{2} - 574 \beta_1) q^{26} + ( - 401 \beta_{3} + 1436) q^{27} + ( - 98 \beta_{3} + 98 \beta_{2} + 1470 \beta_1 - 98) q^{28} + (700 \beta_{3} - 3526) q^{29} + ( - 505 \beta_{2} - 2629 \beta_1) q^{30} + ( - 715 \beta_{3} - 715 \beta_{2} + 1774 \beta_1 - 1774) q^{31} + ( - 304 \beta_{3} - 304 \beta_{2} - 4048 \beta_1 + 4048) q^{32} + (304 \beta_{2} + 1699 \beta_1) q^{33} + (1041 \beta_{3} + 3711) q^{34} + ( - 826 \beta_{3} - 567 \beta_{2} + 1260 \beta_1 + 6244) q^{35} + (332 \beta_{3} - 548) q^{36} + (790 \beta_{2} - 5545 \beta_1) q^{37} + (97 \beta_{3} + 97 \beta_{2} + 10069 \beta_1 - 10069) q^{38} + (350 \beta_{3} + 350 \beta_{2} + 812 \beta_1 - 812) q^{39} + (24 \beta_{2} - 7968 \beta_1) q^{40} + ( - 868 \beta_{3} + 1750) q^{41} + (791 \beta_{3} + 854 \beta_{2} + 4886 \beta_1 - 3311) q^{42} + ( - 1344 \beta_{3} - 6340) q^{43} + ( - 562 \beta_{2} - 2974 \beta_1) q^{44} + (1748 \beta_{3} + 1748 \beta_{2} + 650 \beta_1 - 650) q^{45} + ( - 75 \beta_{3} - 75 \beta_{2} - 2559 \beta_1 + 2559) q^{46} + ( - 1635 \beta_{2} + 11478 \beta_1) q^{47} + ( - 1192 \beta_{3} + 5608) q^{48} + (2156 \beta_{3} - 392 \beta_{2} - 9800 \beta_1 + 6125) q^{49} + ( - 1316 \beta_{3} + 14996) q^{50} + ( - 645 \beta_{2} + 192 \beta_1) q^{51} + ( - 756 \beta_{3} - 756 \beta_{2} - 700 \beta_1 + 700) q^{52} + ( - 1818 \beta_{3} - 1818 \beta_{2} + 1521 \beta_1 - 1521) q^{53} + ( - 1837 \beta_{2} - 16273 \beta_1) q^{54} + (2557 \beta_{3} - 12538) q^{55} + ( - 1344 \beta_{3} + 672 \beta_{2} + 9744 \beta_1 - 19320) q^{56} + (928 \beta_{3} - 9529) q^{57} + (4226 \beta_{2} + 29426 \beta_1) q^{58} + (531 \beta_{3} + 531 \beta_{2} - 32904 \beta_1 + 32904) q^{59} + (1246 \beta_{3} + 1246 \beta_{2} + 7042 \beta_1 - 7042) q^{60} + (4154 \beta_{2} + 21243 \beta_1) q^{61} + ( - 1059 \beta_{3} - 24681) q^{62} + ( - 2212 \beta_{3} + 1890 \beta_{2} - 15372 \beta_1 + 6496) q^{63} + (3072 \beta_{3} + 17728) q^{64} + ( - 4088 \beta_{2} + 1582 \beta_1) q^{65} + ( - 2003 \beta_{3} - 2003 \beta_{2} - 12947 \beta_1 + 12947) q^{66} + (919 \beta_{3} + 919 \beta_{2} + 21156 \beta_1 - 21156) q^{67} + (1554 \beta_{2} - 2730 \beta_1) q^{68} + ( - 282 \beta_{3} + 2577) q^{69} + ( - 693 \beta_{3} - 7763 \beta_{2} - 17087 \beta_1 - 19719) q^{70} + (2184 \beta_{3} - 1104) q^{71} + ( - 4944 \beta_{2} + 16224 \beta_1) q^{72} + ( - 7372 \beta_{3} - 7372 \beta_{2} - 25253 \beta_1 + 25253) q^{73} + (4755 \beta_{3} + 4755 \beta_{2} - 23685 \beta_1 + 23685) q^{74} + (2456 \beta_{2} + 17804 \beta_1) q^{75} + ( - 1302 \beta_{3} + 19418) q^{76} + ( - 126 \beta_{3} + 4130 \beta_{2} + 14903 \beta_1 + 8883) q^{77} + ( - 1162 \beta_{3} + 13762) q^{78} + (5193 \beta_{2} - 4502 \beta_1) q^{79} + (11080 \beta_{3} + 11080 \beta_{2} + 34408 \beta_1 - 34408) q^{80} + ( - 4984 \beta_{3} - 4984 \beta_{2} + 25589 \beta_1 - 25589) q^{81} + ( - 2618 \beta_{2} - 33866 \beta_1) q^{82} + (4536 \beta_{3} - 52164) q^{83} + ( - 2156 \beta_{3} - 294 \beta_{2} - 3234 \beta_1 + 12740) q^{84} + ( - 9222 \beta_{3} - 26553) q^{85} + (4996 \beta_{2} - 43388 \beta_1) q^{86} + (6326 \beta_{3} + 6326 \beta_{2} + 40004 \beta_1 - 40004) q^{87} + ( - 3984 \beta_{3} - 3984 \beta_{2} - 10248 \beta_1 + 10248) q^{88} + ( - 9356 \beta_{2} + 13333 \beta_1) q^{89} + ( - 2398 \beta_{3} + 65326) q^{90} + (10094 \beta_{3} + 4900 \beta_{2} + 11368 \beta_1 + 28224) q^{91} + (426 \beta_{3} - 5142) q^{92} + ( - 1086 \beta_{2} - 19359 \beta_1) q^{93} + ( - 9843 \beta_{3} - 9843 \beta_{2} + 49017 \beta_1 - 49017) q^{94} + ( - 3463 \beta_{3} - 3463 \beta_{2} - 99070 \beta_1 + 99070) q^{95} + ( - 5264 \beta_{2} - 27440 \beta_1) q^{96} + (196 \beta_{3} + 104566) q^{97} + (10192 \beta_{3} + 6223 \beta_{2} + 97951 \beta_1 - 24304) q^{98} + (2674 \beta_{3} - 33472) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 8 q^{3} - 12 q^{4} + 38 q^{5} - 164 q^{6} - 168 q^{7} + 192 q^{8} + 380 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{2} + 8 q^{3} - 12 q^{4} + 38 q^{5} - 164 q^{6} - 168 q^{7} + 192 q^{8} + 380 q^{9} + 778 q^{10} - 424 q^{11} + 196 q^{12} - 1848 q^{13} - 2674 q^{14} + 1784 q^{15} + 2064 q^{16} + 2346 q^{17} - 212 q^{18} + 360 q^{19} - 3416 q^{20} - 1526 q^{21} + 4252 q^{22} + 12 q^{23} - 1392 q^{24} - 1872 q^{25} - 1148 q^{26} + 5744 q^{27} + 2548 q^{28} - 14104 q^{29} - 5258 q^{30} - 3548 q^{31} + 8096 q^{32} + 3398 q^{33} + 14844 q^{34} + 27496 q^{35} - 2192 q^{36} - 11090 q^{37} - 20138 q^{38} - 1624 q^{39} - 15936 q^{40} + 7000 q^{41} - 3472 q^{42} - 25360 q^{43} - 5948 q^{44} - 1300 q^{45} + 5118 q^{46} + 22956 q^{47} + 22432 q^{48} + 4900 q^{49} + 59984 q^{50} + 384 q^{51} + 1400 q^{52} - 3042 q^{53} - 32546 q^{54} - 50152 q^{55} - 57792 q^{56} - 38116 q^{57} + 58852 q^{58} + 65808 q^{59} - 14084 q^{60} + 42486 q^{61} - 98724 q^{62} - 4760 q^{63} + 70912 q^{64} + 3164 q^{65} + 25894 q^{66} - 42312 q^{67} - 5460 q^{68} + 10308 q^{69} - 113050 q^{70} - 4416 q^{71} + 32448 q^{72} + 50506 q^{73} + 47370 q^{74} + 35608 q^{75} + 77672 q^{76} + 65338 q^{77} + 55048 q^{78} - 9004 q^{79} - 68816 q^{80} - 51178 q^{81} - 67732 q^{82} - 208656 q^{83} + 44492 q^{84} - 106212 q^{85} - 86776 q^{86} - 80008 q^{87} + 20496 q^{88} + 26666 q^{89} + 261304 q^{90} + 135632 q^{91} - 20568 q^{92} - 38718 q^{93} - 98034 q^{94} + 198140 q^{95} - 54880 q^{96} + 418264 q^{97} + 98686 q^{98} - 133888 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 10x^{2} + 9x + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + 10\nu^{2} - 10\nu + 81 ) / 90 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 10\nu^{2} + 190\nu - 81 ) / 90 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 14 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + \beta_{2} + 19\beta _1 - 19 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 5\beta_{3} - 14 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2.1
1.77069 3.06693i
−1.27069 + 2.20090i
1.77069 + 3.06693i
−1.27069 2.20090i
−3.54138 + 6.13385i 5.04138 + 8.73193i −9.08276 15.7318i 39.9138 69.1328i −71.4138 43.1587 + 122.247i −97.9863 70.6689 122.402i 282.700 + 489.651i
2.2 2.54138 4.40180i −1.04138 1.80373i 3.08276 + 5.33950i −20.9138 + 36.2238i −10.5862 −127.159 25.2522i 193.986 119.331 206.687i 106.300 + 184.117i
4.1 −3.54138 6.13385i 5.04138 8.73193i −9.08276 + 15.7318i 39.9138 + 69.1328i −71.4138 43.1587 122.247i −97.9863 70.6689 + 122.402i 282.700 489.651i
4.2 2.54138 + 4.40180i −1.04138 + 1.80373i 3.08276 5.33950i −20.9138 36.2238i −10.5862 −127.159 + 25.2522i 193.986 119.331 + 206.687i 106.300 184.117i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7.6.c.a 4
3.b odd 2 1 63.6.e.d 4
4.b odd 2 1 112.6.i.c 4
7.b odd 2 1 49.6.c.f 4
7.c even 3 1 inner 7.6.c.a 4
7.c even 3 1 49.6.a.d 2
7.d odd 6 1 49.6.a.e 2
7.d odd 6 1 49.6.c.f 4
21.g even 6 1 441.6.a.m 2
21.h odd 6 1 63.6.e.d 4
21.h odd 6 1 441.6.a.n 2
28.f even 6 1 784.6.a.t 2
28.g odd 6 1 112.6.i.c 4
28.g odd 6 1 784.6.a.ba 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.6.c.a 4 1.a even 1 1 trivial
7.6.c.a 4 7.c even 3 1 inner
49.6.a.d 2 7.c even 3 1
49.6.a.e 2 7.d odd 6 1
49.6.c.f 4 7.b odd 2 1
49.6.c.f 4 7.d odd 6 1
63.6.e.d 4 3.b odd 2 1
63.6.e.d 4 21.h odd 6 1
112.6.i.c 4 4.b odd 2 1
112.6.i.c 4 28.g odd 6 1
441.6.a.m 2 21.g even 6 1
441.6.a.n 2 21.h odd 6 1
784.6.a.t 2 28.f even 6 1
784.6.a.ba 2 28.g odd 6 1

Hecke kernels

This newform subspace is the entire newspace \(S_{6}^{\mathrm{new}}(7, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 2 T^{3} + 40 T^{2} + \cdots + 1296 \) Copy content Toggle raw display
$3$ \( T^{4} - 8 T^{3} + 85 T^{2} + 168 T + 441 \) Copy content Toggle raw display
$5$ \( T^{4} - 38 T^{3} + 4783 T^{2} + \cdots + 11148921 \) Copy content Toggle raw display
$7$ \( T^{4} + 168 T^{3} + \cdots + 282475249 \) Copy content Toggle raw display
$11$ \( T^{4} + 424 T^{3} + \cdots + 643687641 \) Copy content Toggle raw display
$13$ \( (T^{2} + 924 T + 184436)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 2346 T^{3} + \cdots + 534713400081 \) Copy content Toggle raw display
$19$ \( T^{4} - 360 T^{3} + \cdots + 7876852004329 \) Copy content Toggle raw display
$23$ \( T^{4} - 12 T^{3} + \cdots + 31018606641 \) Copy content Toggle raw display
$29$ \( (T^{2} + 7052 T - 5697324)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 248637676526001 \) Copy content Toggle raw display
$37$ \( T^{4} + 11090 T^{3} + \cdots + 58604000855625 \) Copy content Toggle raw display
$41$ \( (T^{2} - 3500 T - 24814188)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 12680 T - 26638832)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 22956 T^{3} + \cdots + 10\!\cdots\!81 \) Copy content Toggle raw display
$53$ \( T^{4} + 3042 T^{3} + \cdots + 14\!\cdots\!09 \) Copy content Toggle raw display
$59$ \( T^{4} - 65808 T^{3} + \cdots + 11\!\cdots\!81 \) Copy content Toggle raw display
$61$ \( T^{4} - 42486 T^{3} + \cdots + 35\!\cdots\!49 \) Copy content Toggle raw display
$67$ \( T^{4} + 42312 T^{3} + \cdots + 17\!\cdots\!41 \) Copy content Toggle raw display
$71$ \( (T^{2} + 2208 T - 175265856)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 50506 T^{3} + \cdots + 18\!\cdots\!01 \) Copy content Toggle raw display
$79$ \( T^{4} + 9004 T^{3} + \cdots + 95\!\cdots\!81 \) Copy content Toggle raw display
$83$ \( (T^{2} + 104328 T + 1959796944)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 26666 T^{3} + \cdots + 93\!\cdots\!49 \) Copy content Toggle raw display
$97$ \( (T^{2} - 209132 T + 10932626964)^{2} \) Copy content Toggle raw display
show more
show less